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INTRODUCTION 

Welded joints are usually critical points in determining 
the service life of a structure. If the welding process is 
known in detail, there is a possibility to extend the life of a 
welded joint, achieving significant savings. Numerical 
methods, especially the finite element method, applied in 
solving corresponding structural mechanics equations can 
significantly contribute to the welding process and welded 
joint analysis. 

From the structural mechanics point of view, the prob-
lem of welding and welded joint analysis are considered as 
non-linear problems in general, for they include significant 
thermal stresses caused by thermal shocks, melting and 
solidification with a large temperature gradient. They also 
include significant mechanical property changes during the 
welding process. Taking all this into account, it is clear that 
during welded joint analysis, large displacements and 
strains, i.e. geometric and material non-linearity, must be 
allowed. It is also clear that when defining the problem it is 
necessary to start with fundamental continuum mechanics 
equations, i.e. the coupled displacement and heat transfer 
equations, using the thermoelastic visco-plastic (TEVP) 
model of material behaviour. Use of TEVP causes many 
complications with practical calculation, for it is a complex 
and yet not fully developed procedure, but is necessary to 
apply in welding process analysis. 

STRUCTURAL MECHANICS EQUATIONS AND CON-
STITUTIVE FUNCTIONS 

Welded joint analysis by finite element method is based 
on corresponding general continuum mechanics equations, 
i.e. coupled movement and heat conduction equations. 
Movement equations and their limiting conditions will be 
considered in the following form: 

 ( )i ab i i
a bz fσ ρ+ = &&z  in B (1) 

 0i i ab
bz nσ σ− =  on ∂Bσ (2) 

 0i iz z− =   on ∂Bz (3) 
where zi(ξa,t) represents Cartesian coordinates of a random 
element of object B at instant t; ξa are convective coordi-
nates of the same element i, a = 1; 2; 3; i i

az z / aξ= ∂ ∂  are 
the base vectors; σab is the stress tensor; ρ–density; fi–
volume force vector; σi–surface force vector; nb–outer unit 
normal to the contour element ∂Bσ; iz –movements given 
to the contour element ∂Bz; ∂Bσ and ∂Bz are object B con-
tours for which corresponding limit conditions (2) and (3) 
are defined, respectively; the | symbol signifies the covari-
ant or countervariant differentiation along ξa coordinates; 
the point above letters indicates the time derivative, e.g.  
is the acceleration vector. 

iz&&

The heat transfer equation and its limit conditions will be 
considered in the following form: 

 0b
bq rρ η ρ− − − ∂ =T &   in B (4) 

 0b
bq q v− =   on ∂Bq (5) 

 0− =T T   on ∂BT (6) 
where T is the absolute temperature; η is the specific en-
tropy; q is the heat flux; r is the heat source; ∂ is the inner 
dissipation; vb is vector of the outer unit normal to the con-
tour element ∂Bq; T  is the given temperature for the con-
tour element ∂BT. 

In order to establish the relation between certain consti-
tutive functionals (free energy, stress entropy and inner dis-
sipation on one side, and heat flux and temperature on the 
other side), we must know the constitutive functions for 
free energy ψ and heat flux qa. During the welding process, 
the material behaves in a thermo-elastic-visco-plastic manner. 
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It is very difficult to determine the free energy function that 
can in a satisfying way describe such material behaviour. 
Here, we will use the function based on the derivation 
which was given by Nowacki /1/, for linear thermo-elastic 
material. In accordance with his approach, paper /7/ gives 
the explicit form of the free energy equation, using convec-
tive coordinates. The equivalent free energy expression is 
given in /2/. Also given in this paper is the generalization in 
case of thermo-plastic materials. The free energy equation 
given in /7/ is expanded in a similar way in /2/, in case of 
TEVP material. Generally, the free energy function can be 
written as: 

 ( , ,HP
ab ab )ψ ψ γ γ θ=  (7) 

where ψ denotes free energy, while γab is the strain tensor 
given by: 

 ( ) ( )1 1
2 2

ji i j i
ab ab ab ij a b a ab

j
bg G z u z u uγ δ= − = + + u  (8) 

Here, gab and Gab are fundamental metric tensors in both 
current and referent configuration, in respect; ua

i = ∂ui/∂ξa 
is the displacement gradient; γab

HP is the visco-plastic com-
ponent of the strain tensor; θ is the relative temperature 
given by: 
 θ = −ΘT  (9) 
where Θ represents the referent temperature. 

In case of an isotropic body and a linear elastic part of 
strain (which is an acceptable assumption for metals), the 
free energy function ψ = ψ(γab,γab

HP,θ) can be represented 
in the following form: 

 

( )( )(
( )( )

( )

)1
2

1 ln 1

abcd HP HP
o ab ab cd

ab HP
ab ab

E

E

c

ρ ψ θ γ γ γ γ

θ γ γ θ

θ θ θθ θ

= − −

− − +

⎡ ⎛ ⎞ ⎛ ⎞+ − + +⎢ ⎜ ⎟ ⎜ ⎟Θ Θ Θ⎝ ⎠ ⎝ ⎠⎣

cd −

⎤
⎥
⎦

 (10) 

 
( ) ( )

( ) ( ){
( ) }

1 2

1 2

abcd ab cd

ab cd

E v
v

v G G

µ θ
θ θ

θ

θ

=
−

⎡ ⎤+ −⎣ ⎦

G G +
 (11) 

 ( ) ( ) ( )
( ) ( )

1
2

1 2
ab abv

E v
v
θ

θ θ α θ
θ

+
=

−
G  (12) 

where µ(θ), v(θ), α(θ) and c(θ) are temperature–dependent 
material properties, and they are: shear modulus, Poisson’s 
ratio, thermal expansion coefficient, and specific heat per 
unit volume, respectively, and Gab is the counter-variant 
fundamental metric tensor in a referent configuration. 

Since the free energy function is established, it is now 
possible to determine the remaining constitutive functions 
in the following way: 

( )( ) ( )
0

ab
ab abcd HP ab

cd cdD E Eγ
ρσ ρ ψ θ γ γ θ
ρ

⎡ ⎤= = − +⎢ ⎥⎣ ⎦
(13) 

 o oDθρ η ρ ψ=  (14) 

 HP
ab

ab HP HP
ab abDγσ γ∂ = = −& ψγ&

bT

 (15) 

where symbol D signifies the partial derivative, and its 
index indicates along which quantity. 

The constitutive function for the heat flux qa can be 
represented in the form Fourier heat conduction law: 

  (16) ( )a a
bq Gκ θ=

where κ(θ) is the heat conductivity coefficient, yet another 
temperature–dependent material property, and where 
Tb = ∂T/∂ξb is the temperature partial derivative along the 
convective coordinates. 

The visco-plastic strain rate γ˙ab
HP remains to be deter-

mined. Taking into account the fact that there is not a 
generally established way of determining this quantity, we 
will show two possibilities. According to the first, /3/, the 
visco-plastic strain rate is determined from the so-called 
over-stress function: 

 
( )

( ) 1, ,ab HPHP
ab ab ab

tf S
κ ξ

γ λ
σ

γ ξ
⎡ ⎤

∂⎢ ⎥= < Φ − >⎢ ⎥ ∂⎢ ⎥⎣ ⎦

&  (17) 

where f(⋅) is the quasi-static flow (yield) function; 
Sab = (ρ/ρo)σab is the stress tensor in a referent configura-
tion; ξ is the scalar measure of cavity concentration (so-
called imperfection parameter); Φ is the visco-plastic over-
stress function; κ(θ) is the isotropic hardening parameter; λ 
is the viscosity constant; and symbols < > signify: 

 
( )
( )

0 for

for

r f

f

κ

κ

⎧ ⋅ <⎪< Φ >= ⎨
Φ ⋅ >⎪⎩

 (18) 

There are several expressions for the flow function f(⋅) 
and hardening parameter κ, some of which include certain 
effects that were neglected in previous cases, such as the 
presence of cavities and their concentration /3/. 

According to the second approach which is more classi-
cal, plastic strain rates according to Masubushi and Muraki 
/4/ are combined with the viscous strain rate according to 
Brunet and Boyer /5/, which gives us: 

 3 1
2

HP n
ab ab

fS BS
HS

γ θ
θ

⎡ ∂⎛ ⎞= + +⎢ ⎜ ⎟∂⎝ ⎠⎣ ⎦

& && DS
⎤
⎥  (19) 

In this expression, the equivalent stress is: 

 3
2

D abD
abS S S=   (do not sum along D) (20) 

while Sab
D is the deviator part of the stress tensor. It is 

assumed that the stress on the yield level ST depends on 
plastic strain and temperature, hence the expression for the 
yield function is: 

 ( )θγ ,p
abTSSf −=  (21) 

Further, we have: 

 T
p

SfH
γγ

∂∂
= − =

∂∂
 (22) 
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where γ¯p is the equivalent plastic strain /4/. Effectively, H 
can be determined from the following expression: 

 t

t

EE
H

E E
=

−
 (23) 

where Et is the tangent elasticity modulus which is deter-
mined for the adequate equivalent strain value /15/ given by: 

 3
2

ab
abe eε =  (24) 

where 

 1
3

ab cd
ab ab cde G Gγ γ= −  (25) 

represents the strain deviator, i.e. for the adequate uniaxial 
strain: 

 
( )
( ) ( )

,2 1 2
3

TS
v

E
ε θ

ε ε θ
θ

⎧⎪ ⎡= + −⎨ ⎣
⎪⎩

⎫⎪⎤⎬⎦
⎪⎭

 (26) 

It should be noticed that, since the stress on its yield level 
ST is the function of strain ε, the strain ε from Eq. [26] must 
be determined iteratively from data given in S–ε diagram 
(Fig. 1). ε = ε¯ is accepted as the initial (zero) iteration. 

 
Figure 1. S–ε diagram dependence of temperature for 

steel St37 according to DIN. 

The remaining problem in determining the equivalent 

stress rate, S& , can be solved in accordance with /4/, using 
the following expression: 

23 3 1
32

1 3
3

D abcd ab cd
ab D D cd

ab
ab ab

D

S S E S S
HS S

E H fE S
H S

µ γ
µ

µ µ θ
θ µ µ θ θ

⎧⎡ ⎤⎛ ⎞⎪⎢ ⎥= + +⎨ ⎜ ⎟ +⎢ ⎥⎝ ⎠⎪⎣ ⎦⎩
⎫⎡ ⎤⎛ ⎞∂ ∂ ∂ ⎪+ + + ⋅ + ⋅⎢ ⎥ ⎬⎜ ⎟∂ + ∂ ∂⎢ ⎥⎝ ⎠ ⎪⎣ ⎦ ⎭

& &

&

(27) 

For known S–ε diagrams in case of different temperatures, 
(Fig. 1), the derivative ∂f/∂θ can be approximately deter-
mined by using the finite difference method: 

 
( ) ( )1

2 1

T TT S SSf 2θ θ
θ θ θ θ

−∂∂
= − =

∂ ∂ −
 (28) 

Finally, we should notice that B, the temperature–de-
pendent creep coefficient, and n, the creep exponent, repre-
sent parameters in the following relations: 

 V
ab abB nγ σ=&  (29) 

measured for uniaxial creep. 

FINITE ELEMENT EQUATIONS 

Once the movement equations are determined, as shown 
in the previous chapter, it is possible to apply adequate pro-
cedures, i.e. that of Galerkin, in order to obtain discretized 
movement equations: 

  (30) JjJjj
I

IJ SRzM −=&&

Upper case indexes are related to the element node, I,J = 
1,2,...,N, where N is the number of element nodes; lower 
case indexes are related to the problem dimension, i,j = 
1,2,3 for a three-dimensional problem. 

Taking into account that the discrete equations like [30] 
are obtained by interpolating and integrating certain quanti-
ties within a finite element, and then summing along all ele-
ments /6/, the matrices and vectors given in Eq. (30) can be 
written as: 
- mass matrix 

e

IJ I J

e B
M P P dvρ= ∑ ∫  (31) 

- external forces vector 

  (32) 
e e

Jj j J j J

e eB B
R f P dv Pρ σ

∂
= +∑ ∑∫ ∫ ds

dvψ- internal forces vector  (33) 
ab

e

Jj j J
a b

e B
S z P Dγρ= ∑ ∫

where PI is the interpolation function; Be is the element 
domain, and  ∂Be is its contour. Interpolation is carried out 
in such a way that variables are being separated: Φ(ξa,t) = 
PI(ξa)Φ(t). 

In a similar way, we can discretize the heat conductivity 
equations, given by expressions [4]–[6], from which we have: 
 IJ J J J J

IU T Q G D J= + ∂ − − −& J

dv

 (34) 
Matrices and vectors in Eq. [34] have the following mean-
ing and forms: 
- heat capacity matrix 

 
e

IJ I J
e

e B
U T TP P Dρ δ= −∑ ∫ η

J

v

 (35) 

- heat source and flux vector 

  (36) 
e e

J J

e eB B
Q rP dv qP dsρ

∂
= +∑ ∑∫ ∫

- inner dissipation vector 

  (37) HP
cd

e

J HP
cd

e B
D dγργ ψ∂ = −∑ ∫ &
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- inner flux vector 
  (38) 

e

J b
b

e B
G q P= ∑ ∫ J dv

dv

- thermo-elastic coupling vector 

 
ab

e

jJ i J
ij a b

e B
D T z z P D Dγ θρ δ= −∑ ∫ & η  (39) 

- thermo-highly-plastic coupling vector 

 HP
cd

e

J HP
cd

e B
J T D D dθγ vρ γ= −∑ ∫ & η  (40) 

It should be noticed that in Eq. [34], temperature change 
rate appears as the main variable which is of great practical 
significance for explicit numerical procedures in solving 
such equations /7/. 

It should also be mentioned that while calculating the 
above matrices and vectors, the integration domain may be 
transformed into a referent configuration by using the fol-
lowing continuity equations: 
 odv dVρ ρ=  (41) 

where ρo represents the density, and dV is the volume ele-
ment, and both quantities are in a referent configuration. 

At the end of this chapter, we should mention that the 
authors of this paper have not come across equations of the 
type [34] in references, which contain thermo-visco-plastic 
coupling vectors. 

SOLVING A COUPLED THERMO-MECHANICAL PROBLEM 

Equations [30] and [34] are first transformed into a 
matrix form which is more suitable for solving: 
 Mz R Sz= −&&  (42) 

  (43) UT Q G Dz JT= + ∂ − − −& &

In order to solve such a problem, there are two proce-
dures available – the implicit and the explicit procedure. 
The implicit procedure 

This procedure requires expanding Eqs. [42] and [43] 
into a Taylor series in time, linearize them and approxi-
mately solve the system of linear equations obtained in this 
way (for example, by using the central difference method). 
By using the procedure described in detail in /7/, we get: 

  (44) 

24 /
2 / 2 /

4 / 2
2 2

h

h

uM h K S L
D h F U h H J

R R Mz h Sz h R
Q Q wJT G h

τ

δ

⎡ ⎡ ⎤+ + =⎢ ⎥ ⎢ ⎥
+ + +⎢ ⎥ ⎣ ⎦⎣ ⎦

+ + − −⎡ ⎤
= ⎢ ⎥+ − − + ∂ + ∆⎣ ⎦

&

⎤

where, except for the already known expressions, additional 
matrices and vectors appear, whose members are deter-
mined in an already described way: 
- stiffness matrix 

 
ab cd

e

IiJj j i J I
a c b d

e B
K z z P P D D dvγ γρ ψ= ∑ ∫  (45) 

- thermo-mechanical coupling matrix 

  (46) 
ab

e

IJj j J I
a b

e B
L z P P D Dγ θρ= ∑ ∫

- visco-plastic force matrix 

dvψ

dv HPab cd
e

jJj j HP
a cd b

e B
R z P D Dγ γδ ρ γ ψ= ∑ ∫ &  (47) 

- thermomechanical coupling matrix 

( )
cd cd

e

HP HPcd cdab ab
e

cd
e

IiJ J I i i
d c c

e B

i HP I J
c ab d

e B

i J I b
c b d

e B

F P P Tz D D Tz D D

z P P D D TD D D dv

z P P D q dv

γ θ γ θ

γ γ θγ γ

γ

ρ ψ

ρ γ ψ ψ

ρ

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

ψ

+ − +

+

∑ ∫

∑ ∫

∑ ∫

&

& (48) 

- heat conductivity matrix 

( )

( )2 2 2

a
e e

HP HP
ab ab

ij J I b I b I J
b a

e eB B

HP
ab

H P P D q P D q dv P P

TD TD TD D D dv

θ θ

θ θ θγ γ

ρ

ψ ψ γ ψ ψ

= + −

⎤⎡× + + − ⎥⎣ ⎦

∑ ∑∫ ∫

& & &

×

(49) 

- visco-plastic flux vector 

( )
HP
cd

e e

HP HP HP HP
ab cd ab cd

J J HP b J HP HP
b cd b ab cd

e eB B
P D q dv P

D D TD D D dv

γ

θγ γ γ γ

γ ρ γ

ψ ψ

γ∆ = +

× −

∑ ∑∫ ∫& & ×&

 (50) 

It is important to mention here that new variables are 
used in Eq. [44] – movement and temperature increase τ, 
within a given time interval h. If these variables, in the 
moment t + h, are denoted with index h, the following rela-
tions are valid: 

 2
hz u

h
z= −& &  (51) 

 hu z z= −  (52) 

 hτ θ θ= −  (53) 
When solving system [44], one should have in mind that 

the system matrix is asymmetrical and that this system is 
actually an approximation of the initial system [42]–[43]. 
Hence, it is necessary to use iteration within the time inter-
val h in order to obtain the solution which will satisfy the 
initial system. For this purpose, one should solve a matrix 
system obtained by a time integration within interval h of 
the system [44]: 

 

24 /
2 / 2 /

h h h

h h h h h h h h h

uM h K S L
D h F U h H J

R S z Mz
Q G D z J T U T

τ
⎡ ⎤ ∆⎡ ⎤+ + =⎢ ⎥ ⎢ ⎥∆+ + +⎢ ⎥ ⎣ ⎦⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥+ ∂ − − − −⎣ ⎦

&&

&&

 (54) 

Once u = u + ∆u and τ = τ + ∆τ are known within time 
interval h, one can obtain the required quantities at the end 
of the time interval: 
 hz z u= +  (55) 

 
2

hz u
h

z= −& &  (56) 

 2
4 4

hz u z
hh

z= − −&& & &&  (57) 
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 hT T τ= +  (58) 

 
2

hT
h
τ= −& T&  (59) 

 The explicit procedure 
This procedure is based on initial velocity and accelera-

tion values, visco-plastic strain and its rate, temperature and 
its changing rate. Using these values, it is possible to deter-
mine the final values of all above quantities within a chosen 
time interval, and from them to determine the remaining 
necessary quantities. This way, the initial values for the fol-
lowing interval can also be determined. Significant for this 
is the length of the time interval h which is in case of an 
elastic material limited by Neumann’s criterion: 

 
min

minh
c

α ⎛ ⎞< ⎜ ⎟
⎝ ⎠

l  (60) 

where α is the linear dimension of a finite element, and c is 
the normal impact wave extension velocity, given by the 
following expression: 

 
o

2 1
1 2

vc
vρ

−
= ⋅

−
 (61) 

and α is an empirical decrease factor, for which the rec-
ommended values are between 0.2 and 0.9, /8/. 

Once the time interval length is determined, the predic-
tion–evaluation–correction scheme can be used. 
Prediction 
  (62) hz z h= +& & z&&

  (63) hT T hT= + &

 
h

HP HP H
ab abab h Pγ γ γ= + &  (64) 

where , , T, , γz& z&& T& ab
HP and γ˙ab

HP are the initial values 
within the time interval h. 
Evaluation 

- radius vector (
2h
hz z z z= + +& & )h  (65) 

- displacement (based on displacement and according to the 
given relations, the strain γabh and free energy ψ are calcu-
lated and then used to calculate the stress σabh) 
  (66) hu z z= −

- stress deviator 
1
3hh

D
ab ababS S G= −  (67) 

- fon Mises stress 

 3
2 h h

ab D
h D abS S S=   (no summing along D) (68) 

The visco-plastic strain rate can be determined in one of 
the above ways, e.g. from Eq. [19]. This produces all the 
quantities required to calculate  and  directly from 
Eqs. [42] and [43]: 

hz&& hT&

  (69) (1
h h hz M R S z−= −&& )h

h  (70) ( )1
h h h h h h hT U Q G J T D z−= + ∂ − − −& &

Correction 

 (
2h
hz z z z= + +& & && && )h  (71) 

 (
2h
hT T z z= + +& & )h  (72) 

 ( )2h h

HP HP HP HP
ab abab ab

hγ γ γ γ= + +& &  (73) 

 Some notes on implicit and explicit procedures 
First of all, it is clear that the implicit procedure is much 

more complicated, hence its unlikely to expect its applica-
tion on extremely coupled thermo-mechanical problems /7/. 
This is especially the case with materials whose behaviour 
is described using complex constitutive functions. How-
ever, if it is possible to uncouple the problem, as it is shown 
in examples in the following chapter, the implicit procedure 
may be efficiently applied. Also should be kept in mind that 
the implicit procedure must be used for static problems. 

The basic criterion for comparing the implicit and the 
explicit procedure is calculating the time, the efficiency of 
integration time in other words. It is clear that this in a 
certain way reduces the comparison to a time interval 
length which can be determined in various ways. In explicit 
procedure, the time interval length depends on material’s 
elastic properties and can be increased by increasing the 
temperature, which is especially suitable for the case con-
sidered here. For an implicit procedure, the time interval 
length is mostly determined by the required accuracy. How-
ever, it is to notice that although this procedure is generally 
considered as an unconditionally stable one, this does not 
have to be the case for non-linear problems. 

NUMERIC PROCEDURES IN WELDED JOINT FRAC-
TURE MECHANICS 

By solving the coupled thermo-mechanical problem 
which was described in the previous chapter, the residual 
stresses and strains in a welded joint can be determined. 
Although the residual stresses may be eliminated with addi-
tional heat treatment, such procedure is usually costly or 
unfeasible for real structures. Hence, it is justifiable to 
assume that residual stresses and strains which occur in a 
welded joint will have a relevant effect on the appearance 
and crack growth. 

Taking into account that during welding the material 
suffers strains which go above yield stress, when speaking 
of welded joint fracture mechanics, one must first consider 
elastic-plastic fracture mechanics parameters – crack (tip) 
opening displacement, i.e. C(T)OD, and the J integral. 
Evaluation of these parameters with the use of numeric 
methods (e.g. the most common, finite element method) is 
problematic and requires additional knowledge in this area. 
Here, this problem will not be considered (a series of inter-
national conferences /8,9/ and /10/ as well as a recently 
published book /11/, are devoted to it anyway), instead, the 
peculiarities of finite element method application in deter-
mining COD and J-integral will be emphasized. 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 4, br. 2 (2004), str. 75–83 

STRUCTURAL INTEGRITY AND LIFE
Vol. 4, No 2 (2004), pp. 75–83 

 

79



Analysis of Welded Joints by Applying the Finite Element Method 
 

The procedure for COD determination is principally the 
same as for homogeneous materials, see /12/. Welded joint 
heterogeneity is involved via the input material properties 
data which vary for different welded joint regions, and also 
via the internal stress distribution which was determined in 
a described way. 

The first example is related to rectangular steel plate 
joint by electric-arc butt welding /14/. The plate, along with 
basic welding data is given in Fig. 2, and the change of 
material properties (steel St37 according to DIN) with tem-
perature is given in Fig. 3. The changes on S–ε curves are 
already given in Fig. 1. 

In case of the J integral, taking into account the presence 
of residual stresses and strains and in order to maintain 
path-independence, it is necessary to compute the J integral 
with an area (surface) integral /13/: 

 

 * ijij iji
j

A

u
J Wdy n ds dA

x x
θ

σ σ
Γ

∂∂⎛ ⎞= − +⎜ ⎟∂ ∂⎝ ⎠
∫ ∫  (74) 

where θij are the residual strains. 

EXAMPLES 

In this chapter two examples taken from the references 
will be presented. Both of these cases are about significant 
simplifications compared to the solving procedure given in 
this paper, which was justified by the examples considered. Figure 2. Arc-welding of a steel plate. 

 
Figure 3. Change of DIN St37 steel properties with the change of temperature. 

a. yield stress;  b. thermal expansion coefficient; c. elasticity modulus; d. Poisson’s ratio; f. specific heat. 
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In order to assess the accuracy of the results obtained by 
using the finite element method, adequate temperature field 
and strains were measured. The residual stresses were de-
termined based on these measurements. 

The calculation according to the finite element method is 
divided into two phases: 
– in phase one the variable temperature field for a moving 
heat source (an electrode) is determined, assuming that the 
heat conductor is absolutely stiff. The implicit procedure 
was implied in solving a heat conduction problem accord-
ing to the following scheme: 

 1 U H Q
h

⎛ ⎞+ = ∆⎜ ⎟
⎝ ⎠

 

 
1

hT T
h
τ= −& &  

 1
h h hU H Q G U T

h
τ⎛ ⎞+ ∆ = − −⎜ ⎟

⎝ ⎠
&
h  

 τ τ τ= + ∆ ,   T T τ= +  

 If  310
τ
τ

−∆
> ,  the procedure is repeated. 

The temperature distribution obtained this way is shown 
in Fig. 4, and the corresponding weld root temperature his-
tory is shown in Fig. 5. 

 
Figure 4. Temperature distribution. 

a. after 79 s, b. after 135 s, c. after 180 s, d. after 360 s. 

 
Figure 5. Weld root temperature history. 

In phase two, the stresses and strains at the middle of the 
plate cross-section are calculated, assuming plane stress 
state. Also, the weld root temperature history is considered 
to be known. The implicit procedure applied can be sche-
matically shown in the following way: 
 1i iu u −=  

1 2 2 2hU H Q Q JT G h D F U
h h

τ⎛ ⎞ ⎛+ = + − − − ∂ − ∆ − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

1 ⎞
⎟
⎠

 

 
1

hT T
h
τ= −& &  

1
h h h h h h h hU H Q G D z J T U T

h
τ⎛ ⎞+ ∆ = + ∂ − − − −⎜ ⎟

⎝ ⎠
&& h  

 τ τ τ= + ∆ , T T τ= +  

If 310
u

u
−∆

≥ , the procedure is repeated starting from zh = 

z + u. 
Inertial forces and the visco-plastic part of the tempera-

ture matrix system were neglected in this procedure. The 
effect of strain on temperature is considered as small, hence 
movement and heat conductivity equations are uncoupled. 

Residual stresses and strains on the upper side of the 
plate obtained in this way are shown in Figs. 6 and 7, in 
respect, along with their corresponding experimental data. 

Two calculation options - incremental elastic and elastic-
visco-plastic are shown in Fig. 6. The second one shows 
significantly better agreement with the experiment. Figure 7 
shows two calculation options for residual strains - with and 
without the phase effect. The results show that this differ-
ence is negligible. 
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Figure 6. Residual stress distribution. 

 
Figure 7. Residual strain distribution. 

The second example is related to one-dimensional analy-
sis of welded joint /4/. The sample shown in Fig. 8 was also 

experimentally tested using strain gages, thermocouples and 
extensometers (their distribution is shown in Fig. 8) in 
order to determine the temperature, strain and stress fields. 
The material (aluminium) property dependence on tempera-
ture is shown in Fig. 9. 

 
Figure 8. Welded sample. 

 
Figure 9. Aluminium properties dependence on temperature. 

Calculation and experimental measurement results are 
shown in Fig. 10 (temperature history during welding in 
four typical points). 

 
Figure 10. Temperature history during welding in four typical points. 
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Figure 11 (longitudinal strains during welding for three 
chosen points) and in Fig. 12 (residual stresses along the 
middle cross-section of the plate). From these results one 
can conclude that the temperature distribution has agreed 
well with the experimental measurement, while the residual 
stresses and strains exhibit qualitative agreement, with cer-
tain quantitative scatter. Such conclusion is generally typi-
cal for the up-to-date state of this numerical structural 
mechanics region. 

 
Figure 11. Longitudinal strains during welding. 

 
Figure 12. Residual stresses σ . 

 

 

CONCLUSION 

This paper describes the application of finite elements 
method in welded joint and welding process analysis. 
General finite elements coupled thermo-mechanical be-
haviour equations were derived, and the procedure of 
solving the coupled thermo-mechanical problem was 
developed. Taking into account the complexity of this pro-
cedure, references only contain the examples solved by 
uncoupling of thermal and mechanical equations. 

By analyzing some reference examples the conclusion is 
made that the results obtained for the temperature dis-
tribution agree with experimental results. As for strains and 
stresses, the values calculated agree with the experimental 
ones only qualitatively, with significant differences in 
values. In order to eliminate this disagreement it is 
necessary to solve a coupled problem, which requires a 
high-speed computer of extended memory and significant 
man hours as well. 
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