Vol.21, Special Issue, 2021, pp. S83–S88 |
REŠENJE OBLIKA FROBENIUSOVOG REDA ZA FUNKCIONALNI MATERIJAL EKSPONENCIJALNO PROMENLJIVE DEBLJINE I MODULA ELASTIČNOSTI M. Sahni1*, R. Sahni2, N. Patel3, M. Kumar4 1) Department of Mathematics, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, INDIA 2) Department of Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, INDIA 3) Department of Mathematics, Adani Institute of Infrastructure Engineering, Ahmedabad, Gujarat, INDIA 4) Department of Mathematics, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, INDIA *email: manojsahani117@gmail.com
|
Izvod U ovom radu, rešenje oblika Frobeniusovog reda se dobija za nerotirajući cilindar od funkcionalnog materijala, a shodno promeni osobina materijala duž radijusa prema eksponencijalnom zakonu. Razmatra se ravno stanje deformacija, gde su deformacije u aksijalnom pravcu jednake nuli. Dobijeni su izrazi za napone - radijalne i obimske. Dobijene su i deformacije za funkcionalni materijal u uslovima osnosimetričnog problema. Izrazi za homogeni slučaj su dobijeni pod uslovom da je indeks materijala jednak nuli. Iscrtani su dijagrami za napone, deformacije i pomeranja za homogeni slučaj, a data je i diskusija numeričkih rezultata. Dobijeni su rezultati za unutrašnji pritisak kada je spoljni pritisak jednak nuli. Uočava se da su radijalni naponi - pritisni na unutrašnjem radijusu, koji se približava nuli na spoljnjem radijusu. Obimski napon je zatezni i dostiže maksimum na unutrašnjem radijusu, a minimum na spoljnjem radijusu. Ključne reči: metoda stepenog reda, moduli elastičnosti, debelozidi cilindar, unutrašnji pritisak |
rad u celosti (407 kB) |