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INTRODUCTION 

The purpose of this work is to present the possibilities of 
the numerical analysis of surface cracks in pressure vessels 
and also to show the results in certain cases. The paper 
mainly concerns stationary cracks, while unstable crack 
growth is considered in other papers of this issue /1,2,3/. 

Having in mind the three dimensional character of stress 
and strain fields around the crack tip and plastic strains of 
the material used in pressure vessels due to the presence of 
cracks, it is clear that even stationary cracks represent a 
complex problem. On the other hand, pressure vessels may 
generally be observed as a two dimensional (2D) problem 
(thin shells). This allows certain simplifications of the sur-
face crack problem using quasi–2D or 2D analysis. Hence, 
further text will be about 3D analysis (application of finite 
element method – FEM), quasi–2D analysis (integral trans-
formation method and FEM for thin shells combined with a 
spring model), and 2D analysis (FEM) of surface crack 
problems. Every method mentioned above includes results 
obtained by the authors, as well as other results, whose 
purpose is to fully represent the analysed problem. 

THREE DIMENSIONAL ANALYSIS 

Linear elastic analysis of surface cracks in flat planes is 
the starting point in this analysis. The effect of material 
plasticity and vessel curvature will be shown later. Most 
work on this problem has been done by Newman and Raju, 
giving us a number of results obtained by 3D FEM, /4/. 
Some of these results are given in Figs. 1-3. Figures 1-3 
also include the distribution of stress intensity factors (SIF) 
along the crack front (defined by angle φ), as a parameter 
for different crack depth (defined by non-dimensional quo-
tient c/t, where c is crack depth, and t is plate thickness). 
Each of these figures is related to a typical crack form (de-
fined by the length–depth ratio, 2a/c, where 2a is the crack 
length). In Figure 1, 2a/c = 3, in Fig. 2, 2a/c = 5, and in 
Fig. 3, 2a/c = 10. These figures show that the largest SIF 

corresponds to the largest crack depth (φ = 90°) for long 
(i.e. 2a/c is large), and shallow (c/t is small) cracks, which 
is in accordance with Irvin’s analytical expression: 
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Only in case of short (2a/c is small) and deep cracks (c/t 
is large), Fig. 1, the largest value of SIF corresponds to 
angle φ = 0°, i.e. the largest crack length. Therefore, long 
and shallow cracks will grow along their depth, while rela-
tively short and deep cracks grow along their length. How-
ever, the effects of the vessel shape (curvature) and material 
plasticity on the crack behaviour should also be taken into 
account. 

THE EFFECT OF CURVATURE 

Curvature has no significant effect on SIF distribution as 
we can see from Fig. 1, /5/. This figure shows the distribu-
tion of SIF along the front of a longitudinal crack in a cylin-
der, with radius (R) to thickness (t) ratio of 10. Crack di-
mensions are chosen to correspond to the case shown in 
Fig. 3 in order to make comparing of results regarding the 
effect of curvature easier. It is obvious that there are no 
differences in the SIF distribution for cases of plates and 
cylinders, in other words the effect of curvature here is neg-
ligible. A more complete analysis of this effect requires 
results for short cracks and other curve values (R/t), which 
are not the subject of this paper, except for the case of 
interfering with the effects of material plasticity. 

THE EFFECT OF MATERIAL PLASTICITY 

This effect is significant not only as a partially different 
distribution of the corresponding fracture mechanics pa-
rameter (J integral), but also as a so-called local constraint 
(LC). The local constraint which occurs due to multiaxial 
stress state can be defined as: 
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where σm is the principle stress, and σv is the equivalent 
(fon Mises) stress, /6/. 

In /6/, it is shown that the distribution of LC along the 
crack front has a significant part in the surface crack growth 
mechanism. Besides, this effect of material plasticity is 
very important for evaluating the possibilities of applying 
experimental results obtained from “small” standard speci-
mens to real “large” structures, such as pressured vessels (a 
more detailed analysis of this problem can be found in /7/). 
Hence, from this point, we will analyse the effects of LC 
distribution and J integral along the crack front, in order to 
evaluate the qualitative and quantitative effects of material 
plasticity to the surface crack growth in a pressure vessel. 

There is only very few data found in literature /1,6-9/ 
concerning the J integral distribution along the crack front 
in a plate or a cylinder which are analysed here. All data 
related to cylindrical vessels were obtained for the case of 
axial cracks which is of greatest practical interest. 

 
Figure 1. Distribution of SIF along the crack front. 

 
Figure 2. Distribution of SIF along the crack front. 

 
Figure 3. Distribution of SIF along the crack front. 

 
Figure 4. Distribution of SIF along the crack front. 

Figure 5 shows results of J integral distribution along the 
crack front in a cylinder (diameter D = 3030 mm, thickness 
t = 8 mm, crack length 2a = 4.28 mm, crack depth c = 
1.5 mm) and in a specimen the shape of a tensile plate (of 
the same thickness) with a central crack (of same dimen-
sions). As we can see from Fig. 5, the distribution of J inte-
gral becomes more uneven for remote stress values greater 
than 600 MPa. Hence, when this stress reaches its greatest 
value of 1400 MPa, the surface J integral is about 40% less 
than the J integral at the greatest depth. Additional consid-
eration of these results (Fig. 6) also shows the dual effect of 
plasticity: J integral value growth and the plane strain state 
stops to be in effect for conditions on the surface. This 
results in local growth of yield and a decrease of corre-
sponding J integral values (below the stress that is 75% of 
yield stress – 1000 MPa) by 7% as well as another growth 
as loading continues to increase. These results were ob-
tained using the MARC programme, assuming small strains 
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and material nonlinearity introduced by the Ramberg-Osgood 
relation σ = Kεn. Paper /8/ contains a detailed description 
and analysis of the results. The same also contains results 
for LC distribution along the crack front which are given 
here in Fig. 7 (plate) and in Fig. 8 (cylinder). It is obvious 
that there are now qualitative differences between these dis-
tributions, i.e. the curve effect is in this case negligible. 

 
Figure 5. J integral distribution along the crack front. 

 
Figure 6. Jpl/Jel dependence from the remote stress. 

 
Figure 7. The change of LC along the crack front 

for an SCT specimen. 

Other two examples calculated using ADINA programme, 
/6/, are also related to cylindrical pressured vessels (D = 
1500 mm, t = 40 mm), with different axial cracks (2a = 
180.4 mm and c = 21.6 mm for vessel PV1, 2a = 192.1 mm 
and c = 28 mm for vessel PV2). The material and geometri-

cal nonlinearities were taken into account, but crack growth 
was not. In order to take crack growth into account, the 
obtained values of J integral were corrected according to 
the needed work of external forces, Fig. 9a for PV1 and 9b 
for PV2. Apparently, J integral distribution changes with 
pressure growth in such a way that local maximums occurs 
at approximately two thirds from the crack centre (φ = 60°), 
and in case of PV2 their values are greater than those of the 
maximums at the centre of the crack, Fig. 9b. The same 
goes for crack tip opening (δt), Fig. 10. The appearance of 
local maximums is even more pronounced in case of the 
distribution of local constraint (given by LC, Fig. 11 or as 
J/δtReL, Fig. 12). A more detailed view of these results as 
well as the experimental data are given in /1/. 

 
Figure 8. The change of LC along the crack front for a cylinder. 

 

 
Figure 9. The change of J integral along the crack front. 
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Figure 10. The change of δt along the crack front. 

 
Figure 11. The change of LC along the crack front. 

 
Figure 12. The change of J integral alonf the crack front. 

Similar J integral and LC factor behaviour is shown in /9/, 
which analyzes a surface crack (2a = 28 mm, c = 12.6 mm) 

in a flat plate (t = 20 mm, W = 60 mm, L = 300 mm) also 
without crack growth simulation. The results are shown in 
Fig. 13 (J integral) and in Fig. 14 (LC), and Fig. 15 shows 
the finite element mesh. Again, in this case local maxi-
mums appear at approximately the same positions along the 
crack front (φ = 60°), although the stress state is not biaxial. 

 
Figure 13. The change of J integral along the crack front. 

 
Figure 14. The change of LC along the crack front. 

 
Figure 15. The finite element mesh. 
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QUASI–TWO DIMENSIONAL ANALYSIS 

Given in this chapter are the basics of two methods of 
quasi–2D analysis of the problem of surface cracks in pres-
sure vessels in the shape of thin shells. These methods are: 
the integral transformation method (model Ratwani-Erdo-
gan-Irwin, REI) and the finite element method, combined 
with the line-spring model. Detailed description of REI 
model was given in previous Summer Schools, e.g. /10/, 
therefore this paper contains only a short review. It is about 
an elastic-plastic analysis of thin cylindrical shells with an 
axial crack which can be simplified in order to form and 
solve integral equations. The following basic assumptions 
are used to simplify the problem: the shape of the crack is 
rectangular (constant crack depth), there is no transversal 
shear (the Kirchoff theory is valid for thin shells) and the 
material is of ideal plasticity. Based on these assumptions, 
Dugdale’s model of plastic strips in front of the crack tip 
can be applied. The solution of a problem defined in this way 
is given as a crack tip opening δt function of coordinates X 
(in the direction of the crack) and Z (in the direction of depth): 
 ( ) ( ) ( )0t X Z X X, , Zδ δ θ= +  (3) 

Therefore, if we need the crack depth growth force 
(CGF) we should take the value of δ(0,c) and in case of 
crack length growth we choose the value δ(a,0). It should 
be mentioned that CGF is determined using the J integral, 
based on the relation J = mReδ, where m = 2 for all ideal 
plastic materials. Such an analysis was conducted in /11/, 
where CGFs were calculated for both cases (depth and 
length growth) and compared to the corresponding J–R 
curve. The problem of an axial crack (2a = 64.25 mm, 
c = 11.2 mm) in a cylindrical vessel (D = 1200 mm, t = 
16 mm) previously examined experimentally and quasi-
statically up to pressure value 134 bar, was analysed. At 
this value, the crack length increased (2a = 80 mm), while 
there was no increase in depth, Fig. 16. In order to explain 
such crack behaviour the REI model was applied and the 
results are shown in Fig. 17 (CGF for depth) and in Fig. 18 
(for length). We can see from Fig. 17 and 18 that critical 
pressures for depth and length CGF equal 141 and 130 bar, 
respectively, which is in accordance with experimental be-
haviour. 

 
Figure 16. Cracked surface scheme. 

The REI model basic advantage is its simple application, 
due to the fact that all the data needed for calculation are 
given in nondimensional form for characteristic nondi-
mensional parameter values λ, where λ is defined as: 

 ( )24 212 1 av
Rt

λ = −  

Having in mind the assumptions made, we cannot expect 
significant accuracy from this model. However, in the ana-
lysed example, the efficiency of this model is apparent. 

 
Figure 17. Development forces for constant crack length. 

 
Figure 18. Development forces for constant crack depth. 

LINE-SPRING MODEL – LSM 

A very efficient surface crack analysis method was 
introduced in /12/. The basic idea is given in Fig. 19, which 
shows a way to solve a 3D problem using a combination of 
2D problems (plane state of stress and strain). In other 
words, if the crack is temporary (along its entire thickness), 
the problem would be 2D (plane stress state – PSS), and if 
the surface crack length was equal to plate width, the prob-
lem would have been reduced to a plane strain state – PSS. 
Considering that a surface crack is something in-between 
these two extremes, the required solution can be obtained 
by combining 2D solutions. For this purpose, due to the 
existence of a residual ligament t – c(x), Fig. 19a, the solu-
tion of the PSS problem must take into account local mem-
brane N(x) and bending M(x) forces that appear on the crack 
surface. In order to determine the values of these forces, 
LSM relates them to corresponding movements, δ(x) and θ(x): 
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where Cij(x) are coefficients of the local stiffness matrix. As 
symbol (x) suggests, all quantities in [3] depend on the 
coordinate x, i.e. they change along the crack. Coefficients 
Cij(x) can be determined by solving the PSS problem (plate 
with an edge crack – Fig. 19c). This is a general description 
and in order to separate the problems of surface cracks in 
plates and shells as well as the elastic and elastic-plastic 
material behaviour, we will show each procedure apart: 

 
Figure 19. Line–spring model. 

The following procedure is used for linear elastic flat 
plates: 
• Coefficients Cij(x) are calculated from the solutions of the 

PSS problem for an edge crack in a flat plate, Fig. 19, 
x < c, using the Handbook /13/. 

• The PSS problem is solved including the additional 
compliances Cij(x) on crack faces, e.g. by using the finite 
element method, in order to determine δ(x) θ(x). 

• The values of forces N(x) and M(x) are determined from: 
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• The stress intensity factor is calculated: 
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where F1(c) and F2(c) represent nondimensional functions 
which can be determined using Handbook /13/ for PSS ten-
sile and bent plates with an edge crack. 

It should be mentioned that this procedure, like any other 
concerning the LSM, cannot give satisfying results near the 
edge of the crack and surface, i.e. φ → 0. 

The procedure used for linear elastic thin shells is similar 
to the above: 
• Coefficients Cij(x) are calculated from PSS solutions for 

an edge crack in a ring, x < c, using /13/. 
• The thin shell problem is solved including the additional 

compliances Cij(x) on crack faces, e.g. by using FEM. 
• The values of forces N(x) and M(x) are determined along 

the crack faces based on [5]. 
• K(x) is calculated from [6], while F1(c) and F2(c) are cal-

culated using a ring instead of a plate. 

As we can see, the basic difference between solving 
problems of surface cracks in a flat plate and in a thin shell 
by using the LSM is in step 2 of the given procedures, 
where in one case it is required to solve a PSS problem, and 
in the other case, it is required to solve a thin shell problem. 

Elastic-plastic problems can be solved using the follow-
ing procedure (related to flat plates and thin shells): 
• Incremental elastic-plastic coefficients Cij(x) for an edge 

crack are calculated in a flat plate or a ring, using FEM or 
the Handbook, /14/. 

• The elastic-plastic PSS problem for a plate or a thin shell 
is solved (using FEM) in order to obtain incremental 
values of δ(x) and θ(x). 

• Incremental values of N(x) and M(x) are determined using [5]. 
• J(x) is calculated from an incremental elastic-plastic solu-

tion of a PSS problem for an edge crack in a plate or a 
ring, using FEM or /14/. 
The procedure described above is obviously complicated 

yet much simpler than the complete 3D solution. These two 
solutions are in good accordance with each other (except 
for φ → 0), as Figs. 20 and 21 suggest. 

 
Figure 20. The change of elastic-plastic J integral 

around the crack tip. 

 
Figure 21. The change of elastic-plastic J integral 

around the crack tip. 
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Very significant for this procedure is that it also analyses 
heterogeneous material, such as welded joints which have 
at least three different types of material behaviour: the basic 
metal – BM, the weld metal – WM and the heat affected 
zone – HAZ. We should notice that the possibility of ana-
lysing such materials is connected to the application of 
FEM and that different behaviour becomes distinct in the 
plastic domain. Therefore, the problem of J integral inde-
pendence from the path should be taken into account. An 
example of such analysis is given in /16/, which shows that 
a modified J integral can be used as a fracture mechanics 
parameter for welded joints. 

THE SIMPLIFIED KING LINE-SPRING MODEL 

Although King’s model is described in other papers, e.g. 
/20/, all fundamental expressions are also given here, main-
ly for two reasons. First, the efficiency of applying this 
model in engineering which is, according to the author, 
most expressed in large spheres, and the second reason are 
the mistakes that appear in some expressions given in the 
mentioned references. 

Fundamental assumptions of King’s model are the following: 
• The surface crack is located in an infinite flat tensile 

plate, loaded by a remote stress σ. 
• The real crack front is replaced by a rectangular one, with 

a constant crack depth, c = const. 
• The spring is elastic and ideally plastic. 
• Dugdale’s model is applied so that we can take into ac-

count plasticity around the crack tip of a temporary crack. 
Therefore, σ being the remote stress, σc = N/h – the 

membrane load and m = M/(h2/6) – bending load, we write: 
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On the other hand, it is obvious that: 
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By eliminating δ and θ from equations [7], [8], [9] and 
[10], we obtain: 
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The spring remains elastic until it reaches the yield limit. 
A simple expression is used as a yield criterion, and it is 
shown that this expression complies with experimental data 
/21,22/: 

 c
h c

h Fσ σ−
=  (14) 

Equation [14] is understood as the yielding occurs when 
the average stress in a ligament reaches the value of the 
flow (hardening) stress, σF, defined as: 

 
2

m
F

γσ σ
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Equation [14] gives us the expression for the stress at the 
instant yielding in the ligament occurs: 

 1 1LY
c
h Fσ σ

α
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 (16) 

 
Figure 22. Solving the yield strips for a plate of finite width. 

After yielding, the plasticity in temporary crack tips is 
taken into account using “effective” crack length, ap = a + rv, 
where rv represents the dimension of the plastic zone*. 
Hence, by using Dugdale’s model of loading strips, Fig. 22, 
we obtain: 
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where w represents plate width. The plate can hold the load 
until the yield strips reach its edges, which is defined using 
the net section yield stress σNSY, obtained from [17] by plac-
ing ap = w/2: 

 21NSY F
a c

w h
σ σ ⎛= −⎜

⎝ ⎠
⎞
⎟  (18) 

It should be mentioned here that King’s model applies to 
plates of finite width. However, in case that w → ∞, 
sin(πap/w) ≈ πap/w and sin(πa/w) ≈ πa/w, an approximate 
solution of the problem is obtained for an infinite plate: 
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h h

c
cos π σ

σ
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  and  σNSY ≈ σF (19) 

which is applicable to thin shells with small curves, e.g. in 
large spheres. As the σc and m are defined for an entire 
range of remote stress σ, COD and J can be determined. 
From Fig. 23 we have: 
 CTOD = δ + θ (h – 2C) (20) 
 CMOD = δ + θ h (21) 
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Figure 23. Calculation of CMOD and CTOD. 

By placing the expression for δ and θ we get (σ≤ σLY) 
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i.e. (for σLY ≤ σ ≤ σNSY): 
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In order to calculate J, for σ < σLY we can use LEML 
LEFM relations: 
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where F1 and F2 are given by: 
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For σLY < σ < σNSY, Jp is calculated using the movement 
of load line contact on the edge of the crack: 
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where, for ∂N/∂c = –σF, ∂M/∂c = 0 ⇒ 
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The example which illustrates the application of King’s 
LSM in case of a spherical tank for butane-propane is given 
in /23/, while the final result is shown here as a CGF 
diagram, Fig. 24. 

 
Figure 24. Crack development forces for a spherical 

vessel according to LSM 

TWO-DIMENSIONAL ANALYSIS 

As mentioned previously, in case of long and shallow 
cracks, 2D analysis (PSS gives satisfying approximate solu-
tions. Such analysis can simply be conducted by using a 
modified programme /24/ with the application of recom-
mendations of the European Structural Integrity Society 
(ESIS) given in monograph /25/. Solving the elastic-plastic 
2D problem of fracture mechanics was already described, 
/26/, therefore, here we will only mention that the entire 
calculation can be done using a personal computer. 

AN EXAMPLE 

In order to illustrate and compare the analysis of some 
described procedures for solving the problem of surface 
cracks in a pressure vessel, we have chosen a cylinder 
(diameter D = 120 mm, thickness t = 5 mm), made of steel 
with following properties: ultimate strength Rm = 1350 MPa, 
yield strength Rp0,2 = 1175 MPa, elasticity modulus E = 
210 GPa, Poisson’s ratio v = 0.3, shear modulus E = 
3000 MPa. The problem was solved using a REI model, a 
simplified King model, LSM combined with the thin shells 
theory described in /27/, as well as the PSS 2D problem. 
The finite element mesh for the last method mentioned was 
shown in Fig. 25. The following data are required: 
• 8–node iso-parametric elements with Gauss integration of 

2×2 were used, 
• singularity around the crack tip (type 1/r) was modelled 

by triangular elements with three independent nodes near 
the crack tip, 

• a finite element mesh was given in accordance with ESIS, 
• the material was given as bilinear, with previously given 

properties. 
Results for all of the methods were given in Fig. 26 in a 

form of diagrams of CGF dependence to crack depth. As 
we can see from Fig. 26, mutual compliance of the methods 
described is satisfying within quasi–two dimensional analy-
sis (REI, King’s model, LSM and thin shell theory), with 
significant deviations in results of two dimensional analysis 
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(FEM). In case of 2D analysis, the crack growth force is 
much greater than the others, which results from modelling 
of the surface crack with a crack along the entire plate 
width, i.e. vessel length. Similar results, along with the 
same discussion, are given in /28/. It is clear that the 2D 
analysis may serve only as a conservative approach in 
determining crack growth forces. Also, a greater surface 
crack length-to-plate width ratio (vessel depth) results in 
greater accuracy of this analysis. Apparently, a more accu-
rate assessment using finite element method can be made 
only by applying 3D analysis, which of course increases the 
calculating expenses. 

 
Figure 25. A finite element mesh. 

 
Figure 26. Crack growth forces for the cylindrical vessel. 
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