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From the text presented in previous chapters, we can 
conclude that the fundamental problem in fracture mecha-
nics is the assessment of stress distribution near the sharp 
crack tip. Stress distribution is determined as well as in 
solid body mechanics in general, by analytical and numeri-
cal methods. Some experimental methods are described in 
Chapter 4 with emphasis on standard specimen testing. 
Analytical methods described in Chapters 2 and 3, apart 
from the qualitative insight of fracture phenomenology, 
enable obtaining an accurate solution for a certain number 
of simple problems. Numerical methods represent the only 
acceptable alternative for most fracture mechanics applica-
tions due to the fact that it is related to the solid body of 
highly complex forms. Despite the abundance of numerical 
methods, from which many are suitable for solving certain 
fracture mechanics problems, in this paper we will focus on 
the finite element method. The reason for this lies in the 
generality and flexibility of this method which, combined 
with application of up-to-date computers, has lead to an 
industrial revolution in the field of numerical calculation 
and design in general. 

APPLICATION OF FINITE ELEMENT METHOD IN 
DETERMINING STRESS AND DISPLACEMENT 
AROUND THE CRACK TIP 

First of all, we should emphasize that in fracture me-
chanics, general finite element method programmes are 
being used, and that there are no differences between the 
finite element method and the other solid-body mechanics 
problems when defining and solving equations as well as in 
selecting material models. When applying this method in 

elastic /1,2/ and elastic-perfectly plastic /3/ problems, 
special finite elements with correct stress and strain singu-
larity are used. However, in the general non-linear case, 
such approach is pointless and not very useful for special 
problems, hence we will not consider it any further. Instead, 
we will consider the effective possibilities of determining 
certain fracture mechanics parameters by using standard 
software, which is more or less available to every finite 
element method user. 

As we know, the application of this method involves, 
above all, the forming of an adequate mesh in which the 
observed object is divided into a number of topologically 
uniform elements. In case of standard finite element method 
programme application on fracture mechanics problems, a 
significant refinement of the mesh around the crack edge is 
necessary (see First Paper, Fig. 3). 

Application of this method on a considered problem 
results in displacement of mesh nodes and hence in the 
determination of stresses. Once these quantities are known, 
we can determine the fracture mechanics parameters by 
using Eqs. A1 to A10, given in the Appendix (most of the 
Eqs. given here are cited from original paper Proceedings, 
please use this reference if necessary). 
Determining stress intensity factors based on given stress 
values 

Considering Eqs. A1, A3 and A7, we can conclude that 
for given coordinates r and θ, and stresses σx, σy, σz, τxy, τxz 
and τyz, the parameters KI, KII and KIII are solvable. For 
practical reasons we will assume that θ = 0, which results 
from these equations, in respect: 
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 2yK rI σ π= , 2xyK rII τ π= , 2yzK rIII τ π=  (1) 

When effectively determining these values, we usually 
calculate several of them along the direction θ = const, and 
then evaluate the most convenient among them by extrapo-
lating for r = 0 (First Paper, Fig. 6). Such a procedure, al-
though simple, requires a certain amount of time and effort 
in graphical elaboration of results. 
Determining stress intensity factors based on given dis-
placement values 

This procedure is analogous to the above and expres-
sions used are A2, A4 and A6, respectively. From practical 
reasons, we will assume that θ = π, which means that we 
will observe displacements on the crack surface, hence: 
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Generally, this approach is a bit more accurate then the 
previous due to higher displacement accuracy compared to 
the stresses when using FEM. 
Determining stress intensity factors based on energy release 
rate under crack growth 

When this approach is being used, stress intensity factors 
may be explicitly determined only for pure strain forms (see 
First Paper, Fig. 1); e.g. if KII = KIII = 0 it follows in accor-
dance with /4/ that: 

 8
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K GI
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according to A9 and A10. Concerning the strain energy 
release rate G itself, we will determine it by using two 
consecutive finite element method analyses, for two close 
crack lengths which differ by ∆a. Based on /5/ we can write 
approximately: 

 dU UG
hda h a

∆
= − = −

∆
 

where U/h represents strain energy per unit thickness h, for 
plane stress state, and ∆U = U2 – U1 is the difference of 
strain energies for two crack of close lengths under the 
same external loading. In case of plane strain, h = 1. Fur-
ther, in case of solving static problems in linear elasticity 
theory by using the finite element method, the strain energy 
equals one half of external force work, with a reverse sign: 

 1
2

TU R= − u  

where the n-dimensional vector R designates external forces 
affecting the structure, and vector u represents their ade-
quate displacements. The disadvantage is the need to con-
duct two analyses or some complicated interventions in the 
program /6/. 
Determining stress intensity factors based on Rice’s J integral 

Similarly to Eq. [3] we can write: 
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 (4) 

The problem is reduced to calculating the J integral, 
which is given in Eq. A8 in its vector form. Rice’s J inte-
gral is the component of A8, which can also be shown with 
the following expression /5/: 
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The use of Eq. [5] requires the crack to lie in the x3x1 
plane. For a linear elastic material with a symmetrical stress 
tensor, the strain energy per unit volume is: 

 1
2

ij
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where ui,j denotes the displacement gradients: 
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Taking into account that the contour surface is parallel to 
the x3 axis, the contour’s normal vector coordinates are: 
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Hence the index j in Eqs. [5], [6] and [7] takes the values 
j = 1,2, while i = 1,2,3. The previous statement does not con-
flict with the assumption of stress and strain homogeneity 
along the x3 axis. It also allows us to treat the shear strain 
(see First Paper, Fig. 1) by using the J-integral. 

In most general cases of a linear elastic material which 
applies to plane strain, the constitutive equations are given 
in the following form: 

 ( ) ( )
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1 2
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In case of plane strain, this expression is reduced to: 
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where ( ) (1
2 k l l kk lu u u, ,, = + ) . In both expressions j = 1,2 

and k, l, i = 1,2,3 with the condition that uk,3 = 0. By placing 
[6], [8] and [9] or [10] into [5] and using some algebra, we 
obtain the expression for J integral under plane and anti-
plane strain or stress as: 
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where, under anti-plane strain: 
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as for plane and anti-plane stress, we have: 
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The Eq. [11] is suitable for numerical calculation, since 
variables in it are only displacement gradients. However, 
these may be determined based on given displacement 
fields in an element or, if these are not known, by using the 
finite difference method /4/. Having in mind the great 
accuracy of displacements in nodes determined with FEM 
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as well as the generally irregular network, the Hudec /7/ 
method can be useful for determining displacement gradi-
ents. An elementary case will be taken for presentation. Let 
nodes J and K lie on a contour Γ, and L is the node closest 
to J and not collinear to the above two. The displacement 
gradients, e.g. u3 in point J, are approximately: 
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where u3KJ = u3K – u3J represents the difference between dis-
placements of points K and J. In an analogous way we form 
coordinate differences x2

LJ, etc. Also in the integral [11], we 
will replace dx1 with x1

KJ and dx2 with x2
KJ, and replace the 

sub-integral functions: 
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with their mean values F1KJ and F2KJ on the segments of Γ. 
In this case the integral [11] is reduced to a sum along 
segments of the considered contour: 
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The example of fracture mechanics parameter determina-
tion for a plate with a central symmetrical crack 

We assume that the plate is in a state of plane stress. The 
adopted mesh is shown in Fig. 1 of the First Paper. The 
same figure also shows very good agreement of stress 
results with the known analytical solution by Vestergard. 

Further, in Fig. 3 of the First Paper the iso-lines of Mises 
stresses are shown: 

 2 2
1 2 1 2σ σ σ σ σ= + −  (17) 

where σ1 and σ2 are main stresses near the crack tip. 
Figure 4 in the First Paper shows a deformed configura-

tion near the crack tip, magnified for its better presentation. 
Figure 5 in the First Paper shows the graphical determi-

nation of stress intensity factors based on displacements 
and stresses that were calculated using the standard package 
module SMS, developed in the Aeronautical Technical Insti-
tute (VTI) in Žarkovo, and graphically presented in Figs. 3 
and 4 in the First Paper. 

Table 1 in the First Paper shows results of stress inten-
sity factor determination using various procedures. Obvi-
ously for the adopted mesh, all of the described procedures 
are accurate enough. 

Certain advantage should be given to the numerical cal-
culation using the J integral and based on Eq. [16], whose 
programming gives us entirely automatic results. 
Three-dimensional analysis of fracture mechanics problems 

In every real fracture mechanics application, the stress 
state is usually three-dimensional. Anyhow, in most cases 
we can approximate it either by plane stress state or by 

assuming plane strain. However, this is impossible in cer-
tain practically relevant cases, such as a compact specimen. 
Since the specimen (Fig. 1) is neither negligibly thin (plain 
stress) and neither are its inner points far from the outer 
surfaces (plane strain), the analysis must take into account 
the three-dimensional stress field character. According to 
authors who had solved this problem /8/, the stress intensity 
factor calculated in symmetry plane differs by 1–2% from 
the theoretical plane strain value. 

 
Figure 1. Compact specimen for tensile testing. 

THE PROBLEM OF NUMERICAL DETERMINATION OF 
ELASTIC-PLASTIC BOUNDARY OF CRACKED BODY 

There is no basic difference between the elastic-plastic 
analysis of objects with or without cracks if we use the 
finite element method. If we are interested in the elastic-
plastic boundary, it is most usual to consider the problem as 
non-linear since the strains of common structural materials 
are very small, except in the negligible near crack tip area. 

Anyhow, even such a simplified scheme comprises the 
solving procedure which could include non-linear problems 
as well. For this purpose the tangent method (Newton-
Raphson) and its different modifications are used in most 
cases. However, the complex procedure of calculating the 
so called stiffness tangent matrix requires application of 
special programmes for non-linear problems which are cur-
rently available to a limited number of users of the finite 
element method. 

Anyhow, it should be mentioned that programmes for 
linear analysis by the finite element method can be applied 
in a simple way on solving non-linear problems, especially 
materially non-linear. The secant method is used in this 
case (Fig. 2). The procedure is reduced to determining 
secant modulus from the σ–ε curve after successive itera-
tions. With these modules we calculate new stiffness 
matrixes. Experience from the author of this chapter and his 
co-workers suggest that after 4-5 iterations, technically 
sufficient accuracy can be achieved. From the mathematical 
point of view, this convergence is linear, while for the 
tangent method it is square. However, the advantage lies in 
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the fact that there is no accumulation of consecutive itera-
tion inaccuracies and that the stiffness matrixes are gener-
ally better conditioned compared to the tangent method. 

 
Figure 2. Methods for solving non-linear problems. 

Once, after a completed iterative procedure, the iso-
stress lines are drawn (see the First Paper, Fig. 3); the line 
that corresponds to the yield stress for the considered 
material is the elastic-plastic boundary. 

THE PROSPECTIVES OF NUMERICAL ANALYSIS OF 
FRACTURE MECHANICS PROBLEMS 

Some of the most difficult fracture mechanics problems, 
such as determining fracture mechanics parameter’ critical 
values have not been considered in this chapter. This prob-
lem is in close connection with crack tip blunting during 
deformation (First Paper, Fig. 4). Because of this blunting, 
the crack tip stresses have finite values, and the next crack 
growth occurs only after stress values exceed the ultimate 
tensile strength for the material. This problem is, appar-
ently, not only materially non-linear, but also geometrically 
non-linear. However, also in this case we can apply the 
iterative procedure from the previous section with modifi-
cations of geometric data after each iteration, but always 
starting with referent configurations, and by using non-
linear strain-displacement relations. Also, there are no 
principle obstacles for the numerical analysis to include 

uncoupled and coupled thermal and dynamic fracture 
mechanics problems /10,11/. 
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