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Abstract

In this study, authors calculate the time periods for first
two modes of vibration of orthotropic parallelogram plate
having 1-D (one-dimensional) circular Poisson’s ratio at
clamped edge condition. The authors use the assumption that
the thickness valuation and temperature on the plate varies
1-D circular and bi-parabolic respectively. The frequency
equation is solved using a variational method known as the
Rayleigh-Ritz method. The time period of the modes of fre-
quency is then determined from the solution of the frequency
equation. A convergence study of orthotropic parallelogram
is perceived at clamped edge conditions. The authors con-
duct a comparative review of the time period and modes of
frequency of various plates, including parallelograms and
rectangles, at various edge conditions with data that has
been published in the literature. These days, the main aim
of the researcher/scientist is to reduce the valuation in vibra-
tional frequency of the plate so that structures made by these
plates perform better, as large vibrational frequency directly
affects the performance of the system. This motivates author
to conduct this study. Our study demonstrates that using a
variable (circular) Poisson’s ratio is a better choice than
varying the density parameter because the time periods ob-
tained during circular variation in Poisson’s ratio and vari-
ation in time periods and frequency modes are less than
those obtained when using a circular variation in density
parameter.

INTRODUCTION

Vibration is an important consideration in engineering
design, especially for machines and structures. As technology
continues to progress, comprehending the vibration traits of
plates with diverse parameters becomes of paramount im-
portance. Tapered plates having consistent as well as non-
uniform thickness, and subjected to fluctuations in tempera-
ture, find widespread application across various domains
such as aeronautics, architecture, and underwater construc-
tions. Researchers have studied the vibration characteristics
of tapered plates with both uniform and non-uniform thick-
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Kljucne reci

- vibracija

« paralelogramska ploca

+ Poasonov odnos

« kruzna debljina

« parabolicka temperatura

Izvod

U ovom radu autori proracunavaju vremenske serije za
prva sva moda vibracija ortotropne paralelogramske ploce
sa 1-D (jednodimenzionim) kruznim odnosom Poasona u
uslovima ukljeStene ivice. Autori koriste pretpostavku da
procenjene debljina i temperatura na ploci variraju respek-
tivno kao 1-D kruzno i bi-parabolicki. Frekventna jednacina
se reSava primenom varijacione metode poznate kao Rejlej-
Ric metoda. Vremenska serija frekvencijskih modova se zatim
odreduje resavanjem frekventne jednacine. Istrazivanje kon-
vergencije ortotropnog paralelograma se podrazumeva u
uslovima ukljestenja na ivicama. Izvodi se uporedni pregled
vremenske serije i frekventnih modova raznih ploca, uklju-
Cujuci paralelograma i pravougaonika, u raznim uslovima
na ivicama sa podacima koji ve¢ objavljeni u literaturi. U
danasnje vreme, glavni cilj istraZivaca je u smanjenju obima
procene frekvencije vibracija ploce, tako da konstrukcije
izvedene sa ovakvim plocama imaju bolje karakteristike, jer
velike frekvencije vibracija direktno uticu na performanse
sistema. Ovim se autor motivise za ova istrazivanja. U radu
se pokazuje da primena promenljivog (kruznog) Poasonovog
odnosa je pogodnije u odnosu na variranje parametra deb-
ljine, jer su vremenske serije, dobijene pri kruznoj varijaciji
Poasonovog odnosa i varijacija vremenskih serija i frek-
ventnih modova, manje u odnosu na one dobijene kruznom
varijacijom parametra gustine.

ness, under different temperature conditions. There is a signif-
icant body of literature on the study of vibrational charac-
teristics of plates.

A model is presented by Gupta et al. /1/ to analyse the
vibrations of a parallelogram shaped, viscoelastic, orthotropic
plate with linear thickness variations in both directions. Farag
and Ashour /2/ propose an innovative adaptation of the finite
element method that combines the Kantorovich technique
with transition matrix methods. This modification is intended
for the examination of vibration patterns in thin orthotropic
skew plates. Sharma et al. /3/ explore the behaviour of a
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viscoelastic orthotropic parallelogram plate. They consider
varying thickness and thermal effects, utilising mathematical
methods to ascertain its vibration frequency. Addressing an
orthotropic parallelogram plate with bi-linear thickness vari-
ation and parabolic temperature distribution in both direc-
tions at the SSSS edge condition is focused by Sharma et al.
/4/. Gupta et al. /5/ investigate the influence of linear thick-
ness variation on the vibration of a viscoelastic orthotropic
parallelogram plate that has clamped boundary conditions.
They employ the separation of variables method and the
Rayleigh-Ritz technique. Sharma and Dhiman /6/ investigate
plate vibration considering non-uniform thickness changes
and temperature distribution in both directions. The use of
quasi-Green function method (QGFM) in analysing the
vibration characteristics of parallelogram-shaped thin plates
with clamped support on a Winkler foundation presented by
Li and Yuan /7/. Lather et al. /8/ employ the method of
Rayleigh-Ritz to survey the time period of vibration of a 2-D
circular-thickness orthotropic parallelogram plate subjected
to 2-D parabolic temperature conditions. Khanna and Singhal
/9/ apply the Rayleigh Ritz method to study frequency modes
of a viscoelastic isotropic rectangular plate. This plate has
bi-parabolic thickness and temperature variation, and it is
analysed under five boundary conditions. Gupta et al. /10/
employ the Rayleigh-Ritz technique and Kelvin model to
investigate vibration characteristics of a clamped rectangu-
lar plate. This plate has viscoelastic properties and exponen-
tial thickness variation in two directions. Srinivasa et al. /11/
present experimental and finite element studies on free vibra-
tion of isotropic and laminated composite skew plates, ana-
lysing the effects of skew angle, aspect ratio, fibre orientation
angle, and laminate stacking sequence on natural frequen-
cies. The study done by Rana and Robin /12/ delve into
damped vibrations of an orthotropic rectangular plate resting
on an elastic foundation. The plate has a thermal gradient and
variable thickness. A classical plate theory and the Levy
approach is utilised by Gupta /13/ to investigate the trans-
verse motion of an elastic rectangular plate with nonlinear
thickness variation and thermal gradient, subject to simple
support on two parallel edges. Considering the impact of
thermal gradient, Gupta et al. /14/ investigate the vibration
of a non-homogeneous parallelogram plate by linearly vary-
ing thickness in both directions.

Literature shows that a negligible amount of work is
reported on vibrational analysis of orthotropic plate with
variable Poisson’s ratio. This key point makes the authors
curious about the impact of variable Poisson’s ratio on the
time period of orthotropic plate. To know the impact, authors
investigate the influence of 1-D circular Poisson’s ratio on
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time period of frequency modes of non-uniform orthotropic
parallelogram-shaped plate at clamped edge. Additionally,
the study explores the repercussions of 1-D circular variation
in thickness as well as 2-D parabolic temperature changes,
on the vibrational frequency modes. The outcomes are docu-
mented in Tables 1-3. To affirm the credibility and claim of
the findings, the authors carried out a comparative analysis
involving time periods and vibrational frequency modes.
This comparison includes an orthotropic parallelogram plate
under CCCC, CCCF, CFCF, CSCF, and SFSF edge condi-
tions, where S, C, and F represent the simply supported,
clamped, and free edges of the plate, respectively. It also
involves a rectangular plate with CCCC edge conditions, and
an orthotropic parallelogram plate with linear and parabolic
thickness variations, at CCCC edge conditions. The results
are then contrasted with previously published data, as indi-
cated in Tables 6-8.

ANALYSIS
Model description

Crafted from non-uniform material properties, the ortho-
tropic parallelogram plate possesses variable thickness de-
noted as /, accompanied by an inclination angle 6. The skew
coordinates for the parallelogram plate are &= x— ytan@
and 7= ysecd.

Boundaries of the plate in skew coordinates are £= 0, a
and 7=0, b.

The two-term deflection function that complies with all
the edge conditions is presented as

CaRIOICHCIIS
geldoegg] o

This outcome arises from the multiplication of two dis-
tinct functions. The initial function encapsulates the bound-
ary conditions, contingent on the magnitudes of e, f, g and
h. The selection of values for these parameters is contingent
upon the particular support edge scenario. Notably, values
of 0, 1, and 2 correspond to free edge, simply supported,
and clamped edges, respectively. The secondary function
pertains to the count of frequency modes, with ; signify-
ing a set of arbitrary constants for i =0, 1,2, ..., V.

The expressions defining the kinetic energy 7, and strain
energy V; in the context of natural transverse vibration of a
non-uniform orthotropic parallelogram are derived as in /15/:

ab
T, :%wzfjplq)z cosOdédn » 2
00

2 2
o’® 0@ sec@} cos@dédn (3)
n

The flexural rigidities D¢, Dy and torsional rigidity D¢, of the plate are taken as in /4/,
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Assumptions required for the model

Since vibration is a broad field of research, this study
requires some limitations through specific assumptions.

The thickness of the plate, /, is considered to demonstrate
circular characteristics in one-dimension, which is also illus-
trated in Fig. 1 as:

A ) o

Here, Iy represents the plate thickness at the origin. Addi-
tionally, the parameter £ (within the range 0 < < 1) is
indicative of the tapering of the plate.

The Poisson ratio vis considered to possess circular attrib-
utes in one dimension as:

’ 2
V§=V§0 ll—m[l— —%}] (6)

Here, vz represents Poisson’s ratio at the origin. Addition-
ally, m (satisfying 0 < m < 1) is indicative of the non-homo-
geneity of the plate.

Plate’s two-dimensional steady-state temperature fluctu-
ations are modelled in a parabolic manner Eq.(7), as previ-
ously outlined in /4/,

Using Eqs.(5), (8), and (9) in Eq.(4), we get
Eh
1”0
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where: vz and v, are Poisson’s ratios; £ is Young’s modulus.
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Here, 7 represents the temperature increase above reference
temperature at any given point on the plate, while 7 stands
for the temperature excess at the origin.

The modulus of elasticity for engineering structures is
obtained from /4/, which provides a temperature-dependent
relationship for this property,

Ex(@)=E(1=70), E,(r)=Ey(1=77), Ggy(0)=Gp(1=70) (8)
where: E¢ and Ej are Young’s moduli in & and 7 directions
respectively; Gey is shear modulus and y is taken as slope
variation of moduli with temperature.

Substituting Eq.(7) in Eq.(8), we get the following expres-

sions:
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where: Y, =1- 1_(”:_2 . Now, introducing the non-dimensional variable as:
a
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and components of E1", E>*, E" and G are E|", E;"sec6, and Gosec0, respectively in & and 7 directions.

states that the maximal kinetic energy is equal to maximal
strain energy, i.e.,

Solution of model for vibrational frequency

The Rayleigh-Ritz method is used to solve the model that

is based on the principle of conservation of energy, which J=6(Vy-T)=0-. (12)
Substituting Eqgs. (2) and (3) in Eq.(12), we get
2
ab 2 2 2 2 2 2 2
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Using Egs. (5), (10), and (11), Eq.(13) becomes,
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In order to minimise the functional given in Eq.(14), we
require the condition as follows:

s —=0, i=0,1,2,....,N - (15)
0Q;

Upon solving Eq.(15), we obtain a system of equations in
Q; that is homogeneous. The equation for the frequency is
obtained by solving this system for non-zero solutions as:

lx - 2%7]=0- (16)
where: X = [x;]x+1 and Y = [y;]n+1 are square matrix of order

(n+1),i=0,1,2,..., Nandj =0,1,2,..., V.
The time period is calculated using the following equation:
K= 27r (17)
2

where: frequency is represented by A obtained from Eq.(16).
NUMERICAL RESULTS AND DISCUSSIONS

The time period for the first two modes of vibration of
an orthotropic parallelogram plate with a fixed aspect ratio
of a/b and skew angle 8= 30° is calculated at clamped edge
for various values of plate parameters. Plate parameters in-
clude tapering parameter £, non-homogeneity m, and thermal
gradient o. After reviewing, the authors assess how different
plate parameters affect the time period of vibrational modes.
During the calculation, the values of the following ortho-
troplc materla}k parameters are taken from 16/,
£ =0.01, E—*=0.3 G _0.0333, E—=3.0x105,

El E El £o

and veo = 0.345. All the results are presented in Tables 1-3.

Table 1 delineates the time period for an orthotropic paral-
lelogram plate for a fixed thermal gradient o= 0.2. The non-
homogeneity m varies from 0.0 to 0.8, and the tapering pa-
rameter £ from 0.0 to 1.0. The following interpretations can
be derived from this table.

- An increase in tapering parameter £ and non-homogene-
ity parameter m leads to a decrease in the time period K.

- Percentage of decrement with respect to tapering is 23 %
while the percentage of decrement with respect to non-
homogeneity is 0.08 %.

- The rate of decrement due to the circular Poisson ratio is
slow in comparison to the rate of decrement due to circu-
lar variation in thickness.

Table 2 outlines the time period K of an orthotropic paral-
lelogram plate with a range of tapering parameter f from
0.0 to 1.0 and thermal gradient « from 0.0 to 0.8 for a con-
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stant non-homogeneity parameter m = 0.2. The following

observations can be made based on the data.

- A significant rise in the time period K with an increasing
thermal gradient o and a consequential fall in the time
period K as the value of tapering parameter /3 increases.

- Percentage of decrement with respect to tapering is 22.7 %
while the percentage increment due to thermal gradient is
37.7 %.

- The rate of decrement due to circular thickness is less in
comparison to increment due to bi-parabolic variation in
thermal gradient.

Table 3 portrays the time period K of an orthotropic par-
allelogram plate for non-homogeneity m and thermal gradi-
ent « values ranging from 0.0 to 0.8, and for variable values
of tapering parameter £ from 0.0 to 1.0. The following out-
comes can be elucidated from Table 3.

- An increase in the value of thermal gradient « and non-
homogeneity m results in increase in time period K, while
an increase in tapering parameter £ brings about a fall in
the time period K.

- Percentage increment in time period with respect to m and
a is 26.5 %, while percentage decrement in time period
with respect to fis 22.7 %.

- The rate of decrement in time period due to circular vari-
ation in thickness is less in comparison to the rate of incre-
ment in time period due to circular variation in Poisson’s
ratio in combination with the bi-parabolic variation in tem-
perature.

CONVERGENCE STUDY

Here, the authors present the results of a convergence
study on the frequency modes A of two types of plates:

- an orthotropic parallelogram plate with angle = 30°, and
a/b = 1.5 under CCCC, CSCC, CSSC, SCSS, and CCSS
edge conditions, as shown in Table 4;

- an orthotropic rectangular plate a/b = 1.5 under the same
edge conditions mentioned above, as shown in Table 5.

This study delves into the convergence patterns of modes
with increasing approximation orders across a range of plate

parameters. These parameters encompass values such as
*

E
p=m=a=0, 22-001, £ 03,
Ey Ey
Go E;
20200333, =L=3.0-10° and v,=0.345.
E| £o
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The outcomes are tabulated for clear presentation. The
authors’ deductions highlight that, with respect to the speci-
fied edge conditions, the initial two frequency modes A for
both types of plates converge up to the fourth decimal place
in the fifth-level approximation.

COMPARISON OF RESULTS

The current study compares the results of time period K
and modes of frequency A with the following previously pub-
lished results.

i. The time period of an orthotropic parallelogram plate /8/
at various edge conditions (CCCC, CCCF, CFCF, CSCF
and SFSF) in relation to non-homogeneity parameter .

ii. The frequency modes of a rectangular plate /17/ with
CCCC edge conditions in relation to the non-homogene-
ity parameter m.

iii. The frequencies of an orthotropic parallelogram plate /5,
16/ with CCCC edge conditions in relation to tapering
parameter .

Table 6 compares the time period K obtained in the cur-
rent study to the time period K obtained in /8/. The compar-
ison is made for a fixed aspect ratio, skew angle, thermal
gradient, i.e., a/b= 1.5, 8= 30°, and o= 0.4, and varying
tapering parameter £ from 0.0 to 1.0 and non-homogeneity
m from 0.0 to 0.8 (see Table 6) at CCCC, CCCF, CFCF,
CSCF, and SFSF edge conditions. The results show that the
time period K in the current study is lower than that obtained
in /8/ as the tapering parameter £ and non-homogeneity m
increase. Additionally, the rate of change in time period K
is less in the current study than obtained in /8/.

Table 7 compares modes of frequency A in the current
study (orthotropic rectangular plate) to those obtained in /17/.
The comparison is made for a fixed aspect ratio skew angle
and varying tapering parameter and non-homogeneity, i.e.,
ab=15,a=0.0, =0.2,0.4,0.6, 0.8, at CCCC edge con-
dition are displayed in Table 7. Results show that the modes
of frequency A in the current study are higher than those in
/17/ as the non-homogeneity m increases, however the rate

of change in modes of frequency A in the current study is
much less than in /17/ with respect to non-homogeneity m.

Table 8 compares the modes of frequency A in the current
study (orthotropic parallelogram plate) to those obtained in
/5/ and /16/. The comparison is made for three different
values of skew angle and a fixed aspect ratio, thermal gradi-
ent, and a varying tapering parameter, i.e., 4= 0°, 45°, and
75% a/b=1.5, a=0.0,and £=0.0,0.2, 0.4, 0.6, 0.8, 1.0, at
CCCC edge condition. Non-homogeneity is not considered
here because it is not a parameter in /5/ and /16/. The results
show that the modes of frequency A in the current study are
lower than those in /5/ and /16/ as tapering parameter in-
creases. Also, the rate of change in the current study is less
than that obtained in /5/ and /16/.

CONCLUSIONS

The authors draw the following conclusions based on the
numerical data and results comparison presented above:

- Circular variation of Poisson ratio and thickness slow
down the change in time period in frequency mode.

- Bi-parabolic variation in temperature increases the change
in time period of frequency mode.

- The time period, as well as variation in time period, are
less in case of circular variation in the Poisson ratio (cur-
rent study) in comparison to circular variation in density
/8.

- The frequency mode of rectangular plate (current study)
is higher in case of circular variation in Poisson’s ratio in
comparison to modes obtained due to circular variation in
density /17/, but the variation in frequency modes is very
less due to variation in Poisson’s ratio in comparison to
frequency modes obtained due to circular variation in den-
sity /17/.

- Frequency modes with circular variation in thickness (cur-
rent research) exhibit lower values compared to the linear
and parabolic variation in /5/ and /16/. Also, the rate of
change in variation obtained in frequency modes for the
current study is also lower compared to the variation
obtained in /5/ and /16/.

Table 1. Time period of plate vs. non-homogeneity m.

a=0.2
m £=0.0 £=0.2 =04 £=0.6 £=0.8 £=1.0
K> Ki K> K K> K K> K K> K K> Ki
8 0.0 | 0.40401 0.10561 0.38306 | 0.09994 | 0.36279 | 0.09431 0.34360 | 0.08883 0.32566 | 0.08362 0.30899 | 0.07870
© [0.2] 040392 | 0.10559 | 0.38296 | 0.09992 | 0.36270 | 0.09429 | 0.34350 | 0.08881 0.32556 | 0.08359 | 0.30889 | 0.07868
© [04] 040382 | 0.10558 0.38290 | 0.09990 | 0.36260 | 0.09427 | 0.34341 0.08880 | 0.32547 | 0.08357 0.30880 | 0.07866
0.6 | 0.40376 | 0.10556 | 0.38280 | 0.09989 | 0.36254 | 0.09425 0.34331 0.08878 | 0.32538 | 0.08356 | 0.30870 | 0.07864
0.8 | 0.40366 | 0.10554 | 0.38271 0.09987 | 0.36245 0.09423 0.34322 | 0.08876 | 0.32528 | 0.08354 | 0.30861 0.07862
Table 2. Time period of plate vs. thermal gradient c.
m=0.2
£=0.0 £=02 £=04 £=0.6 £=0.8 p=1.0
O o K> K K> K K> K K> K K> K K> K
© [0.0] 0.38453 | 0.10065 | 0.36559 | 0.09558 | 0.34705 | 0.09048 | 0.32933 | 0.08549 | 0.31264 | 0.08070 | 0.29705 | 0.07614
8 0.2 0.40392 | 0.10559 | 0.38296 | 0.09992 | 0.36270 | 0.09429 | 0.34350 | 0.08881 | 0.32556 | 0.08359 | 0.30889 | 0.07868
0.4 0.42663 | 0.11134 | 0.40322 | 0.10493 | 0.38086 | 0.09862 | 0.35990 | 0.09255 | 0.34046 | 0.08683 | 0.32252 | 0.08148
0.6 0.45380 | 0.11814 | 0.42729 | 0.11076 | 0.40231 | 0.10360 | 0.37919 | 0.09680 | 0.35795 | 0.09046 | 0.33851 | 0.08460
0.8 0.48720 | 0.12635 | 0.45660 | 0.11768 | 0.42833 | 0.10942 | 0.40247 | 0.10169 | 0.37897 | 0.09458 | 0.35761 | 0.08809
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Table 3. Time period of plate vs. tapering parameter £.

m=a=0.0 m=a=0.2 m=a=04 m=a=0.6 m=a=0.8
B K> Ki K> K1 K> Ki K> K K> Ki
&) 0.0 0.38463 0.10067 0.40392 0.10559 0.42654 0.11132 0.45358 0.11809 0.48682 0.12627
8 0.2 0.36568 0.09559 0.38296 0.09992 0.40313 0.10491 0.42707 0.11072 0.45622 0.11760
o 0.4 0.34715 0.09050 0.36270 0.09429 0.38076 0.09860 0.40209 0.10356 0.42792 0.10934
0.6 0.32943 0.08551 0.34350 0.08881 0.35978 0.09253 0.37897 0.09676 0.40206 0.10162
0.8 0.31273 0.08071 0.32556 0.08359 0.34033 0.08680 0.35770 0.09041 0.37856 0.09450
1.0 0.29714 0.07616 0.30889 0.07868 0.32242 0.08146 0.33826 0.08455 0.35723 0.08802
Table 4. An analysis of mode frequencies convergence for an orthotropic parallelogram plate under
various edge conditions (CCCC, CSCC, CSSC, SCSS, and CCSS).
CCCC CSCC CSSC SCSS CCSS
N Al A A A A A A A A A2
2 16.3362 62.4150 16.6464 53.5833 14.0898 78.5438 11.1085 60.6515 14.8388 71.7236
3 16.3357 61.5851 16.6426 51.4544 14.0054 54.6287 11.1066 46.6885 14.8380 49.8194
4 16.3357 61.5829 16.6408 51.3414 7.5368 14.3622 11.1064 46.5823 14.8330 49.5550
5 16.3357 61.5829 16.6408 51.3414 7.5368 14.3622 11.1064 46.5823 14.8330 49.5550
Table 5. An analysis of mode frequencies convergence for an orthotropic rectangular plate under various
edge conditions (CCCC, CSCC, CSSC, SCSS, and CCSS).
CCCC CScC CSSC SCSS CCSS
N A A2 A Aa A A2 A A2 A A2
2 17.6582 67.6233 18.0086 56.9132 15.5601 81.6502 11.8324 65.3515 15.5601 81.6502
3 17.6577 66.6626 18.0034 55.2062 15.5306 56.5204 11.8303 50.2746 15.5306 56.5204
4 17.6577 66.6601 18.0018 55.1050 9.56743 15.9738 11.8301 50.1585 15.5306 55.8248
5 17.6577 66.6601 18.0018 55.1050 9.56743 15.9738 11.8301 50.1585 15.5306 55.8248
Table 6. Comparison of time period obtained for orthotropic parallelogram plate, from /8/, corresponding to .
a=04
£=0.0 B=0.2 B=04 | B=0.6 | £=0.8 | B=1.0
m Ki K> Ki K> Ki K> K K> K K> Ki K>
0.0 0.11136 | 0.42672 | 0.10495 | 0.40332 | 0.09864 | 0.38095 | 0.09258 | 0.36000 | 0.08685 | 0.34055 | 0.08150 | 0.32264
0.16035 | 0.61629 | 0.15103 | 0.58211 | 0.14187 | 0.54947 | 0.13308 | 0.51890 | 0.12478 | 0.49053 | 0.11704 | 0.46442
8 0.2 0.11134 | 0.42663 | 0.10493 | 0.40322 | 0.09862 | 0.38086 | 0.09255 | 0.35990 | 0.08683 | 0.34046 | 0.08148 | 0.32252
O 0.16309 | 0.62562 | 0.15367 | 0.59097 | 0.14441 | 0.55792 | 0.13551 | 0.52688 | 0.12710 | 0.49816 | 0.11926 | 0.47168
© 04 0.11132 | 042654 | 0.10491 | 0.40313 | 0.09860 | 0.38076 | 0.09253 | 0.35978 | 0.08680 | 0.34033 | 0.08146 | 0.32242
0.16578 | 0.63479 | 0.15626 | 0.59970 | 0.14690 | 0.56621 | 0.13789 | 0.53479 | 0.12938 | 0.50570 | 0.12144 | 0.47884
0.6 0.11130 | 0.42644 | 0.10489 | 0.40304 | 0.09858 | 0.38067 | 0.09251 | 0.35968 | 0.08679 | 0.34024 | 0.08144 | 0.32233
0.16842 | 0.64384 | 0.15881 | 0.60837 | 0.14935 | 0.57444 | 0.14023 | 0.54259 | 0.13161 | 0.51309 | 0.12357 | 0.48588
0.8 0.11128 | 0.42635 | 0.10487 | 0.40291 | 0.09855 | 0.38054 | 0.09249 | 0.35959 | 0.08676 | 0.34014 | 0.08142 | 0.32220
0.17102 | 0.65276 | 0.16132 | 0.61685 | 0.15175 | 0.58248 | 0.14253 | 0.55025 | 0.13381 | 0.52034 | 0.12566 | 0.49279
0.0 [ 0.24978 | 0.65468 | 0.24155 | 0.57067 | 0.23313 | 0.50024 | 0.22461 0.44227 | 0.21602 | 0.39477 | 0.20743 | 0.35579
0.18087 | 0.58993 | 0.17306 | 0.56084 | 0.16515 | 0.53244 | 0.15729 | 0.50517 | 0.14961 | 0.47935 | 0.14221 | 0.45516
0.2 [ 0.24966 | 0.65392 | 0.24142 | 0.57007 | 0.23300 | 0.49977 | 0.22446 | 0.44190 | 0.21587 | 0.39446 | 0.20727 | 0.35553
- 0.18375 | 0.59876 | 0.17587 | 0.56935 | 0.16788 | 0.54054 | 0.15993 | 0.51293 | 0.15215 | 0.48676 | 0.14465 | 0.46219
O | 04[] 024954 | 0.65317 | 0.24130 | 0.56945 | 0.23286 | 0.49926 | 0.22432 | 0.44149 | 0.21572 | 0.39415 | 0.20712 | 0.35528
8 0.18659 | 0.60749 | 0.17863 | 0.57771 | 0.17055 | 0.54855 | 0.16251 | 0.52056 | 0.15465 | 0.49408 | 0.14706 | 0.46917
0.6 | 0.24942 | 0.65242 | 0.24117 | 0.56885 | 0.23273 | 0.49879 | 0.22418 | 0.44111 | 0.21557 | 0.39386 | 0.20696 0.3503
0.18938 | 0.61607 | 0.18135 | 0.58591 | 0.17318 | 0.55644 | 0.16506 | 0.52810 | 0.15711 | 0.50124 | 0.14942 | 0.47605
0.8 ] 0.24931 | 0.65169 | 0.24104 | 0.56825 | 0.23259 | 0.49832 | 0.22403 | 0.44074 | 0.21542 | 0.39355 | 0.20680 | 0.35478
0.19213 | 0.62452 | 0.18403 | 0.59405 | 0.17579 | 0.56417 | 0.16757 | 0.53552 | 0.15952 | 0.50834 | 0.15175 | 0.48283
0.0 | 0.24996 | 0.54623 | 0.23719 | 0.50407 | 0.22440 | 0.46527 | 0.21185 | 0.43043 | 0.19973 | 0.39958 | 0.18818 | 0.37237
0.35632 | 0.77579 | 0.33782 | 0.71735 | 0.31934 | 0.66332 | 0.30127 | 0.61462 | 0.28383 | 0.57124 | 0.26727 | 0.53285
0.2 [ 0.24988 | 0.54617 | 0.23710 | 0.50401 0.22432 | 0.46521 0.21177 | 0.43037 | 0.19964 | 0.39952 | 0.18809 | 0.37228
. 0.36163 | 0.78754 | 0.34291 | 0.72835 | 0.32421 | 0.67356 | 0.30590 | 0.62420 | 0.28826 | 0.58016 | 0.27148 | 0.54123
O (04| 024979 | 0.54607 | 0.23701 0.50391 0.22423 | 0.46511 0.21167 | 0.43030 | 0.19955 | 0.39942 | 0.18801 0.37222
(LL'_) 0.36684 | 0.79916 | 0.34790 | 0.73916 | 0.32899 | 0.68367 | 0.31047 | 0.63360 | 0.29261 | 0.58899 | 0.27563 | 0.54953
0.6 | 0.24971 0.54601 0.23693 | 0.50385 | 0.22414 | 0.46505 | 0.21159 | 0.43021 0.19947 | 0.39936 | 0.18792 | 0.37215
0.37200 | 0.81060 | 0.35286 | 0.74984 | 0.33370 | 0.69360 | 0.31498 | 0.64290 | 0.29691 | 0.59766 | 0.27972 | 0.55760
0.8 0.24962 | 0.54592 | 0.23684 | 0.50376 | 0.22405 | 0.46496 | 0.21150 | 0.43015 | 0.19938 | 0.39930 | 0.18783 | 0.37209
0.37705 | 0.82184 | 0.35770 | 0.76039 | 0.33838 | 0.70347 | 0.31941 | 0.65201 | 0.30113 | 0.60627 | 0.28374 | 0.56565
0.0 | 0.25777 | 0.54010 | 0.24761 | 0.49157 | 0.23703 | 0.44749 | 0.22622 | 0.40872 | 0.21532 | 0.37520 | 0.20450 | 0.34642
0.36524 | 0.75543 | 0.35019 | 0.69140 | 0.33461 | 0.63272 | 0.31875 | 0.58060 | 0.30289 | 0.53511 0.28729 | 0.49568
6 0.2 | 0.25766 | 0.53992 | 0.24750 | 0.49141 | 0.23692 | 0.44733 | 0.22609 | 0.40857 | 0.21520 | 0.37508 | 0.20438 | 0.34633
N 0.37061 | 0.76699 | 0.35541 | 0.70202 | 0.33964 | 0.64252 | 0.32358 | 0.58971 | 0.30755 | 0.54353 | 0.29174 | 0.50354
© 104 025755 | 053973 | 0.24739 | 0.49122 | 0.23680 | 0.44718 | 0.22597 | 0.40844 | 0.21507 | 0.37495 | 0.20425 | 0.34624
0.37589 | 0.77830 | 0.36053 | 0.71251 | 0.34460 | 0.65226 | 0.32836 | 0.59863 | 0.31213 | 0.55182 | 0.29614 | 0.51130
0.6 | 0.25745 | 0.53954 | 0.24728 | 0.49106 | 0.23668 | 0.44702 | 0.22585 | 0.40831 | 0.21495 | 0.37482 | 0.20413 | 0.34611
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0.38114 | 0.78948 | 0.36559 | 0.72288 | 0.34947 | 0.66175 | 0.33307 | 0.60749 | 0.31664 | 0.55999 | 0.30048 | 0.51890
0.8 | 0.25735 | 0.53935 | 0.24716 | 0.49088 | 0.23657 | 0.44686 | 0.22573 | 0.40816 | 0.21482 | 0.37470 | 0.20400 | 0.34602
0.38629 0.8005 0.37058 | 0.73306 | 0.35428 | 0.67117 | 0.33769 | 0.61619 | 0.32110 | 0.56810 | 0.30474 | 0.52641
0.0 [ 0.20138 1.11710 | 0.18698 1.06710 | 0.17313 1.01960 | 0.16018 | 0.97503 | 0.14829 | 0.93331 0.13750 | 0.89441
0.28765 | 1.60250 | 0.26692 | 1.53230 | 0.24702 | 1.46560 | 0.22844 | 1.40270 | 0.21140 | 1.34380 | 0.19595 | 1.28860
0.2 [ 0.20133 1.11700 | 0.18693 1.06700 | 0.17308 1.01950 | 0.16013 | 0.97490 | 0.14824 | 0.93321 0.13745 | 0.89432
o 0.29229 | 1.62820 | 0.27132 | 1.55740 | 0.25116 | 1.48990 | 0.23233 | 1.42630 | 0.21506 | 1.36660 | 0.19938 | 1.31070
v |04 ] 0.20128 1.11690 | 0.18687 1.06690 | 0.17303 1.01940 | 0.16008 | 0.97481 0.14819 | 0.93312 | 0.13740 | 0.89423
% 0.29688 | 1.65360 | 0.27564 | 1.58200 | 0.25524 | 1.51380 | 0.23617 | 1.44950 | 0.21866 | 1.38910 | 0.20277 | 1.33250
0.6 | 0.20122 | 1.11680 | 0.18682 | 1.06680 | 0.17297 1.01930 | 0.16003 | 0.97471 | 0.14814 | 0.93302 | 0.13735 | 0.89413
0.30138 | 1.67860 | 0.27990 | 1.60640 | 0.25924 | 1.53740 | 0.23992 | 1.47230 | 0.22219 | 1.41120 | 0.20609 | 1.35400
0.8 0.20117 | 1.11670 | 0.18676 | 1.06670 | 0.17292 1.01920 | 0.15998 | 0.97462 | 0.14809 | 0.93293 | 0.13730 | 0.89401
0.30581 1.70320 | 0.28409 | 1.63020 | 0.26319 | 1.56060 | 0.24364 | 1.49480 | 0.22567 | 1.43300 | 0.20935 | 1.37510
Bold values are from /8/
Table 7. Comparison of frequency obtained for rectangular plate and obtained in /17/ corresponding to m.
a=0.0
m £=02 £=04 £=0.6
Al A Al A2 A A
0.0 18.58210 71.26085 19.58386 75.32703 20.64751 79.78275
17.69009 70.95179 18.46363 74.00829 19.29844 77.30619
&) 0.2 18.58478 71.95179 19.58693 75.33397 20.65099 79.79032
8 17.41533 69.73072 18.18466 72.70806 19.00451 75.92179
@) 0.4 18.58745 71.27348 19.59001 75.34091 20.65447 79.79788
17.16211 68.57137 17.91795 71.47497 18.72359 74.61030
0.6 18.59012 71.27979 19.59308 75.34785 20.65795 79.80545
16.91961 67.46866 17.66263 70.30338 18.45475 73.36546
0.8 18.59280 71.28610 19.59615 75.35479 20.66143 79.81301
16.68709 66.41808 17.41791 69.18828 18.19716 72.18177
Bold values are from /17/
Table 8. Comparison of frequency obtained for orthotropic parallelogram plate and obtained in /5, 16/ corresponding to £.
a=0.0
6=0° 6=45° 6="175°
p A A2 A A2 A A2
0.0 12.29991 47.29683 10.20204 38.96943 8.236021 31.23626
12.29991(a) 47.29683(a) 10.20204(a) 38.96943(a) 8.236021(a) 31.23626(a)
12.29991(b) | 47.29683(b) | 10.20204(b) 38.96943(b) 8.236021(b) | 31.23625(b)
0.2 12.95164 49.86952 10.72632 41.00294 8.605456 32.57915
13.59406(a) | 52.30063(a) 11.27253(a) 43.07660(a) 9.090629(a) | 34.47687(a)
13.30670(b) | 51.26746(b) | 11.01818(b) 42.13835(b) 8.833342(b) | 33.43458(b)
S 0.4 13.65895 52.74715 11.29492 43.27130 9.004677 34.05189
@) 14.99186(a) | 57.75569(a) | 12.42439(a) 47.53016(a) 9.995941(a) | 37.91090(a)
S 14.42099(b) | 55.79978(b) | 11.92000(b) 45.74141(b) 9.489102(b) | 35.87987(b)
0.6 14.41051 55.90142 11.89916 45.75380 9.429454 35.64523
16.46323(a) | 63.54685(a) | 13.63427(a) 52.24230(a) 10.93839(a) | 41.49061(a)
15.61409(b) | 60.80032(b) | 12.88514(b) {49.70862(b) 10.19108(b) | 38.53703(b)
0.8 15.19713 59.30373 12.53177 48.42933 9.875870 37.34955
17.98677(a) | 69.59111(a) 14.88549(a) 57.14975(a) 11.90823(a) | 45.18163(a)
16.86533(b) | 66.18671(b) | 13.89720(b) 53.97782(b) 10.92928(b) | 41.37430(b)
1.0 16.01172 62.92669 13.18710 51.27748 10.34049 39.15525
19.54777(a) | 75.82864(a) 16.16656(a) 62.20682(a) 12.89853(a) | 48.95898(a)
18.16060(b) | 71.88982(b) | 14.94474(b) 58.49637(b) 11.69597(b) | 44.36403(b)
Values (a) are from /5/
Values (b) are from /16/
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