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INTRODUCTION 

This paper has two purposes. First, it gives a short 
review of basic fracture mechanics terms to readers who 
meet these problems for the first time, and second, it points 
out the possibilities of computer analysis in determining the 
real state of the material around the crack-tip. There is no 
doubt that the efforts made in order to explain qualitatively 
the stress state in this zone are sometimes followed by in-
correct conclusions. There are more reasons for this – the 
experimental insight in the stress state, except on the mate-
rial surface, is still virtually impossible. The possibility of 
reaching the analytical solution of the problem is limited to 
plane stress state, linear elasticity, and perfect plasticity. 
Finally, only a few ways in computer analysis of the triaxial 
stress state near the crack edge are known up to date. 

Taking into account the significant decrease in the price 
of computer operating hours every year, the triaxial stress 
state analyses are available to smaller research and develop-
ment teams. This results in better qualitative and quantita-
tive understanding of stress and strain states in fracture 
mechanics problems. 

Having in mind the purpose of this paper, the attempt 
will be given to the theoretical basis of fracture mechanics, 
including the necessary terms of elasticity and plasticity 
theories, in a short, yet comprehensive way. Also, some 
results of computer analysis using finite element method 
will be presented. 

FUNDAMENTAL TERMS IN SOLID BODY MECHANICS 

Kinematics basis 
As usual, Cartesian coordinates of a point in a solid 

body, also known as radius vector coordinates, will be 
written as: 
 zi (i = 1,2,3) (1) 

The displacement vector represents the difference bet-
ween the positions of the current and the starting configura-
tion, and its coordinates are written as: 
 ui = ui(zi,t) (2) 

Derivatives of displacement vector along the coordinates 
are called displacement gradients, 

 i
i j

j

u
u

z,
∂

=
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 (3) 

The theory of elasticity shows that if displacement gradi-
ents are small compared to the unit the strain tensor compo-
nents can be presented as: 

 (1
2ij i j j ie u u, ,= + )  (4) 

Stress state 
The effect of a force on a unit of randomly oriented area 

inside or on the surface of the observed body can be repre-
sented by the stress tensor σij. One can consider stress 
tensor components as forces which act along the zi direction 
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to the unit area with a normal in the zj direction. In conti-
nuum mechanics, it can be shown that σij = σji, therefore the 
stress tensor has 6 different components. 

The terms: principal stress σa, and principal direction ni
a 

are of great importance for the study of plane and triaxial 
problems in fracture mechanics. These quantities respecti-
vely represent eigenvalues and eigenvectors of problems: 

  (5) 0ij ij
inσ σδ⎡ ⎤−⎣ ⎦ =

where δij = 1 for i = j, and δij = 0 for i ≠ j, represent the 
Kronecker delta symbol. The principal directions of ni are 
perpendicular to each other. In planes whose normal bisects 
principal angles between the principal directions, maximum 
shear stress occurs, given by: 

 2 3
1 2

σ σ
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assuming that: 
 σ1 ≥ σ2 ≥ σ3 (7) 
then the largest shear stress will occur in two planes at an 
angle of 45° to the directions of stresses σ1 and σ3 (Fig. 1). 

 
Figure 1. Planes of maximum shear stress. 

By expanding the determinant with coefficients from [5], 
an equation of the third order is obtained: 
  (8) 3 2

1 2 3 0I I I
σ σ σσ σ σ− + − =

whose coefficients are the invariants of stress tensor: 
 1 1 2I

σ 3σ σ σ= + + , 

 2 1 2 3 1 2I
σ 3σ σ σ σ σ σ= + + , (9) 

 3 1 2I
σ 3σ σ σ=  

The term stress deviator is significant in the theory of 
plasticity: 

 1
1
3

ij ij ijI
σ

σ σ= −% δ  (10) 

Invariants of stress deviator are as follows: 
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Also, the term of effective stress (Mises stress) is 
common in the theory of plasticity: 

 23I
σ

Σ = +
%

 (12) 

Relations between stresses and strains 
For an isotropic linear elastic material, the general rela-

tion between stress and strain is as follows: 

 ( )2 1 2
1 2

ij ij kl ik jl
kleµσ νδ δ ν δ δ

ν
⎡ ⎤= + −⎣ ⎦−

 (13) 

where µ is the shear modulus and ν is Poisson’s ratio. 
If effects of plastic strain are significant for a given prob-

lem, one of the plasticity theories will be used. These theo-
ries are mostly too complex from engineering points of 
view. However, for a practically relevant case of simple 
loading (the case in which the external forces increase pro-
portionally to a single parameter), it can be shown that it is 
possible to present a plastic body by a nonlinear elastic 
model. This approach is also called the deformation theory 
of plasticity. Therefore, in case of simple material loading, 
the relation [13] can be used even in a plastic range. The 
computer programmes based on [13] can also be used. The 
only difference is that instead of constants µ and ν in [13], 
variable parameters are introduced: 
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where ES is the secant elasticity modulus, while E is the 
elasticity modulus of an unloaded material. Both quantities 
are obtained from experimentally determined σ–ε uniaxial 
stress–strain diagram. 

While examining some materials (such as mild steels) 
under uniaxial stress, one can notice that up to a certain 
value of stress, these materials show linear elastic beha-
viour, and then, for a constant stress value, the material 
deforms with no limit (yield) up to fracture. This stress is 
known as yield stress. For the purpose of standardizing, the 
stress σT = σ0.2, corresponding to relative strain ε = 0.2% 
under uniaxial stress is taken as the yield stress. The above 
definition of yield stress allows to expand this term to mate-
rials with an extremely smooth σ–ε curve (e.g. aluminium 
alloys). 

This behaviour opens a question how to determine yield 
stress under a complex stress state. As a result of generaliz-
ing the existing experimental data, more hypotheses have 
been suggested /2/. 

One of the best-known is the Tresca criterion which 
suggests that yielding occurs when at least one of the maxi-
mum shear stresses reach one half of the values of yield 
stress, under uniaxial stress. Hence: 
 1 2 32 Tτ σ σ σ= − ≤ , 

 2 3 12 Tτ σ σ σ= − ≤ , (16) 

 3 1 22 Tτ σ σ σ= − ≤  

Especially in a three-dimensional case, these conditions 
are unpractical and are therefore replaced with the follow-
ing yield criterion of  Mises: 
 Σ = σT (17) 
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Plane strain 
The plane strain state corresponds to a strain of a long 

cylinder exposed to uniform and equal forces lying in all 
planes perpendicular to the cylinder’s directrissa (Fig. 2). 

It is obvious that under plane strain state the displace-
ment is a function of plane coordinates. There is no displace-
ment or strain along the z3 (cylinder axis), therefore: 
 uα = uα(xβ)   α,β = 1,2   u3 = 0   ε33 = 0 (18) 

Also, the shear stresses except those in the considered 
planes are equal 
 σ23 = σ31 = 0 (19) 

 
Figure 2. Plane strain state. 

The stress σ33 in the direction of the cylinder axis is one 
of the principle stresses and its calculation is based on the 
known plane stresses: 

  (20) (33 11 22σ ν σ σ= + )
The maximum shear stress can be determined from: 

 ( ) ( )2 211 22 121 4
2maxτ σ σ σ= − +  (21) 

The two-dimensional model is essential for considering 
the stress state in the vicinity of the crack edge, because in a 
plate of finite thickness the edge represents a long tunnel. 
Near the tunnel, the stress state can be qualitatively repre-
sented at least by using plane strain equations. 
Plane stress 

Plane stress (plane stress state) is such a stress state of a 
plate in which it is loaded by forces in its plane (Fig. 3). 

Equations [19] are also applicable here. However, unlike 
the case of plane strain, where σ33 is determined from [20], 
here one of the principal stresses is: 
 σ3 = σ33 = 0 (22) 

Further, the Mises stress [12] is reduced to: 

 2 2
1 2 1 2σ σ σ σΣ = + + −  (23) 

Taking into account σ3 = 0, the maximum shear stress 
can be determined in the case that σ1 and σ2 are of the same 
sign, from the following equation: 

 1 2
1
2maxτ σ σ= −  (24) 

 
Figure 3. Plane stress state. 

In case that σ1 and σ2 are of different signs, assuming 
|σ1| > |σ2|, the maximum shear stress will be: 

 1
1
2maxτ σ=  (25) 

 
Figure 4. Maximum shear stress. 

This stress acts in a plane which forms an angle of 45° to 
the direction of stresses σ1 and σ3.

FUNDAMENTAL TERMS IN FRACTURE MECHANICS 

Theoretical material strength 
By experimentally analysing interatomic forces in a 

crystal lattice /1/, one can conclude that the stress required 
to separate two adjacent atomic layers equals: 
 σo ≈ 0.1E (26) 
where E is the elasticity modulus. However, because of the 
existence of cracks in the material, the real material 
strength for brittle material (such as glass) is given in case 
of plane strain by the Griffith formula: 

 
( )2

2

1
C

E

a
γσ

ν π
=

−
 (27) 

where 
 γ ≈ 0.01Ero (28) 
is the density of surface energy (work per unit of free area), 
the amount of work necessary to overcome interactive 
forces between adjacent layers of atoms, and ro being the 
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distance between them. The existing crack length in the 
material is 2a. 

By examining metal it is determined that it does not 
behave according to Griffith’s formula due to the plastic 
strain near the crack tip. Now the expression [27] is being 
expanded so it would take this effect into account: 

 
( )

( )2

2

1
p

C
E

a

γ γ
σ

ν π

+
=

−
 (29) 

where γp is the work of plastic deformation needed to form 
a new unit crack area, i.e. γp for steel is 103γ. 
Stresses and displacements near the crack tip in a linear 
elastic material 

In a plane problem of the elasticity theory, the modes of 
fractures can be classified as presented in Fig. 5. 

 
Figure 5. Modes of fracture development. 

For these three fracture modes the stress state near the 
crack tip can be described by the following expression: 

 ( ) ( )
2

Lij L
ij

K f
r

σ θ
π

=  (30) 

The displacements are: 

 ( ) ( )
2 2

LL
i i

K ru f θ
µ π

=  (31) 

In the equations above, the coefficients KL are stress 
intensity factors. Functions fij

(L), fi
(L)(θ) depend only on the 

angle θ and the fracture mode. For a homogenous stress 
state at a sufficient distance from the crack tip, the stress 
intensity factors are: 
 LK KI aσ π= =  (32) 
for cleavage, and 
 LK K KII III aσ π= = =  (33) 
for slide and shear. 
Plastic behaviour near the crack tip 

From Eq. [5] it follows that the stress near the crack tip 
is reversely proportional to the square root of the radius, 
hence it grows infinitely approaching the crack tip. This 

theoretical result does not comply with real material behav-
iour which is, in case of high stress values, best described 
by the plasticity theory. 

From the physics point of view, plastic yielding appears 
due to the sliding of adjacent layers over each other. This 
occurs when the shear stress reaches material yield stress. 
Therefore, it is clear that yielding will occur in the direction 
of maximum shear stress. In case of plane stress this 
assumes yielding at an angle of 45° to the plane’s normal, 
and the direction of the greater of the two principal stresses, 
(Fig. 4). 

In case of plane strain perpendicular to the x3 axis, for 
0 < σ2 < σ3, σ2 < σ1, the maximum shear stress will occur at 
yield stress σ1 – σ2 = σT, therefore: 
 1 2T Tσ σ σ σ= + >  (34) 

Because of this, the stress σ1 under plane strain can be 
significantly above yield stress without yielding. As a con-
sequence, in case of plane strain there is no fracture by slide 
in planes at 45° to the direction of the force. Instead, 
cleavage occurs, separating adjacent layers of atoms in 
planes perpendicular to directions of external loading with-
out any significant plastic strains, /3/. 

The stress intensity factor value at which fracture occurs: 
 c KK aI σ π=  (35) 
is called fracture toughness. If the stress field is homoge-
nous on a greater distance from the crack tip, σK will be the 
value of stress perpendicular to the crack under which frac-
ture occurs. 

The size of the plastic zone is determined assuming that 
the stress within this zone is σT, while the stress intensity 
factor equals KI. For θ = 0, Eq. [35] gives: 

 
2

1
2 T

Kr I
π σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (35) 

The result of [35] complies with more specific consi-
derations of plane stress. However, in case of plane strain, 
the size of the plastic zone is very small and can be ap-
proximately determined from: 

 
2

1
6 T

Kr I
π σ
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

 (36) 

Stress state in a specimen of finite thickness 

Strictly speaking, plane stress occurs only in an infinitely 
thin plate, and plane strain occurs only in an infinitely thick 
plate. On the other hand, in a plate of finite thickness, it can 
be expected that the plastic zone is within the limits given 
by [35] and [36]. 

Based on the shape of the plastic zone, calculated sepa-
rately for plane stress and plane strain, the plastic zone 
shape in Fig. 6 is assumed using interpolation /3,4/. 

However, recent numerical analyses make this popular 
interpretation of plastic zone shape questionable. For exam-
ple, Fig. 7 shows a plate with a central symmetrical crack, 
with a mesh of finite elements, while the size and shape of 
the plastic zone are shown in Fig. 8, /5/. 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 4, br. 2 (2004), str. 67–74 

STRUCTURAL INTEGRITY AND LIFE
Vol. 4, No 2 (2004), pp. 67–74 

 

70



Problems of Plane and Triaxial Stress States in Pressure Vessels and Pipelines 
 

 

 
Figure 6. Plastic area around the crack tip. 

The difference between plastic zone scales on the con-
tour and in the plate’s symmetry plane is negligible. 

Similar results were obtained using three-dimensional 
analysis of a compact specimen /6/. The shape of the plastic 
zone reminds of the plane strain case, while its size is ap-
proximately equal to the case of plain stress (Fig. 9). 
Diagrams in Fig. 10 allow a better insight of stress state. 
One can conclude from curve 1 in Fig. 10 that the stress σZ 
– in the direction perpendicular to the side surface of speci-
men, behaves as expected, meaning that it changes from a 
relatively large value to zero in the contour, as limiting 
conditions suggest. However, three-dimensional analysis 
gives a result which is impossible to extrapolate from two-
dimensional analysis – curve 2 in Fig. 10 represents the dis-
tribution of shear stress σxz along specimen thickness. This 
stress, necessary for balancing the variable σz stress along 
specimen thickness, does not appear in two-dimensional 
analysis, although it has a significant effect on forming of 
the plastic zone. Hence, the effective stress Σ [12] practi-
cally does not change at all along specimen thickness 
(curve 3 in Fig. 10). 

However, as thickness increases, the shear stresses σxz 
(curve 2) necessary to balance σz, are smaller and smaller, 
considering that this balancing takes place at a greater dis-
tance between the symmetry plane and the contour, hence 
the stress state tends to the state of plane strain. Such 
reasoning is confirmed by numerical results, /6/. 

Given results justify the analysis of plane strain state 
testing using specimens of finite thickness. Of course, this 
brings up a question of specimen thickness required, so that 
the stress state has no significant differences compared to 
the plane strain state. 

Generalizing a large number of experimental data has 
resulted in a conclusion that in case of ratio r/H < 0.02, 
where r is the radius of the plastic zone, and H is specimen 
thickness, fracture toughness testing results correspond to 
the state of plane strain, /7/. By placing the value r in [36], 
the requirement for specimen thickness can be obtained 

 
2

2 5 c

T

K
B I.

σ
⎛ ⎞

> ⎜ ⎟
⎝ ⎠

 (37) 
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Figure 7. A plate with central crack, divided into finite elements. 

 
Figure 8. Size and shape of the plastic zone of the panel from Fig. 7. 
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Figure 9. Comparison of plastic zones for plane strain and the centre of specimen, for plane stress and specimen surface. 

GENERALIZATION OF THE RESULT TO PROBLEMS 
OF PRESSURE VESSELS AND PIPELINES 

In case of pressure vessels and pipelines, previously ob-
tained results can be generalized having in mind the geome-
try characteristics and loadings for this type of structure 
(primarily curvature and pressure). The diagram in Fig. 10 
shows the obvious effect of curvature radius to vessel thick-
ness ratio on the stress intensity factor /8/. This problem is a 
subject of numerous recent researches, therefore some 
relevant results are given in the Proceedings book. 

 
Figure 10. The change of characteristic stresses from 

central plane to surface. 

DISCUSSION AND CONCLUSIONS 

The problem of fracture mechanics in various applica-
tions including pressure vessels and pipelines is basically 
three-dimensional (tri-axial). Depending on object thick-
ness and shape of the crack, certain simplifications are pos-
sible and reduction to two-dimensional problems of plane 
stress or three-dimensional problems of plane strain. How-

ever, the results of such simplifications should not be taken 
for granted because existing three-dimensional analysis 
shows not only quantitative, but also qualitative deviations 
from simplified schemes. 

 
Figure 11. Change of stress intensity factors with crack entail 

and vessel radius. 

Fortunately, thanks to the powerful development of nu-
merical analysis and computer technology during the last 
decade, three-dimensional analysis of fracture mechanics 
problems became a routine not only for well-equipped re-
search teams, but also for medium sized design organisa-
tions with expanding tendencies, and for smaller organisa-
tions. Therefore, the key problem of design today is how to 
master computer techniques. Some very competent thoughts 
on this have been presented in the book of Proceedings. 

Of course, the physical nature of the problem also con-
sidered here can never be neglected. 

Last but not least, the result of an experiment remains 
the final evaluation of theory and calculation. 
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