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INTRODUCTION 

The analysis of cracked structures is a more or less stan-
dard procedure within the theory of elasticity. Also, solu-
tions for many elastic-plastic problems as well as for other 
relevant fracture mechanics areas are available over the 
recent years (e.g. fatigue, impact or creep fracture). Numer-
ous handbooks for stress intensity factors’ calculation are 
the best proof of what is said above. However, even within 
linear elastic fracture mechanics (LEFM), it is impossible to 
obtain adequate expressions for stress intensity factors 
using simple analogy with 2D plane state analysis of thin 
shells. Essentially, the problem lies within the fact that the 
thin shell is a curved three-dimensional (3D) object, which 
makes its analysis impossible in 2D. The relation between 
membrane and shear stresses, obviously existing as well as 
the significant effect of transversal shear stresses make 
questionable the analyses where these effects are neglected 
/1,2,3/. Hence, the second fracture mechanics parameter, 
the J integral, is used, which is within the two-dimensional 
linear (plane) elasticity reduced to stress intensity factor 
(SIF), i.e. the crack growth force or the energy release rate, 
but which is applicable to non-linear elasticity and can be 
derived as a consequence of the conservation law. 

The discovery and application of J integral /4,5,6/ has 
opened new possibilities in applying fracture mechanics in 
engineering as well as in its following theoretical develop-
ment. The most important properties of the J integral are: 

It is independent of integration path which allowed sim-
ple analytical, numerical and experimental determination. 

Its physical interpretation of crack growth force, i.e. 
energy release rate per unit crack length. 

The interpretation of parameters characteristic for the 
stress state around the crack tip, not only within linear, but 
also within non-linear elasticity. 

Interpretation of conservation law consequences, i.e. the 
translation invariants of corresponding functionals. 

These properties, in a certain way,  make the J integral a 
general fracture mechanics parameter. Its generality, how-
ever, is bounded by limits in which the above mentioned 
properties exist, and these are: non-linear two-dimensional 
(plane) elasticity, stationary and through crack, static load-
ing and homogenous isotropic material. Considered here is 
a linear elastic thin shell made of homogenous isotropic 
material, under static loading, with a through stationary 
crack. In other words, the possibility of applying the J inte-
gral parameter out of its range of planar problems is being 
considered. The problems which occur result from the fact 
that there is no general thin shell theory, not even within 
linear elasticity. The need to reduce a three-dimensional to 
a two-dimensional problem, presented in almost every thin 
shell theory, is justified and understandable. However, the 
criteria for certain neglecting must be taken into account. 
Neglecting of shell curvature and/or the relation between 
membrane and shear stresses, as well as transversal shear, 
cannot be accepted in cracked thin shell analysis. All papers 
on thin shell J intgeral published so far have one of the two 
key disadvantages: they either consider the problem in Car-
tesian orthogonal coordinates /7/, or consider a special form 
of middle shell surface /8,9/, usually circular cylindrical. 
Paper /10/ is an exception, but the expressions derived in it 
are not given in adequate form for further application. 

Considering everything here said, an expression of thin 
shell J integral will be derived taking into account cited the 
J integral properties, and it will be based on the general thin 
shell theory, which will be considered in detail in the fol-
lowing text. 

THIN SHELL DEFINITION AND INTRODUCTORY COMMENT 

In order to describe (define) a shell-shaped body, ade-
quate coordinate systems are introduced: fixed Cartesian 
coordinate system yi (i = 1,2,3) and the convective curvilin-
ear coordinate system θa {θα,ξ} (a = 1,2,3) for which the 
following transformations are valid: 
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The indices (a,b,i,j...) designate three-dimensional quan-
tities, and greek symbols (α,β,δ,...) designate two-dimen-
sional ones, as is usual in literature. For shell-shaped body 
description convenience (especially in case of thin shells), 
the convective coordinate system is “separated” into θα and 
θ 3 ≡ ξ, therefore θa = {θα,ξ}. 

The term shell refers to a body that consists of a surface 
in an Euclid three-dimensional space and a deformable 
directed vector (called the director) assigned to every surfa-
ce particle. The surface particles are identified using con-
vective coordinates θα, as for the referent and deformed 
surface configuration, symbols ζ and σ are introduced, re-
spectively. There is also the radius vector xi = xi (θα,t), rela-
tive to the fixed origin. This vector determines the particle 
θα position in a deformed configuration at instant t. It is 
now possible to define surface base vectors as partial de-
rivatives of the radius vector using convective coordinates: 
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 The oriented thickness vector hi = hi(θα,t), which has the 
purpose of being the director in the Kosera theory /12/, is 
also introduced. The vector hi does not need to be perpen-
dicular to the surface σ, which allows to consider transver-
sal shear. Also, this vector is introduced as the generaliza-
tion of the director di = di(θα,t) (see /13/ for hi = hdi, where 
h represents shell thickness, allowing to consider shells 
with variable thickness (but it is not the point here). It is to 
be mentioned that the symbols of quantities introduced 
above, in case of a referent configuration for which the 
initial (t = 0) undeformed configuration is taken: Yi is the 
radius vector, Hi is the director which is in that case perpen-
dicular to the surface ζ, A~α and A~3 are the base vectors. 

The continuum defined in such way is based on the so-
called Kosera surface which is not only a 2D surface, for it 
contains the director as well. The director actually describes 
the “thickness” around the surface ξ = 0, hence its compo-
nent along the surface perpendicular can be considered as a 
representative of the 3D shell thickness. 

Finally, one can say that thin shells represent a body for 
which is valid H/L << 1 and H/R << 1, where H, L and R 
are the thickness, characteristic length and shell radius, in 
respect. 

BASIC CINEMATIC RELATIONS AND METRIC TENSORS 

It is assumed that the radius vector yi(θa,t) is the analy-
tical function of coordinate ξ in the range of h1 < ξ < h2, 
and that ξ = h1 and ξ = h2 represent equations for the shell 
upper and lower limit surfaces. Based on this assumption, yi 
can be expanded in a Taylor series: 
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where xi is the radius vector of the middle surface particle 
(ξ = 0), given in Cartesian coordinates. By introducing the 

director expression n
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Since thin shells are being considered here, small quanti-
ties of second order will be neglected which produces, after 
the introduction of the symbol di = d1

i: 

   (2) iii dxy ξ+=

Now the non-dimensional coordinate ξζ
h
2

=  can be 

introduced, from which it follows: 
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where hi = hdi is the relation between the “classic” director 
/13/ and the director used here. By differentiating Eq. [2a] 
through time it follows: 
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where  is expressed using the φji
ijk

i heh φ&& −=  k rotation, 
which appeared to be necessary in thin shell analysis using 
finite elements /14/. The assumption from Eq. [3] that the 
thickness does not change in time (h = 0) is also valid. 

In a referent configuration analogous expressions are 
valid with the exception that it is always possible to choose 
θa in such a way that Hn

i = 0 for n > 2, the expression: 
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2
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is correct and not an approximation like Eq. [2]. 
The movement vector vi can be now defined: 
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and from this follows the so called mean configuration: 
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The expression for the fundamental metric tensor is: 

( ) iiiiiiiiii hhhxhxxxyyg βααββαβαβααβ ζζ 2
4
1

2
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+++==  (7) 

having in mind that iii hxy ααα ζ
2
1

+= . According to the 

criterion of neglecting small quantities of the second order 
and the assessment of  and , it is: ( )Lxi 0=α ( )Hhi 0=α

 ( iiiiii hxhxxxg αββαβααβ ζ ++=
2
1 )    (8) 

Similarly, the remaining metric tensor components can 
be defined: 
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In a referent configuration HiXi
α = 0 and HiHi

α = 0, 
because of the fact that Hi is perpendicular to the middle 
surface and that Xi

α and Hi
α are tangential, therefore: 

( iiiiii HXHXXXG αββαβααβ ++=
2
1 ) , Gα3 = 0, G33 = 0  (11) 

Finally, other expressions are introduced for next use: 
ii xxa βααβ = , , ,  ii XXA βααβ = ii hx βααβλ = ii HX βααβ =Λ

THE RELATION BETWEEN STRAIN AND DISPLACEMENT 

It is necessary to define first the stress tensor in adequate 
coordinates. This is the oij pseudotensor σab which is ob-
tained by transforming Cauchy’s stress tensor tij from Car-
tesian coordinates to convective curvilinear coordinates: 
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Apart from σab, the Sab tensor will also be used, which is 
obtained by reducing σab to the referent configuration: 
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G
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ρ
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where g and G represent the metric tensor determinants, 
while ρ and ρo represent densities in current and referent 
configuration, respectively. 

The relation between strain and displacement for thin 
shells is developed using Galerkin’s procedure for the fol-
lowing expression: 
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which is valid, because of the following definition: 
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This strain measure is introduced because of [14], which 
can produce an incorrect result if the common symmetric 

tensor has been used in it: ( )i
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One should have in mind that introducing γ′ is possible 
because of tensor Sab symmetry, hence: 
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Galerkin’s procedure is applied to [14], which was previ-
ously “transformed” into a referent configuration: 
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where tensor Sab is “separated” by indices 1 and 2 in central 
shell plane and 3 in the direction of thickness. For further 
transformation of Eq. [16], it is necessary to express tensor 
Sab using common stress tensors in thin shell theory: the 
membrane stress Nαβ, the bending stress Mαβ and the trans-
versal shear Vα. It is assumed that Sαβ is a Legandre first 
order polynomial, Sα3 is the Legandre second order polyno-

mial, and that S33 = 0, due to the fact that surface limit 
forces on shell edges are being neglected. The coefficients 
of Legandre polynomials are determined using limit condi-
tions on shell faces /15/: 
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It is now necessary to introduce the following approxi-
mation for the volume element dV [16]: 
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where A is the determinant of the first fundamental form, 
A = A11A22 – A12

2, and B is repesented by the expression 
B = A11B22 + A22B11 – 2A12B12. 

By placing the stress tensor and volume element in 
expression [14] and then integrating by coordinate and by 
using the assumption that γ′ab can be represented by Legan-
dre polynomial, it follows: 
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Finally, it is: 
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Note: Strain measures designated by “′” will be used in the 
following text but without index “′”. 

EQUILIBRIUM EQUATIONS 

Starting with Cauchy’s movement equations in Cartesian 
coordinates: 
 ( ) 0, =−+ iiij

j yft &&ρ  (21) 

where tij is the Cauchy stress tensor, fi and yi are the volume 
and inertial forces, respectively, and ρ is the density, the 
Cartesian coordinates can be transformed into convective 
curvilenear, neglecting inertial and volume forces obtaining: 

 ( ) 0=b
abi

ay σ  (22) 

where “|” is the covariant derivative. Further, one can write 
Eq. [22] in a more convenient form, having in mind the 
already assumed fact that σ33  = 0. 
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3
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α
α

αβ
αβ
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In order to derive adequate equilibrium equations for 
thin shells, Galerkin procedure was applied: Eq. [23] is 
multiplied by the weight function, for which the rate  is 
taken; the equation is integrated on volume dv, which gives 
the equations used to determine unknown coefficients (node 
position), appearing in set of base functions, approximatimg 
the poor solution of the problem. 

iy&
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This gives the following integral: 
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This integral produces two equilibrium equations in the 
sense of expression [3]. Expression [18] is used in order to 
reduce Eq. [24] to a referent configuration. The stress 
tensor is reduced to referent configuration and since the 
metric tensor determinant is covariant constant, and so is: 
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Taking into account that Eq. [25] applies to any part of 
the central surface, one can analyse the integral along the ζ 
coordinate only, member by member, beginning with: 
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The integration on ζ also requires application of in-
volved approximations for yi

α, Eq. [2a] and Sαβ, Eq. [17], 
whose product is a polynomial of the second order regard-
ing ζ. Taking into account that  
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is independent on θα, and that hj is independent on ζ, one 
can obtain the adequate expressions for parts of membrane 
and bending equilibrium equations: 
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The second member of the starting equation is: 
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By applying approximations for yi
α and Sαβ, with direct 

determination of derivative (yi
αSαβ)3, integration of Eq. [2] 

gives: 
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 – for membrane (30) 

 0 – for bending part (31) 
The third member 
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Finally, the membrane and bending equilibrium equations 
(without inertial, volume and contour surface forces) is: 
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CONSTITUTIVE RELATIONS 

Linear elasticity of isotropic materials is considered, 
hence in accordance with the already applied way of deriv-
ing thin shell equations, a starting 3D constitutive relation is: 
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where λ and µ are the known Lamé constants. In relation 
[37] the members in the central shell surface and outside it 
are separated, already adopted approximate expressions for 
stress and strain are replaced, and the Galerkin procedure is 
applied to the expression Sab – Cabcdγcd = 0. Detailed de-
scription is given in /11/ and here the final result is: 
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STRAIN ENERGY 

The derivation of the expression for specific strain 
energy is based on its 3D linear elasticity definition: 
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which can be transformed into curvilinear coordinates: 
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By applying involved stress and strain approximation: 
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From Eq. [43] for a thin shell specific strain energy the 
expressions necessary for the next analysis can be obained: 
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It is to notice that the above results are equal to those  
parts of equilibrium equations under the covariant differen-
tial, so by introducing  shortened designanation it follows: 
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Therefore, the equilibrium equations can be written as: 
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(m is for membrane, and b is for the bending part). 
The derived expressions for strain energy apply to linear 

elasticity; but, the generality of the approach is not reduced  
since expressions [46] apply also to nonlinear elasticity. 

DERIVING OF THIN SHELL J INTEGRAL CONSER-
VATION LAW 

Using [47m] and [47b] as starting equations which are 
projected to the tangent plane and integrated on central 
shell surface, one can obtain: 
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Applying the derivative product rule, Eqs. [44] and [45], 
the expression for the covariant derivative 

 { }δ
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iii xxx −=   (same for βγ
ih ) 

where { }δ
γβ  is the Kristofel symbol, and the following 

transformations: 
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Integrating on central surface and transforming of sur-
face to linear integral according to Gauss will produce: 
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Using standard  transformation into a referent configura-
tion for a case of small displacements and strains, delivers: 

( ) { }∫ ∫ =⎟
⎠
⎞

⎜
⎝
⎛ +−−

L S

iiii dSVu
A

HBWdLnuRWn 0
2 111

β
γββ

β  (51m) 

( ) { }( ) 0111 =∫ −−∫ − dSVHWdLnBWn
S

ii

L

ii κκ α
β
γββ

β  (51b) 

where expressions for Riβ and Biβ are linearised 
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The expressions [51m] and [51b] represent the conserva-
tion law which applies to thin shells without cracks in 
which case the strain energy explicit partial derivative (i.e. 
Laplacian in the general case) for ξ1 coordinate equals zero. 
If a defect exists then this derivative is not zero, but repre-
sents a so called defect force (see /5/), i.e., in this case 
membrane and bending parts of the thin shell “J” integral 
can be considered. Quotation marks emphasize that this is 
not Rice’s expression for J integral, but an analogous ex-
pression which applies to thin shells. It should be men-
tioned that, like in some other situations (thermal  strains 
for example), apart from the linear integral, the additional 
member also occurs, in the form of a surface integral, 
which “completes” the linear integral in the sense of its 
path-independence. 

The problem itself is a surface integral analysis [51m] 
and [51b], and it is of particular interest to determine in 
which cases the value of these integrals are zero. Without 
any deeper analysis of this problem, one can conclude that 
Kristofel symbol will be equal zero for cylindrical shells, 
and that the transversal shear force will decrease along with 
shell thickness. Therefore, one can say for linear integrals 
in expressions [51m] and [51b] that they are parts of cylin-
drical thin shell J integral, at least in an approximate sense. 

Next, the relation between the expression obtained in 
this way and the stress intensity factor needs to be estab-
lished. The stress distribution around the crack tip in case of 
symmetrical loading is given by [19]: 
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 (53) 

where Km is membrane, and Kb is bending stress intensity 
factor. Using non-dimensional stress intensity factor, which 
are defined by SIF of adequately loaded plates, it follows: 

      m m pA K K/=       p
pRK a
H

π=      longitudinal 

  (54) 

b b pA K K/= 2
2 2p
pR aK R
H R

tgπ=   circumferential 

Finally, the relation between the integral and SIF is: 

 2
mm K

E
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The Application of Finite Element Method in Calculation of thin Shell J Integral 
 

RESULTS AND DISCUSSION 

The displacement calculation had been conducted using 
the DSTATA program in a computer centre at the Aero-
nautical Institute. Linear isoparametric finite elements with 
four nodes which can simulate transversal shear were used. 
A special programme was additionally written for calculat-
ing J integral which uses the same input data about shell 
geometry, material and loading, and output displacement 
data. In order to obtain the results as accurate as possible 
without the use of special elements, the extrapolating tech-
nique was used for results obtained from several finite ele-
ment regular meshes (a more detailed explanation is found 
in /20/). 

Given as an example is a cylindrical shell under internal 
pressure with longitudinal and circumferential crack, since 
the reference data for it are available (e.g. /2/, /18/). The 
results obtained are given in diagrams of membrane and 
bending stress intensity factor dependence on shell parame-

ter λ, given by ( )24 12 1a v
RH

λ = − , where 2a is the 

crack length. 
The results obtained show a satisfying level of agree-

ment for membrane components of calculated SIF and only 
partial agreement for bending SIF. In the second case, the 
disagreement is obvious for greater λ parameter  values and 
is not only related to the bending SIF intensity, but it is also 
related to its sign. Reference data show the dependence of 
bending SIF on parameter λ as a function which changes its 
sign at a certain value of λ, what is not obtained as a result 
in this work. This difference could be a consequence of 
introducing the couple of membrane strain and bending 
stress. The bending SIF is significantly smaller than the 
membrane, hence their overall SIF is of secondary rele-
vance. More data on this problem will certainly give an 
example of loading that has bending character, rather than 
membrane, which is the next step in this work. 

 
Figure 1. The results for non-dimensional stress intensity factors for cirumferential and longitudinal crack. 
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