ANALIZA ODNOSA ENERGIJE NASTANKA I RASTA PRSLINE U ČELIKU NA RAZLIČITIM TEMPERATURAMA

THE ANALYSIS OF CRACK INITIATION/PROPAGATION ENERGY RATIO IN STEEL AT DIFFERENT TEMPERATURES

Originalni naučni rad / Original scientific paper	Adresa autora / Author's address:
UDK /UDC: 620.1:669.14	⁽¹⁾ Tehnološko metalurški fakultet, Beograd
Rad primijen / Paper received: 20.12.2001.	Vojno tennicki institut, Beograd
Ključne reči •niskolegirani čelici visoke čvrstoće •kaljenje i otpuštanje •Šarpi V epruveta •instrumentirano udarno ispitivanje •odnos energije nastanka i rasta prsline •oblik površine loma	Keywords • high-strength low-alloyed steels • quenching and tempering • Charpy V specimen • instrumented impact test • crack initiation to crack propagation energy ratio • fracture surface appearance

IZVOD

Prikazan je deo rezultata kompleksne eksperimentalne analize (merenje tvrdoće, ispitivanje zatezanjem glatkih i zarezanih epruveta, udarna žilavost, mikrostruktura i fraktografija) dva nisko legirana, zavarljiva čelika visoke čvrstoće, zatezne čvrstoće (UTS) oko 900 MPa i napona tečenja oko 0,95UTS, proizvedena različitim postupcima. Takođe su prikazani rezultati ispitivanja instrumentiranim klatnom u području temperatura između +20 do -100 °C, u kojima je razmatrana energija za inicijacija i rast prsline.

Da bi se bolje razumeli mikrostruktura i mehaničke osobine zone uticaja toplote ovih čelika, epruvete su izrađene od uzoraka koji su termički tretirani na dve temperature kaljenja i na četiri temperature otpuštanja, sa odgovarajućom mikrostrukturom, koja može da simulira različita područja zone uticaja toplote. U radu je analiziran i uticaj različitih temperatura, korišćenih pri ispitivanju Šarpi V epruveta, na ponašanje različitih mikrostruktura, koje se mogu dobiti pri zavarivanju.

Analiza je otkrila značajnu razliku u energiji udara potrebnoj za lom u zavisnosti od mikrostrukture i temeprature ispitivanja, što je praćeno različitim odnosima energije inicijacije i rasta prsline i razlikama u izgledu površine preloma.

UVOD

Pre sto godina Žorž Šarpi [1] objavio je rad "Ispitivanje metala udarnim savijanjem zarezanih štapova". Uvod u ovo ispitivanje bio je praćen mnogobrojnim kritikama i prigovorima, od kojih su neki bili osnovani, a neki ne. Jednostavna mala Šarpi epruveta sa zarezom je izdržala sve kritike i danas je verovatno najpopularnija epruveta na svetu. Uslovi ispitivanja, kao što su oblik i dubina zareza, brzina klatna i temperatura ispitivanja, su se menjali, do instrumentacije klatna [2], koja omogućava dobijanje promene sile tokom perioda vremena loma i deljenje ukupne energije na delove neophodne za nastanak i rast prsline. Grin i Handi [3] objasnili su razvoj plastične deformacije u Šarpi epruveti to-

ABSTRACT

A part of results of complex experimental analysis (hardness measurement, tensile test of smooth and notched specimens, impact toughness, microstructure and fractography) of two wieldable high strength low alloyed, quenched and tempered steels, with ultimate tensile strength (UTS) of 900 MPa and yield strength about 0,95UTS, produced by different procedures, is presented. Instrumented Charpy tests results in testing temperature range +20 to -100 °C, dealing with crack initiation and propagation energy are also included.

To understand better the microstructure and mechanical properties of heat-affected-zone of these steels, the specimens are produced of samples heat treated by two quenching and four tempering temperatures with corresponding microstructure, that can simulate different regions of the heat-affected-zone. The effect of different test temperatures, applied in impact testing of Charpy V specimens, on the behaviour of different microstructures, which can be obtained during welding, is analyzed in the paper.

The analysis revealed significant differences in impact energy required for fracture in dependence of microstructure and testing temperature, followed by different crack initiation to crack propagation energy ratio and differences in fractured surface appearance.

kom opterećenja, i doprineli boljem razumevanju procedure loma. Primena standardnih epruveta sa prethodnom prslinom [4] omogućila je ispitivanje otpornosti prema prslini, zasnovano na principima mehanike loma. Gotovo je nemoguće nabrojati sve važne praktične probleme, koji su rešeni primenom Šarpi ispitivanja. Značajno iskustvo je sakupljeno u specifikacijama materijala za ekstermno teške radne uslove (niske temperature, dinamičko opterećenje i agresivna sredina).

Mikrostrukturno stanje čelika utiče na njegovu podložnost lomu. Lokalno povećanje napona zavisi od veličine i oblika komponenata strukture i od zaostalog napona, ali takođe i od vrste barijere za gomilanje dislokacija. Usitnjavanjem zrna brzim zagrevanjem dobijaju se fini martenzitni kristali, smanjuju lokalni naponi i snižava prelazna temperatura nulte plastičnosti. Pored mehaničkih i tehnoloških parametara, pristup, zasnovan na mikrostrukturi i njenom odnosu prema mikromehanizmu loma, je neophodan u analizi integriteta konstrukcija, proučavanju hemijskog sastava, mikrostrukture i njene homogenosti, delujućih napona, temperature, uticaja sredine.

Ova analiza je veoma značajna za čelične posude pod pritiskom. Posebnu pažnju treba obratiti na instrumentirana Šarpi ispitivanja u temperaturnom opsegu +20° do -100°C, pored merenja tvrdoće, ispitivanja zatezanjem glatkih i zarezanih epruveta, mikrostrukturnih analiza i fraktografije.

IZBOR I DEFINICIJA STANJA ČELIKA

Opšti zadatak bio je da se defini[e specifikacija čelika za opterećene posude pod pritiskom, cevovode i telo podmornice, analizom mikrostrukture i mikromehanizma loma. Sličnost dva izabrana čelika, A za telo podmornice i B za cevovod, u mehaničkim osobinama je očigledna. Očekivano je da će čelici, različitog hemijskog sastava, datog u tab. 1. i proizvedeni različitim procedurama, pokazati različito ponašanje pri lomu, iako su termički obrađeni ma približno isti nivo čvrstoće (tab. 2). Čelik A je proizveden u električnoj peći, a čelik B u konvertoru i umiren specijalnom procedurom u vakuumu. Termička obrada tako dobijenog čelika A predstavljala je kaljenje na 900°C u vodi i otpuštanje na 640°C, dok je za čelik B predstavljala kaljenje na 950°C u vodi i otpuštanje na 600°C.

Ovi čelici su projektovani za zavarene konstrukcije, koje ne mogu biti termički obrađene posle zavarivanja zbog svoje veličine. Zbog toga, zona uticaja toplote će obuhvatiti sve verovatne mikrostrukture unete kaljenjem i otpuštanjem na različitim temperaturama u neuravnoteženim uslovima grejanja i hlađenja.

Tabela 1. Hemijski sastav ispitivanih čelika (% mase)

Čelik	С	Si	Mn	Р	S	Cr	Ni	Mo	V	Cu	Al	В
Α	0,11	0,14	0,25	0,01	0,010	1,26	2,84	0,29	0,07	-	0,06	-
В	0,10	0,30	0,90	0,01	0,018	0,48	1,01	0,47	0,03	0,24	-	0,16

Tabela 2. Mehaničke karakteristike čelika u stanju isporuke

Čelik	Napon tečenja	Zatezna čvrstoća	Izduženje	Kontrakcija	Energija udara na - 40°C
	R _{p0.2} , MPa	R _m , MPa	A, %	Z, %	KV, J
А	875	914	16,2	57,2	11.5
В	810	860	24.0	-	21.2

PRIPREMA UZORAKA I PROGRAM ISPITIVANJA

Dve temperature kaljenja za oba čelika, i četiri temperature otpuštanja za čelik A, odnosno tri za čelik B, su izabrane za simulaciju različitih mikrostruktura u zoni uticaja toplote (ZUT) radi analize njihovih osobina pri lomu. Na ovaj način je dobijeno osam grupa uzoraka za čelik A i 6 grupa za čelik B, koje su date u tab. 3. Pored toga, pripremljeni su uzorci za oba čelika u stanju isporuke.

Uzorci su ispitani različitim metodama: merenjem tvrdoće, ispitivanjem zatezanjem glatkih i zarezanih epruveta, ispitivanjem udarne žilavosti, analizom izgleda površine preloma, optičkom metalografijom i elektronskim mikroskopom. Ovde će biti izloženi samo makrosnimci preloma epruveta i rezultati udarnog ispitivanja.

T 1 1 0	D		1		1 1
Tabela 3	Program	nrinreme	uzoraka	termickom	obradom
Tabera J.	1 IOgram	pripreme	uzorana	termekom	obradom

Čelik	Temperatura kaljenja, °C	Tempera	tura otpuš	stanja, °C
А	950	640	660	680
	1100	640	660	680
В	950	560	600	640
	1100	560	600	640

Udarno ispitivanje je izvedeno sa epruvetama sa V zarezom, na različitim temperaturama, od +20° do -100°C, na instrumentiranom klatnu Tinius Olsen.

REZULTATI UDARNOG ISPITIVANJA

Osnovni rezultati udarnog ispitivanja za oba čelika, A i B, su dati u tab. 4; energija nastanka prsline i rasta prsline za različita strukturna stanja su date u tab. 5.

Izgled preloma, dat na sl. 1. za čelik A i i na sl. 2. za čelik B, omogućava razdvajanje udela krtog i duktilnog loma, i ocenu uticaja i temperature otpuštanja i temperature ispitivanja. Ovi rezultati odgovaraju udarnim energijama datim u tab. 4. i 5. Povećanje temperature kaljenja sa 900°C na 950°C i 1100°C smanjuje u velikoj meri energiju udara. I snižavanje temperature otpuštanja u velikoj meri smanjuje energija udara. Čelik B je u osetljiviji na uticaj temperature ispitivanja, uprkos većoj žilavosti u stanju isporuke.

ANALIZA REZULTATA ISPITIVANJA

Prema hemijskom sastavu (tab. 1) i primenjenoj termičkoj obradi, kompleksno legirani čelik A karakteriše veoma stabilna mikrostruktura, koja zahteva dugo vreme otpuštanja na temperaturama iznad 600°C radi postizanja zadovoljavajućih osobina čvrstoće. Tipična za ovaj čelik je veoma spora difuzija legirajućih elemenata, jer je posle kaljenja martenzitna mikrostruktura veoma stabilna. Visoka čvrstoća čelika B, legiranog Ni, Mo i Cr, mikrolegiranog B i V je postignuta efektom nekoliko mehanizama ojačavanja. Zbog toga, otpuštena mikrostruktura čelika B nije toliko stabilna.

Uticaj različitog hemijskog sastava i različite mikrostrukture, dobijene različitim postupcima termičke obrade, je izražen u udarnom ispitivanju. Iz dijagramski složenih rezultata (sl. 3) se vidi da nema uticaja temeprature na ispitivanja na sobnoj temperaturi, budući da je razlika u udarnoj energiji zanemarljiva, a izgled prelom u oba slučaja je tipično duktilan, sa vidljivim usnama klizanja (sl. 1. i 2).

U oblasti niskih temperatura razlika je očigledna kako za temperature kaljenja, tako i za temperature otpuštanja. Do smanjenje energije udara epruveta od čelika A dolazi na ispod -60°C ako je kaljena na 900°C, ali već na ispod -20°C ako je kaljena na 1100°C. Za epruvete kaljene na 900°C energija nastanka prsline je nepromenjena do temperature ispitivanja od -100°C nezavisno od temperature otpuštanja, ali ako je kaljena na 1100°C javlja se pad energije nastanka prsline. Energija rasta i ukupna energija udara se ne menjaju do temperature ispitivanja od -60°C ako su epruvete kaljene na 900°C, dok je na temperaturi od -100°C veća od energije rasta. Za uzorke kaljene na 1100°C energija rasta prsline značajno opada već na -20°C (za temperaturu otpuštanja od 640°C čak i pre), da bi na -60°C bila manja od energije nastanka prsline istog uzorka. Očigledan pad energije rasta prsline ovih uzoraka je uočen na -100°C.

Tipično visoka udarna energija na sobnoj temperaturi za čelik B se objašnjava mikrolegiranjem B i V i sitnozrnom mikrostrukturom sa disperznim česticama, čime se ostvaruje velika površinska energija.

Uticaj temeprature ispitivanja na energiju nastanka prsline je nađen za čelik B: ispod -60°C se smanjuje kaljenjem na 950°C, dok se za uzorke kaljene na 1100°C ovaj se efekt javlja već na -20°C. Za uzorke kaljene na 950°C brže se smanjuje energija rasta prsline, da bi na -100°C postala manja od energije nastanka prsline (osim za temperaturu otpuštanja od 640°C). Pad energije rasta prsline je izražen za uzorke od čelika B, kaljene na 1100°C. Na temperaturi ispitivanja od -60°C za sve analizirane temperature otpuštanja energija rasta prsline manja je od energije nastanka prsline.

					Čeli	k A					Celik B								
Ι	II		Т	empera	itura i	spitiva	nja, °C	2		Ι	II		Т	empera	atura i	spitiva	nja, °	С	
°C	°C	2	0	-2	20	-6	60	-1(00	°C	°C	2	0	-2	0	-6	0	-1()0
		i	а	i	а	i	а	i	а			i	а	i	а	i	а	i	а
	V	38	27	-	-	-	-	26	23		v	73	69	-	-	-	-	26	27
	ĸ	37	57	-	-	-	-	20			ĸ	64	08	-	-	-	-	29	21
		89		91		94		54	_			120		111		45		18	
	620	95	90	92	90	94	89	70	61		560	126	123	122	112	106	76	24	21
		87		86		80		60				122		103		77		20	
000		86		114		110		70	_	0.50		162		126		91		42	
900	640	107	100	113	113	102	105	64	73	950	600	150	153	151	130	138	114	50	45
		107		113		104		86				148		114		114		44	
-	660	128	8	130		123		92	_			174		178		-		116	
		127 126	126	128	130	124	123	100	95		640	190	173	169	173	145	159	110	112
		124		131		122		94				178		172		173		110	
		130		153		138		92	_										
	680	134	133	137	146	137	137	97	95					-					
		146		147		136		97											
	V	40	40	-	-	-	-	18	- 17		v	53	50	-	-	-	-	19	20
	ĸ	40	40	-	-	-	-	17	17		ĸ	48	50	-	-	-	-	21	20
		93		78		28		27	_			102		50		21		25	
	640	104	100	66	83	28	29	30	30		560	95	99	47	52	55	37	13	17
		104		105		31		34				99		60		35		14	
1100		108		100		60		38	_	1100		130		81		27		20	
	660	119	114	114	114	41	55	50	41		600	120	125	103	93	38	33	22	20
		115		127		64		34				126		95		34		17	
		128		120		74			_			172		-		100		18	
	680	124	128	135	130	76	75	29	26		640	170	173	155	142	64	71	18	20
		131		135		75		24				176		128		48		24	
		100		-		63		46	_			144		148		112		27	
Ε)	96	99	92	97	66	65	32	37	Ι)	152	146	160	143	96	106	12	22
		102		102		66		32				143		120		56		28	

Tabela 4. Udarna energija, J, za čelike A i B na različitim temperaturama ispitivanja

I - temperatura kaljenja; II -temperatura otpuštanja; K - kaljeno stanje;

i - pojedinačna vrednost; a - prosečna vrednost; D - stanje isporuke

T 1 1 7	T7 (1	••	. 1	•	1.
Tabala 5	k omnonanta	udorno	anaralla 79	nactonalz	1 root	nrelina
I abela J.	KOHDOHEHLE	uuaine	CHEISHE Za	пазіапак	TTASL	DISHIE
	· · · · · · ·		· · · · · · ·			r · ·

		Čelik A																			Čeli	k B					
Ι	Π				l	Udar	na ei	nerg	jja,	J				Ι	Π	Udarna energija, J											
°C	°C	A_i	A _p	At	Ai	Ap	At	Ai	A _p	At	A_i	Ap	At	°C	°C	A_i	Ap	At	Ai	Ap	At	A_i	Ap	At	A_i	A _p	At
	Κ	13	23	37	-	-	-	-	-	-	19	2	23		Κ	31	37	68	-	-	-	-	-	-	23	4	27
	620	31	60	90	25	65	90	23	66	89	27	66	89		560	47	76	123	39	73	112	37	39	76	14	7	21
900	640	33	67	100	41	72	113	32	73	105	29	45	73	950	600	46	107	153	37	93	130	44	70	114	33	12	45
	660	40	86	126	40	90	130	44	78	122	33	62	95		640	56	124	181	55	118	173	55	104	159	50	62	112
	680	43	90	133	49	96	146	42	94	137	39	56	95								-						
	Κ	16	24	40	-	-	-	-	-	-	14	3	17		Κ	25	25	50	-	-	-	-	-	-	13	7	20
	640	34	66	100	40	43	83	15	14	29	22	7	29		560	39	60	99	37	15	52	29	8	37	12	5	17
1100	660	34	74	114	41	73	114	36	19	55	22	8	30	1100	600	41	84	125	41	52	93	27	6	33	13	7	20
	680	48	80	128	40	90	130	40	35	75	2	4	26		640	49	124	173	46	96	142	42	29	71	15	5	20
D)	39	60	99	35	69	104	34	31	65	26	11	37	D)	48	98	146	48	95	143	46	60	106	17	5	22

At-ukupna udarna energija; At-energija nastanka prsline; Ap-energija rasta prsline;

I-temperatura kaljenja; II-temperatura otpuštanja; K-kaljeno stanje; D-stanje isporuke

Slika 1. Makrosnimci preloma epruveta od čelika A

Kaljeno na 950°C, otpušteno na 640°C

Kaljeno na 1100°C, otpušteno na 640°C

Slika 2. Makrosnimci preloma epruveta od čelika B

Slika 3. Energija udara na različitim temperaturama za različita stanja za čelike A (levo) i B (desno): pune linije – kaljeno na 900°C (950°C), isprekidane linije – kaljeno na 1100°C

ZAKLJUČAK

Udarnim ispitivanjem uzoraka, termički obrađenih u nepovoljnim uslovima, delimično simulirajući ZUT, utvrđene su razlike, kako u udarnoj energiji, tako i u izgledu preloma, posebno na niskim temperaturama.

Dva čelika visoke čvrstoće, sa uskim rasponom plastičnog tečenja, sa malim odnosom napona tečenja i zatezne čvrstoće, su razvijeni i koriste za izradu posuda pod pritiskom. Razlika u pogledu zatezne čvrstoće je zanemarljiva, ali zbog različitog hemijskog sastava i različite žilavosti ponašanje pri zavarivanju je različito. Zbog toga je i

LITERATURA

1. Šarpi, G. (1901). *Note sur l'essai des metaux a la flexion par choc de parreaux entailles*, Association international pour l'essai des materiaux, Budapest.

2. Instrumented Impact Testing, (1974). STP 563, ASTM, Philadelphia

ponašanje zavarenih posuda pod pritiskom u radnim uslovima može različito.

Klasično ispitivanje mehaničkih i tehnoloških osobina oba čelika, uključujući udarno ispitivanje na sobnoj temperaturi je zadovoljavajuće, kao i duktilmost loma. Ispitivanje uzoraka, termički obrađenih u nepovoljnim uslovima, u kojima se obrazuje ZUT pri zavarivanju, pokazali su značajne razlike i u udarnoj energiji i u obliku preloma, naročito na niskim temperaturama. Doprinos, postignut instrumentiranim udarnim ispitivanjem Šarpi epruveta sa V zarezom je u ovom specifičnom ispitivanju bio značajan za izbor čelika i kvalifikaciju tehnologije zavarivanja.

3. Green, A.F., Hundy,B.B. (1956). Initial plastic yielding in notch bend tests, Journal of Mechanics and Physics of Solids, str. 128

4. ASTM E812 – 81 (Reapproved 1988). Standard Test Method for Crack Strength of Slow-Bend Precracked Chapry Specimens of High-Strength Metallic Material