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Abstract 

In this paper, a Frobenius series solution is obtained for 

a functionally graded non-rotating cylinder following the 

exponential law variation in material properties across radii. 

The plane strain condition is considered in which the strain 

along the axial direction is taken as zero. The expressions 

are obtained for stresses - radial and circumferential. The 

strains are also obtained for functionally graded material 

considering the problem as axi-symmetric. The expressions 

for the homogeneous case are obtained by making the mate-

rial index zero. Graphs are plotted for stresses, strains, and 

displacements for the homogeneous case and are numeri-

cally discussed. The results are obtained under internal pres-

sure in which the external pressure is kept as zero. It is seen 

that the radial stress is compressive at the internal radii 

and moves towards zero at the outer radii. The circumfer-

ential stress is tensile and is maximum at the internal radii 

and minimum at the outer radii. 

Ključne reči 

• metoda stepenog reda 

• moduli elastičnosti 

• debelozidi cilindar 

• unutrašnji pritisak 

Izvod 

U ovom radu, rešenje oblika Frobeniusovog reda se 

dobija za nerotirajući cilindar od funkcionalnog materijala, 

a shodno promeni osobina materijala duž radijusa prema 

eksponencijalnom zakonu. Razmatra se ravno stanje defor-

macija, gde su deformacije u aksijalnom pravcu jednake nuli. 

Dobijeni su izrazi za napone - radijalne i obimske. Dobije-

ne su i deformacije za funkcionalni materijal u uslovima 

osnosimetričnog problema. Izrazi za homogeni slučaj su 

dobijeni pod uslovom da je indeks materijala jednak nuli. 

Iscrtani su dijagrami za napone, deformacije i pomeranja 

za homogeni slučaj, a data je i diskusija numeričkih rezul-

tata. Dobijeni su rezultati za unutrašnji pritisak kada je 

spoljni pritisak jednak nuli. Uočava se da su radijalni naponi 

– pritisni na unutrašnjem radijusu, koji se približava nuli 

na spoljnjem radijusu. Obimski napon je zatezni i dostiže 

maksimum na unutrašnjem radijusu, a minimum na spolj-

njem radijusu. 

INTRODUCTION 

In the modern era of technology, materials play a very 

important role. The materials are so important that in the 

development of civilization, we even associate ages with 

them such as Stone Age, Bronze Age, etc. The materials in 

general are classified according to their properties and their 

usage such as metals, semiconductor, ceramics, etc. The 

combination of these individual materials can be made, 

called as composite materials, so that the strength of the 

structure can be improved, and their material cost can be 

saved, because it is not necessary that the same material is 

used throughout the structure to maintain their strength. The 

composite materials have been used at various places such 

as in the aviation sector, military equipment, transportation 

industry, construction sector, marine industry for construc-

tion of naval structures and many more. But a drawback of 

using composite materials is the delamination which is a 

major cause of failure of the equipment. So, a new compo-

site material is developed by Japanese scientist in the 1980’s 

which encompasses enhanced properties of composite mate-

rials. Such materials were first used by Japanese scientists 

to build a thermal barrier in a space-plane project /1/, which 

lead to the concept of functionally graded materials (FGMs). 

FGM is a material in which the composition and structure 

continuously vary over the dimension of the material body 

and hence resulting in corresponding change in properties 

(mechanical, thermal, electrical, etc.). 

A lot of books on elasticity /2-3/ and study of behaviour 

of composite materials /4/ are published that helps in under-

standing the concept and development of theory. The pro-

cessing techniques for FGMs are described in detail by 

Kieback et al. /5/ in 2003, and Gasik /6/ in 2010. Since its 

initial development for thermal barrier, its uses have grown 
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to various fields such as sensor and energy applications /7/, 

thick-walled circular cylinder /8/, rotating disk /9-10/, etc. 

In 2016, Sahni et al. /11/ have studied the creep behaviour 

of SiCp exponential volume reinforcement in FGM compo-

site rotating cylinders. In 2018 /12/ an elastic-plastic analysis 

with variation in Young’s modulus is done. Nejad et al. /13/ 

solved the problem on thick cylindrical pressure vessels 

using both finite element method and power series solution 

method and have shown the solutions are in good agreement 

with each other. A recently published paper in 2019 by 

Sandeep et al. /14/ on two-dimensional mechanical stresses 

for a pressurized cylinder have calculated stresses for a func-

tionally graded material. In 2019, Parth et al. /15/ analysed 

a thick-walled cylinder with inner layer of FGM and the 

outer composite layer. Recent work on functionally graded 

materials related to disc and cylinder is done by Sahni and 

Mehta in research papers, /16–17/. 

In this paper, the problem of a thick-walled cylindrical 

pressure vessel is considered without body force, in which 

the Young’s modulus and thickness are varying exponen-

tially. The Poisson ratio is taken as constant and the cylinder 

is non-rotating. Expressions for stresses, strains and displace-

ments are calculated. The graphs are plotted for homogene-

ous case by making the materials index as zero. 

GOVERNING EQUATIONS 

The governing equations are basic equations which need 

to be considered to study the behaviour of mechanical defor-

mations under external actions. So, to study any mechanical 

deformation, the three basic governing equations are to be 

considered, i.e. firstly the equilibrium equation (i.e. the sum 

of body and surface forces is zero); secondly, the relation 

between the strain and displacement; and thirdly, the stress 

- strain relation (also called Hooke’s law). 

General form of the equilibrium equation is given as /9/, 

 2 2( ) 0rr
d

hr h h r
dr

  − + = , (1) 

where: h is thickness of the cylindrical pressure vessel; r is 

the radii;  is angular speed;  is density; and rr,  are 

the stresses along radial and tangential direction, in respect. 

Under absence of body forces, the Eq.(1) reduces to 

 ( ) 0rr
d

hr h
dr

 − = . (2) 

The strain displacement relations are written as, /9/, 

 rr
du

dr
 =    and   

u

r
 = , (3) 

where: u is the radial displacement; and rr,  are strains 

along radial and circumferential directions, respectively. 

The strain compatibility equation using Eqs.(3) is written 

 ( )rr
d

r
dr

 = . (4) 

Hooke’s law (i.e. stress-strain relation) is written as, /9/, 

(1 )

(1 )(1 2 ) (1 )(1 2 )
rr rr

E E


 
  

   

−
= +

+ − + −
,   and 

 
(1 )

(1 )(1 2 ) (1 )(1 2 )
rr

E E
 

 
  

   

−
= +

+ − + −
, (5) 

where:  is Poisson’s ratio; and E is Young’s modulus. 

MATHEMATICAL FORMULATIONS 

As the cylindrical pressure vessel is made of functionally 

graded material, hence the Young’s modulus and thickness 

along the wall vary from inside to outside as 

 
0

r
n

bE E e

 
−  

 =     and   
0

r
m

bh h e

 
−  

 = . (6) 

Here n and m are the index parameters corresponding to 

Young’s modulus (E), and thickness (h), respectively. 

Substituting Eqs.(3), (5) and (6) in Eq.(2), we get 

2 1( )( )
1 1 0

n mr n m
r u ru r

b b

 ++   
 + − − + =  

   

, (7) 

where: 
1

(1 )





=

−
. 

The singular point of the above differential equation 

Eq.(7) is r = 0. The singular point is regular as 

20

( )
1

lim ( 0) 1
r

r n m
r

b
r

r→

 + 
−  

  − =
 
 
 

,   and 

1

20

( )
1

lim ( 0) 1
r

n m
r

b
r

r



→

 + 
+  

  − − = −
 
 
 

. 

Both limits are finite. Hence the solution exists and the 

Frobenius method can be used to find the solution of the 

differential equation Eq.(7). 

Now, assuming the solution in the power series form as 

 
0

i s
i

i

u a r


+

=

=  , 

we need to find u and u from the above power series, and 

hence 

 
1

0

( ) i s
i

i

u i s a r


+ −

=

 = + ,   and 

 
2

0

( )( 1) i s
i

i

u i s i s a r


+ −

=

 = + + − . 

Substituting u, u, u in Eq.(7), we get 

 
0

( )( 1) ( ) 1i s
i

i

a r i s i s i s


+

=

+ + − + + − −  

 
1 1

0

( )( )( )
0i s

i
i

n mn m i s
a r

b b


+ +

=

++ + 
− + = 

 
 . (8) 

Comparing the coefficients of the lowest degree term 

(rs), i.e. by putting i = 0 in Eq.(8), we get s = 1, -1. Thus we 

get the roots as distinct and differing by an integer, and 

hence, the solution is given as 

 1 1 2
1

( )s
s

u
u C u C

s
=

=−

 
= +  

 
. (9) 

The general recurrence relation is formed by comparing 

the next higher term, i.e. from (rs+1) onwards, 

 
 

 
1

1 2

( )( ) ( )
,   0

( 1) 1
i i

n m i s n m
a a i

b s i


+

+ + + +
= 

+ + −
. (10) 
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Thus, for s = 1, the above recurrence relations become 

 
 

 
1

1 2

( )( 1) ( )
,   0

( 2) 1
i i

n m i n m
a a i

b i


+

+ + + +
= 

+ −
. (11) 

Hence, one of the solutions is given as 

 1 0
0

( 1) ,   0i
i

i

u s u s a r a


=

 
= = =  

 
 , (12) 

and the second solution is defined as 

 2
1

( 1)
s

u
u s u

s =−

 
= − = =  

 
. 

In general, the constants aj+1 for (s = 1) are calculated 

using the recurrence relation as 

 

1
1 1 1 1

1 0
1 2

0

( ) ( 1)( 2)( 3) ( 1)
,   0

( 2) 1

j

j j
j

i

n m j
a a j

b i

   +

+
+

=

+ + + + − + +
= 

+ −

 (13) 

Thus, 

2 3
2 2 31 1 1 1 1 1

1 0 1 2 0 2 3

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3)
( ) 1

3 8 3 15 8 3

n m n m n m
u r a a r a r a r r r r

b b b

      + + + + + + + + +
 = + + + = + + + +
    

,  (14) 

and 
2

1 2 21 1 1 1 1 1 2 1
2 0 2 2

1

( )( 1) ( 1) (2 )( 1) ( 3)( 2)( ) ( )
log( ) 1

6 2 122 2s

n mu n m n m
u a r r r r r

s bb b

       −

=−

  + − + − − − −  + +     
 = = − + + − + − − − +     

          

 (15) 

Hence, the complete solution is calculated from Eq.(9), given as 

 1 1 2 2u C u C u= + . (16) 

In an expanded form it is written as 

2 3 2
2 3 11 1 1 1 1 1 1 1

1 22 2 2

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3) ( ) ( 1)
1

3 8 3 15 8 3 2

n m n m n m n m
u A r r r r A r

b b b b

       −
  + + + + + + + + + + −
 = + + + + + −        

 

 
2

2 21 1 1 1 1 1
2

( 1) (2 )( 1) ( 3)( 2)( ) ( )
log( ) 1

6 2 122

n m n m
r r r r

b b

       + − − − −+ +   
 + + − + − − − +  
   

, (17) 

where: A1 = C1a0 ; and A2 = C2a0. 

The strains-radial and circumferential are calculated from Eqs.(3). 

Radial strain is calculated as 

2 3
2 31 1 1 1 1 1

1 2 3

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3)
1

3 8 3 15 8 3
rr

n m n m n mdu
A r r r
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 + + + + + + + + +
 = = + + + + +
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2 2
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log( )
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A r r r r
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   −
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 1 1 1 1 1 1( 1) (2 )( 1) ( 3)( 2)

6 2 12
r

      + − − − − 
 − − − +  

  
, (18) 

and circumferential strain is calculated as 

2 3
2 3 21 1 1 1 1 1

1 22 3

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3)
1

3 8 3 15 8 3

n m n m n mu
A r r r A r

r b b b


     
 −

 + + + + + + + + +
 = = + + + + + 
    

 

2 2
2 21 1 1 1 1 1 1 1

2 2

( ) ( 1) ( 1) (2 )( 1) ( 3)( 2)( ) ( )
log( ) 1

6 2 122 2

n m n m n m
r r r r

bb b

           + − + − − − −+ +     
  − + + − + − − − +    
        

. (19) 

Now, substituting the radial and circumferential strain 

obtained above in Eq.(5), we get the radial and circumfer-

ential stresses as 

2 3
2 31 1 1 1 1 1

1 12 3

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3)(1 )
1

(1 )(1 2 ) 3 8 3 15 8 3
rr

n m n m n mE
A r r r A r

b b b

     


 

  + + + + + + + + +−
  = + + + + + 

 + −     
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2 3 2
2 2 21 1 1 1 1 1 1 1

22 3 2

( )( 1) ( ) ( 1)( 2) ( ) ( 1)( 2)( 3) ( ) ( 1)
log( )
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and 
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1
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2 2

1 1 1 1 1 1 1 1

2 2

( ) ( 1) ( 1) (2 )( 1) ( 3)( 2)( ) ( )
log( )

6 2 12
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          + − + − − − −+ +     − + + − + − − − +   
     

. (21) 

For homogeneous case (m = n = 0), differential equations 

Eq.(7) reduce to 

 
2 0r u ru u + − = . (22) 

The above is a Cauchy-Euler second order ordinary differ-

ential equation and its analytical solution is given as 

 4
3

C
u C r

r
= + . (23) 

The boundary conditions are defined as 

1 2   at   ,   and      at   rr rrp r a p r b = − = = − = , (24) 

where: p1 and p2 are the pressure at internal and external 

radii of the cylinder, respectively. 

The strains are now expressed as 

 4 4
3 32 2

   and   rr

C C
C C

r r
 = − = + . (25)  

Thus, the stresses are now expressed as 

 4 4
3 32 2

(1 )

(1 )(1 2 ) (1 )(1 2 )
rr

C CE E
C C

r r

 


   

   −
= − + +   

+ − + −   
 

and 

4 4
3 32 2

(1 )

(1 )(1 2 ) (1 )(1 2 )

C CE E
C C

r r


 


   

   −
= + + −   

+ − + −   
. (26)  

Now using the boundary conditions Eq.(24) on the above 

Eqs.(26), we get the constants as 

4 4
1 3 32 2

(1 )

(1 )(1 2 ) (1 )(1 2 )

C CE E
p C C

a a

 

   

   −
− = − + +   

+ − + −   
, 

4 4
2 3 32 2

(1 )

(1 )(1 2 ) (1 )(1 2 )

C CE E
p C C

b b

 

   

   −
− = − + +   

+ − + −   
,  (27) 

where: C3 and C4 are constants of integration which can be 

found from Eqs.(27): 

 
2 2

1 2
3 2 2

(1 )( 1 2 )( )

( )

a p b p
C

a b E

 + − + −
=

−
,   and 

 
2 2

1 2
4 2 2

(1 )( )

( )

a b p p
C

a b E

+ −
= −

−
. (28) 

Thus putting the values of C3 and C4, we are able to find 

the stresses, strains, and displacement for the homogeneous 

case by using Eqs.(26), (25) and (23), respectively. 

Using the Frobenius method, we can get the solutions of 

stresses and strains from equations (18), (19), (20) and (21), 

respectively. 
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NUMERICAL DISCUSSION 

To analyse the effect of gradient parameter, the arbitrary 

values for the analysis are taken as m, n = 0; Poisson ratio 

as  = 0.3; Young’s modulus E0 = 200 MPa; internal and 

external radii of the cylinder a = 0.2 m, b = 0.5 m; h0 = 

10 cm; and pressures p1 = 100 MPa, and p2 = 0 MPa. In 

Figs. 1 and 2, the Young’s modulus and thickness are plot-

ted against radii. 

 r 
Figure 1. Young’s modulus variation against radii for 

homogeneous and non-homogeneous case.  

 

Figure 2. Thickness variation against radii for homogeneous and 

non-homogeneous case. 

 

Figure 3. Radial stress vs. radii for homogeneous case under 

internal pressure p1 = 10 MPa. 

 

Figure 4. Circumferential stress for homogeneous case under 

internal pressure p1 = 10 MPa. 

The radial and circumferential stresses are plotted against 

radii for homogeneous case, i.e. when m, n = 0, as shown in 

Figs. 3 and 4, respectively. 

 

Figure 5. Radial strain vs. radii for homogeneous case under 

internal pressure p1 = 10 MPa. 

 

Figure 6. Circumferential strain vs. radii for homogeneous case 

under internal pressure p1 = 10 MPa. 

It is seen that the radial stress is less as compared to cir-

cumferential stress. The circumferential stress acts as a resist-

ing stress and the radial stress tries to push the radii points 

outside, which the circumferential stress resists. It is seen 

that the radial stress is compressive at internal radii and 

moves towards zero at the outer radii. The circumferential 

stress is tensile and is maximum at the internal radii and 

minimum at the outer radii. The radial and circumferential 
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strain are decreasing when we move from internal to exter-

nal radii. It is seen that radial strain is decreasing from inter-

nal to external radii, which is compressive, whereas circum-

ferential strain is maximum at internal radii and minimum 

at external surface. The radial and circumferential strain are 

depicted graphically in Figs. 5 and 6, respectively. 

The radial displacement is also calculated for homogene-

ous case and is shown in Fig. 7, which also decreases from 

internal to external surface. 

 

Figure 7. Radial displacement vs. radii for homogeneous case 

under internal pressure p1 = 10 MPa. 

CONCLUSIONS  

In this paper, the stresses, strains, and displacement are 

calculated for both homogeneous and non-homogeneous case 

using power series method. The expressions are calculated 

for homogeneous case and graphs are plotted. It is seen that 

the radial stress is high as compared to the circumferential 

stresses at the inner surface, and it decreases at the outer 

surface and vanishes thus preventing the cylinder to move 

out and cause fracture. With the vanishing of stresses at the 

outer radii, the radial displacement is decreasing from inter-

nal to external radii. The strains also show a decrease from 

internal to external radius which is also true when physically 

verified. 
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Nomenclature 

h thickness (cm) 

r radii (m) 

rr non-dimensional radial stress 

 non-dimensional circumferential stress 

rr non-dimensional radial strain 

 non-dimensional circumferantial strain 

u non-dimensional radial displacement 

E Young’s modulus (MPa) 

 Poisson’s ratio 

n, m gradation parameter 

C1, C2 arbitrary constants 

p1, p2 internal and external pressure 
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