
INTEGRITET I VEK KONSTRUKCIJA 

Vol. 25, br.3 (2025), str. 471–478 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 25, No.3 (2025), pp. 471–478 

 

471 

Sapna1, Amit Sharma1* , Naveen Mani2 , Praveen Ailawalia2**   

TIME PERIOD ANALYSIS OF ORTHOTROPIC PLATE HAVING 1-D CIRCULAR 

POISSON’S RATIO 

ANALIZA VREMENSKIH SERIJA ORTOTROPNE PLOČE SA 1-D KRUŽNIM 

POASONOVIM ODNOSOM 

 
Originalni naučni rad / Original scientific paper 

Rad primljen / Paper received: 20.09.2024 

https://doi.org/10.69644/ivk-2025-03-0471  

Adresa autora / Author's address: 
1) Department of Mathematics, Amity University Haryana, Guru-
gram, India  A. Sharma https://orcid.org/0000-0003-4516-6955   

2) Department of Mathematics, University Institute of Sciences, 
Chandigarh University, Gharuan-Mohali, Punjab, India 
N. Mani https://orcid.org/0000-0002-7131-2664 
P. Ailawalia https://orcid.org/0000-0003-4381-6299 
*email: dba.amitsharma@gmilmail.com  
**email: praveen_2117@rediffmail.com  

 
Keywords 

• vibration 

• parallelogram plate  

• Poisson’s ratio 

• circular thickness 

• parabolic temperature 

Abstract 

In this study, authors calculate the time periods for first 

two modes of vibration of orthotropic parallelogram plate 

having 1-D (one-dimensional) circular Poisson’s ratio at 

clamped edge condition. The authors use the assumption that 

the thickness valuation and temperature on the plate varies 

1-D circular and bi-parabolic respectively. The frequency 

equation is solved using a variational method known as the 

Rayleigh-Ritz method. The time period of the modes of fre-

quency is then determined from the solution of the frequency 

equation. A convergence study of orthotropic parallelogram 

is perceived at clamped edge conditions. The authors con-

duct a comparative review of the time period and modes of 

frequency of various plates, including parallelograms and 

rectangles, at various edge conditions with data that has 

been published in the literature. These days, the main aim 

of the researcher/scientist is to reduce the valuation in vibra-

tional frequency of the plate so that structures made by these 

plates perform better, as large vibrational frequency directly 

affects the performance of the system. This motivates author 

to conduct this study. Our study demonstrates that using a 

variable (circular) Poisson’s ratio is a better choice than 

varying the density parameter because the time periods ob-

tained during circular variation in Poisson’s ratio and vari-

ation in time periods and frequency modes are less than 

those obtained when using a circular variation in density 

parameter. 

Ključne reči 

• vibracija 

• paralelogramska ploča 

• Poasonov odnos 

• kružna debljina 

• parabolička temperatura 

Izvod 

U ovom radu autori proračunavaju vremenske serije za 

prva sva moda vibracija ortotropne paralelogramske ploče 

sa 1-D (jednodimenzionim) kružnim odnosom Poasona u 

uslovima uklještene ivice. Autori koriste pretpostavku da 

procenjene debljina i temperatura na ploči variraju respek-

tivno kao 1-D kružno i bi-parabolički. Frekventna jednačina 

se rešava primenom varijacione metode poznate kao Rejlej-

Ric metoda. Vremenska serija frekvencijskih modova se zatim 

određuje rešavanjem frekventne jednačine. Istraživanje kon-

vergencije ortotropnog paralelograma se podrazumeva u 

uslovima uklještenja na ivicama. Izvodi se uporedni pregled 

vremenske serije i frekventnih modova raznih ploča, uklju-

čujući paralelograma i pravougaonika, u raznim uslovima 

na ivicama sa podacima koji već objavljeni u literaturi. U 

današnje vreme, glavni cilj istraživača je u smanjenju obima 

procene frekvencije vibracija ploče, tako da konstrukcije 

izvedene sa ovakvim pločama imaju bolje karakteristike, jer 

velike frekvencije vibracija direktno utiču na performanse 

sistema. Ovim se autor motiviše za ova istraživanja. U radu 

se pokazuje da primena promenljivog (kružnog) Poasonovog 

odnosa je pogodnije u odnosu na variranje parametra deb-

ljine, jer su vremenske serije, dobijene pri kružnoj varijaciji 

Poasonovog odnosa i varijacija vremenskih serija i frek-

ventnih modova, manje u odnosu na one dobijene kružnom 

varijacijom parametra gustine. 

  

INTRODUCTION 

Vibration is an important consideration in engineering 

design, especially for machines and structures. As technology 

continues to progress, comprehending the vibration traits of 

plates with diverse parameters becomes of paramount im-

portance. Tapered plates having consistent as well as non-

uniform thickness, and subjected to fluctuations in tempera-

ture, find widespread application across various domains 

such as aeronautics, architecture, and underwater construc-

tions. Researchers have studied the vibration characteristics 

of tapered plates with both uniform and non-uniform thick-

ness, under different temperature conditions. There is a signif-

icant body of literature on the study of vibrational charac-

teristics of plates. 

 A model is presented by Gupta et al. /1/ to analyse the 

vibrations of a parallelogram shaped, viscoelastic, orthotropic 

plate with linear thickness variations in both directions. Farag 

and Ashour /2/ propose an innovative adaptation of the finite 

element method that combines the Kantorovich technique 

with transition matrix methods. This modification is intended 

for the examination of vibration patterns in thin orthotropic 

skew plates. Sharma et al. /3/ explore the behaviour of a 
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viscoelastic orthotropic parallelogram plate. They consider 

varying thickness and thermal effects, utilising mathematical 

methods to ascertain its vibration frequency. Addressing an 

orthotropic parallelogram plate with bi-linear thickness vari-

ation and parabolic temperature distribution in both direc-

tions at the SSSS edge condition is focused by Sharma et al. 

/4/. Gupta et al. /5/ investigate the influence of linear thick-

ness variation on the vibration of a viscoelastic orthotropic 

parallelogram plate that has clamped boundary conditions. 

They employ the separation of variables method and the 

Rayleigh-Ritz technique. Sharma and Dhiman /6/ investigate 

plate vibration considering non-uniform thickness changes 

and temperature distribution in both directions. The use of 

quasi-Green function method (QGFM) in analysing the 

vibration characteristics of parallelogram-shaped thin plates 

with clamped support on a Winkler foundation presented by 

Li and Yuan /7/. Lather et al. /8/ employ the method of 

Rayleigh-Ritz to survey the time period of vibration of a 2-D 

circular-thickness orthotropic parallelogram plate subjected 

to 2-D parabolic temperature conditions. Khanna and Singhal 

/9/ apply the Rayleigh Ritz method to study frequency modes 

of a viscoelastic isotropic rectangular plate. This plate has 

bi-parabolic thickness and temperature variation, and it is 

analysed under five boundary conditions. Gupta et al. /10/ 

employ the Rayleigh-Ritz technique and Kelvin model to 

investigate vibration characteristics of a clamped rectangu-

lar plate. This plate has viscoelastic properties and exponen-

tial thickness variation in two directions. Srinivasa et al. /11/ 

present experimental and finite element studies on free vibra-

tion of isotropic and laminated composite skew plates, ana-

lysing the effects of skew angle, aspect ratio, fibre orientation 

angle, and laminate stacking sequence on natural frequen-

cies. The study done by Rana and Robin /12/ delve into 

damped vibrations of an orthotropic rectangular plate resting 

on an elastic foundation. The plate has a thermal gradient and 

variable thickness. A classical plate theory and the Levy 

approach is utilised by Gupta /13/ to investigate the trans-

verse motion of an elastic rectangular plate with nonlinear 

thickness variation and thermal gradient, subject to simple 

support on two parallel edges. Considering the impact of 

thermal gradient, Gupta et al. /14/ investigate the vibration 

of a non-homogeneous parallelogram plate by linearly vary-

ing thickness in both directions. 

Literature shows that a negligible amount of work is 

reported on vibrational analysis of orthotropic plate with 

variable Poisson’s ratio. This key point makes the authors 

curious about the impact of variable Poisson’s ratio on the 

time period of orthotropic plate. To know the impact, authors 

investigate the influence of 1-D circular Poisson’s ratio on  

time period of frequency modes of non-uniform orthotropic 

parallelogram-shaped plate at clamped edge. Additionally, 

the study explores the repercussions of 1-D circular variation 

in thickness as well as 2-D parabolic temperature changes, 

on the vibrational frequency modes. The outcomes are docu-

mented in Tables 1-3. To affirm the credibility and claim of 

the findings, the authors carried out a comparative analysis 

involving time periods and vibrational frequency modes. 

This comparison includes an orthotropic parallelogram plate 

under CCCC, CCCF, CFCF, CSCF, and SFSF edge condi-

tions, where S, C, and F represent the simply supported, 

clamped, and free edges of the plate, respectively. It also 

involves a rectangular plate with CCCC edge conditions, and 

an orthotropic parallelogram plate with linear and parabolic 

thickness variations, at CCCC edge conditions. The results 

are then contrasted with previously published data, as indi-

cated in Tables 6-8. 

ANALYSIS 

Model description 

Crafted from non-uniform material properties, the ortho-

tropic parallelogram plate possesses variable thickness de-

noted as l, accompanied by an inclination angle . The skew 

coordinates for the parallelogram plate are  = x – ytan 

and  = ysec. 

Boundaries of the plate in skew coordinates are  = 0, a 

and h = 0, b. 

The two-term deflection function that complies with all 

the edge conditions is presented as 

( , ) 1 1

he f g

a b a b

  
 

        
  = − −        
         
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i
n

i
i a b a b

   

=

         − −     
       
 . (1) 

This outcome arises from the multiplication of two dis-

tinct functions. The initial function encapsulates the bound-

ary conditions, contingent on the magnitudes of e, f, g and 

h. The selection of values for these parameters is contingent 

upon the particular support edge scenario. Notably, values 

of 0, 1, and 2 correspond to free edge, simply supported, 

and clamped edges, respectively. The secondary function 

pertains to the count of frequency modes, with i signify-

ing a set of arbitrary constants for i = 0, 1, 2, …, N. 

The expressions defining the kinetic energy Ts and strain 

energy Vs in the context of natural transverse vibration of a 

non-uniform orthotropic parallelogram are derived as in /15/: 
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, (3) 

where: , l represent density and thickness of the plate. 

The flexural rigidities D, D and torsional rigidity D of the plate are taken as in /4/, 
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where:  and  are Poisson’s ratios; E is Young’s modulus. 

Assumptions required for the model 

Since vibration is a broad field of research, this study 

requires some limitations through specific assumptions. 

The thickness of the plate, l, is considered to demonstrate 

circular characteristics in one-dimension, which is also illus-

trated in Fig. 1 as: 

 
2

0 2
1 1 1l l

a



  
  = + − −

    

. (5) 

Here, l0 represents the plate thickness at the origin. Addi-

tionally, the parameter  (within the range 0    1) is 

indicative of the tapering of the plate. 

The Poisson ratio  is considered to possess circular attrib-

utes in one dimension as: 

 
0

2

2
1 1 1m

a
 




  
  = − − −

    

. (6) 

Here, 0 represents Poisson’s ratio at the origin. Addition-

ally, m (satisfying 0  m < 1) is indicative of the non-homo-

geneity of the plate. 

Plate’s two-dimensional steady-state temperature fluctu-

ations are modelled in a parabolic manner Eq.(7), as previ-

ously outlined in /4/, 

 
2 2

0 2 2
1 1

a b

 
 

  
= − −    

  

. (7) 

Here,  represents the temperature increase above reference 

temperature at any given point on the plate, while 0 stands 

for the temperature excess at the origin. 

The modulus of elasticity for engineering structures is 

obtained from /4/, which provides a temperature-dependent 

relationship for this property, 

1 2 0( ) (1 ),  ( ) (1 ),  ( ) (1 )E E E E G G       = − = − = − , (8) 

where: E and E are Young’s moduli in  and  directions 

respectively; G is shear modulus and  is taken as slope 

variation of moduli with temperature. 

Substituting Eq.(7) in Eq.(8), we get the following expres-

sions: 
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, (9) 

where:  = 0, (0   < 1) is called temperature gradient. 

Using Eqs.(5), (8), and (9) in Eq.(4), we get 
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where: 
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2

1 1
a


− − = . Now, introducing the non-dimensional variable as: 
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and components of E1
*, E2

*, E* and G0 are E1
*, E2

*sec, and G0sec, respectively in  and  directions. 

Solution of model for vibrational frequency 

The Rayleigh-Ritz method is used to solve the model that 

is based on the principle of conservation of energy, which 

states that the maximal kinetic energy is equal to maximal 

strain energy, i.e., 

 ( ) 0s sJ V T= − = . (12) 

Substituting Eqs. (2) and (3) in Eq.(12), we get 
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Using Eqs. (5), (10), and (11), Eq.(13) becomes, 
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m d d   − −  +    , (14) 

where: 2 = 120 a2cos5 h0
3/E1

*h0
2. 

In order to minimise the functional given in Eq.(14), we 

require the condition as follows: 

 0,   0,1,2, ,
i

J
i N


= = 


. (15) 

Upon solving Eq.(15), we obtain a system of equations in 

i that is homogeneous. The equation for the frequency is 

obtained by solving this system for non-zero solutions as: 

 2 0X Y− = , (16) 

where: X = [xij]N+1 and Y = [yij]N+1 are square matrix of order 

(n + 1), i = 0,1,2,…, N and j = 0,1,2,…, N. 

The time period is calculated using the following equation: 

 2
K




= , (17) 

where: frequency is represented by  obtained from Eq.(16). 

NUMERICAL RESULTS AND DISCUSSIONS 

The time period for the first two modes of vibration of 

an orthotropic parallelogram plate with a fixed aspect ratio 

of a/b and skew angle  = 30° is calculated at clamped edge 

for various values of plate parameters. Plate parameters in-

clude tapering parameter , non-homogeneity m, and thermal 

gradient . After reviewing, the authors assess how different 

plate parameters affect the time period of vibrational modes. 

During the calculation, the values of the following ortho-

tropic material parameters are taken from /16/, 
* **

502 1

* * *
01 1 1

0.01,  0.3,  0.0333,  3.0 10
GE EE

E E E 
= = = =  , 

and  0 = 0.345. All the results are presented in Tables 1-3. 

Table 1 delineates the time period for an orthotropic paral-

lelogram plate for a fixed thermal gradient  = 0.2. The non-

homogeneity m varies from 0.0 to 0.8, and the tapering pa-

rameter  from 0.0 to 1.0. The following interpretations can 

be derived from this table. 

‑ An increase in tapering parameter  and non-homogene-

ity parameter m leads to a decrease in the time period K. 

‑ Percentage of decrement with respect to tapering is 23 % 

while the percentage of decrement with respect to non-

homogeneity is 0.08 %. 

‑ The rate of decrement due to the circular Poisson ratio is 

slow in comparison to the rate of decrement due to circu-

lar variation in thickness. 

Table 2 outlines the time period K of an orthotropic paral-

lelogram plate with a range of tapering parameter  from 

0.0 to 1.0 and thermal gradient  from 0.0 to 0.8 for a con-

stant non-homogeneity parameter m = 0.2. The following 

observations can be made based on the data. 

‑ A significant rise in the time period K with an increasing 

thermal gradient  and a consequential fall in the time 

period K as the value of tapering parameter  increases. 

‑ Percentage of decrement with respect to tapering is 22.7 % 

while the percentage increment due to thermal gradient is 

37.7 %. 

‑ The rate of decrement due to circular thickness is less in 

comparison to increment due to bi-parabolic variation in 

thermal gradient. 

Table 3 portrays the time period K of an orthotropic par-

allelogram plate for non-homogeneity m and thermal gradi-

ent  values ranging from 0.0 to 0.8, and for variable values 

of tapering parameter  from 0.0 to 1.0. The following out-

comes can be elucidated from Table 3. 

‑ An increase in the value of thermal gradient  and non-

homogeneity m results in increase in time period K, while 

an increase in tapering parameter  brings about a fall in 

the time period K. 

‑ Percentage increment in time period with respect to m and 

 is 26.5 %, while percentage decrement in time period 

with respect to  is 22.7 %. 

‑ The rate of decrement in time period due to circular vari-

ation in thickness is less in comparison to the rate of incre-

ment in time period due to circular variation in Poisson’s 

ratio in combination with the bi-parabolic variation in tem-

perature. 

CONVERGENCE STUDY 

Here, the authors present the results of a convergence 

study on the frequency modes  of two types of plates:  

‑ an orthotropic parallelogram plate with angle  = 30°, and 

a/b = 1.5 under CCCC, CSCC, CSSC, SCSS, and CCSS 

edge conditions, as shown in Table 4; 

‑ an orthotropic rectangular plate a/b = 1.5 under the same 

edge conditions mentioned above, as shown in Table 5. 

This study delves into the convergence patterns of modes 

with increasing approximation orders across a range of plate 

parameters. These parameters encompass values such as 

 
* *
2

* *
1 1
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E E

m
E E

 = = = = = , 

 
*

50 1
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= =  = . 
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The outcomes are tabulated for clear presentation. The 

authors’ deductions highlight that, with respect to the speci-

fied edge conditions, the initial two frequency modes  for 

both types of plates converge up to the fourth decimal place 

in the fifth-level approximation. 

COMPARISON OF RESULTS 

The current study compares the results of time period K 

and modes of frequency  with the following previously pub-

lished results. 

i. The time period of an orthotropic parallelogram plate /8/ 

at various edge conditions (CCCC, CCCF, CFCF, CSCF 

and SFSF) in relation to non-homogeneity parameter m. 

ii. The frequency modes of a rectangular plate /17/ with 

CCCC edge conditions in relation to the non-homogene-

ity parameter m. 

iii.  The frequencies of an orthotropic parallelogram plate /5, 

16/ with CCCC edge conditions in relation to tapering 

parameter . 

Table 6 compares the time period K obtained in the cur-

rent study to the time period K obtained in /8/. The compar-

ison is made for a fixed aspect ratio, skew angle, thermal 

gradient, i.e., a/b = 1.5,  = 30°, and  = 0.4, and varying 

tapering parameter  from 0.0 to 1.0 and non-homogeneity 

m from 0.0 to 0.8 (see Table 6) at CCCC, CCCF, CFCF, 

CSCF, and SFSF edge conditions. The results show that the 

time period K in the current study is lower than that obtained 

in /8/ as the tapering parameter  and non-homogeneity m 

increase. Additionally, the rate of change in time period K 

is less in the current study than obtained in /8/. 

Table 7 compares modes of frequency  in the current 

study (orthotropic rectangular plate) to those obtained in /17/. 

The comparison is made for a fixed aspect ratio skew angle 

and varying tapering parameter and non-homogeneity, i.e., 

a/b = 1.5,  = 0.0,  = 0.2, 0.4, 0.6, 0.8, at CCCC edge con-

dition are displayed in Table 7. Results show that the modes 

of frequency  in the current study are higher than those in 

/17/ as the non-homogeneity m increases, however the rate 

of change in modes of frequency  in the current study is 

much less than in /17/ with respect to non-homogeneity m. 

Table 8 compares the modes of frequency  in the current 

study (orthotropic parallelogram plate) to those obtained in 

/5/ and /16/. The comparison is made for three different 

values of skew angle and a fixed aspect ratio, thermal gradi-

ent, and a varying tapering parameter, i.e.,  = 0°, 45°, and 

75°; a/b = 1.5,  = 0.0, and  = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, at 

CCCC edge condition. Non-homogeneity is not considered 

here because it is not a parameter in /5/ and /16/. The results 

show that the modes of frequency  in the current study are 

lower than those in /5/ and /16/ as tapering parameter in-

creases. Also, the rate of change in the current study is less 

than that obtained in /5/ and /16/. 

CONCLUSIONS 

The authors draw the following conclusions based on the 

numerical data and results comparison presented above: 

‑ Circular variation of Poisson ratio and thickness slow 

down the change in time period in frequency mode. 

‑ Bi-parabolic variation in temperature increases the change 

in time period of frequency mode. 

‑ The time period, as well as variation in time period, are 

less in case of circular variation in the Poisson ratio (cur-

rent study) in comparison to circular variation in density 

/8/. 

‑ The frequency mode of rectangular plate (current study) 

is higher in case of circular variation in Poisson’s ratio in 

comparison to modes obtained due to circular variation in 

density /17/, but the variation in frequency modes is very 

less due to variation in Poisson’s ratio in comparison to 

frequency modes obtained due to circular variation in den-

sity /17/. 

‑ Frequency modes with circular variation in thickness (cur-

rent research) exhibit lower values compared to the linear 

and parabolic variation in /5/ and /16/. Also, the rate of 

change in variation obtained in frequency modes for the 

current study is also lower compared to the variation 

obtained in /5/ and /16/. 

Table 1. Time period of plate vs. non-homogeneity m. 

 = 0.2 

C
C

C
C

 

m  = 0.0  = 0.2  = 0.4  = 0.6  = 0.8  = 1.0 

K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 
0.0 0.40401 0.10561 0.38306 0.09994 0.36279 0.09431 0.34360 0.08883 0.32566 0.08362 0.30899 0.07870 

0.2 0.40392 0.10559 0.38296 0.09992 0.36270 0.09429 0.34350 0.08881 0.32556 0.08359 0.30889 0.07868 

0.4 0.40382 0.10558 0.38290 0.09990 0.36260 0.09427 0.34341 0.08880 0.32547 0.08357 0.30880 0.07866 

0.6 0.40376 0.10556 0.38280 0.09989 0.36254 0.09425 0.34331 0.08878 0.32538 0.08356 0.30870 0.07864 

0.8 0.40366 0.10554 0.38271 0.09987 0.36245 0.09423 0.34322 0.08876 0.32528 0.08354 0.30861 0.07862 

Table 2. Time period of plate vs. thermal gradient . 

 C
C

C
C

 

m = 0.2 
  =   =   =   =   =   =  

 K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 

0.0 0.38453 0.10065 0.36559 0.09558 0.34705 0.09048 0.32933 0.08549 0.31264 0.08070 0.29705 0.07614 

0.2 0.40392 0.10559 0.38296 0.09992 0.36270 0.09429 0.34350 0.08881 0.32556 0.08359 0.30889 0.07868 

0.4 0.42663 0.11134 0.40322 0.10493 0.38086 0.09862 0.35990 0.09255 0.34046 0.08683 0.32252 0.08148 

0.6 0.45380 0.11814 0.42729 0.11076 0.40231 0.10360 0.37919 0.09680 0.35795 0.09046 0.33851 0.08460 

0.8 0.48720 0.12635 0.45660 0.11768 0.42833 0.10942 0.40247 0.10169 0.37897 0.09458 0.35761 0.08809 
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Table 3. Time period of plate vs. tapering parameter . 

 C
C

C
C

 

 m =  = 0.0 m =  = 0.2 m =  = 0.4 m =  = 0.6 m =  = 0.8 

 K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 

0.0 0.38463 0.10067 0.40392 0.10559 0.42654 0.11132 0.45358 0.11809 0.48682 0.12627 

0.2 0.36568 0.09559 0.38296 0.09992 0.40313 0.10491 0.42707 0.11072 0.45622 0.11760 

0.4 0.34715 0.09050 0.36270 0.09429 0.38076 0.09860 0.40209 0.10356 0.42792 0.10934 

0.6 0.32943 0.08551 0.34350 0.08881 0.35978 0.09253 0.37897 0.09676 0.40206 0.10162 

0.8 0.31273 0.08071 0.32556 0.08359 0.34033 0.08680 0.35770 0.09041 0.37856 0.09450 

1.0 0.29714 0.07616 0.30889 0.07868 0.32242 0.08146 0.33826 0.08455 0.35723 0.08802 

Table 4. An analysis of mode frequencies convergence for an orthotropic parallelogram plate under 

various edge conditions (CCCC, CSCC, CSSC, SCSS, and CCSS). 

 CCCC CSCC CSSC SCSS CCSS 

N 1 2 1 2 1 2 1 2 1 2 
2 16.3362 62.4150 16.6464 53.5833 14.0898 78.5438 11.1085 60.6515 14.8388 71.7236 

3 16.3357 61.5851 16.6426 51.4544 14.0054 54.6287 11.1066 46.6885 14.8380 49.8194 

4 16.3357 61.5829 16.6408 51.3414 7.5368 14.3622 11.1064 46.5823 14.8330 49.5550 

5 16.3357 61.5829 16.6408 51.3414 7.5368 14.3622 11.1064 46.5823 14.8330 49.5550 

Table 5. An analysis of mode frequencies convergence for an orthotropic rectangular plate under various 

edge conditions (CCCC, CSCC, CSSC, SCSS, and CCSS). 

 CCCC CSCC CSSC SCSS CCSS 

N 1 2 1 2 1 2 1 2 1 2 
2 17.6582 67.6233 18.0086 56.9132 15.5601 81.6502 11.8324 65.3515 15.5601 81.6502 

3 17.6577 66.6626 18.0034 55.2062 15.5306 56.5204 11.8303 50.2746 15.5306 56.5204 

4 17.6577 66.6601 18.0018 55.1050 9.56743 15.9738 11.8301 50.1585 15.5306 55.8248 

5 17.6577 66.6601 18.0018 55.1050 9.56743 15.9738 11.8301 50.1585 15.5306 55.8248 

Table 6. Comparison of time period obtained for orthotropic parallelogram plate, from /8/, corresponding to m. 

C
C

C
C

 

 =  
  =   =   =   =   =   =  

m K1 K2 K1 K2 K1 K2 K1 K2 K1 K2 K1 K2 
0.0 0.11136 0.42672 0.10495 0.40332 0.09864 0.38095 0.09258 0.36000 0.08685 0.34055 0.08150 0.32264 

0.16035 0.61629 0.15103 0.58211 0.14187 0.54947 0.13308 0.51890 0.12478 0.49053 0.11704 0.46442 

0.2 0.11134 0.42663 0.10493 0.40322 0.09862 0.38086 0.09255 0.35990 0.08683 0.34046 0.08148 0.32252 

0.16309 0.62562 0.15367 0.59097 0.14441 0.55792 0.13551 0.52688 0.12710 0.49816 0.11926 0.47168 

0.4 0.11132 0.42654 0.10491 0.40313 0.09860 0.38076 0.09253 0.35978 0.08680 0.34033 0.08146 0.32242 

0.16578 0.63479 0.15626 0.59970 0.14690 0.56621 0.13789 0.53479 0.12938 0.50570 0.12144 0.47884 

0.6 0.11130 0.42644 0.10489 0.40304 0.09858 0.38067 0.09251 0.35968 0.08679 0.34024 0.08144 0.32233 

0.16842 0.64384 0.15881 0.60837 0.14935 0.57444 0.14023 0.54259 0.13161 0.51309 0.12357 0.48588 

0.8 0.11128 0.42635 0.10487 0.40291 0.09855 0.38054 0.09249 0.35959 0.08676 0.34014 0.08142 0.32220 

0.17102 0.65276 0.16132 0.61685 0.15175 0.58248 0.14253 0.55025 0.13381 0.52034 0.12566 0.49279 

 C
C

C
F

 

0.0 0.24978 0.65468 0.24155 0.57067 0.23313 0.50024 0.22461 0.44227 0.21602 0.39477 0.20743 0.35579 

0.18087 0.58993 0.17306 0.56084 0.16515 0.53244 0.15729 0.50517 0.14961 0.47935 0.14221 0.45516 

0.2 0.24966 0.65392 0.24142 0.57007 0.23300 0.49977 0.22446 0.44190 0.21587 0.39446 0.20727 0.35553 

0.18375 0.59876 0.17587 0.56935 0.16788 0.54054 0.15993 0.51293 0.15215 0.48676 0.14465 0.46219 

0.4 0.24954 0.65317 0.24130 0.56945 0.23286 0.49926 0.22432 0.44149 0.21572 0.39415 0.20712 0.35528 

0.18659 0.60749 0.17863 0.57771 0.17055 0.54855 0.16251 0.52056 0.15465 0.49408 0.14706 0.46917 

0.6 0.24942 0.65242 0.24117 0.56885 0.23273 0.49879 0.22418 0.44111 0.21557 0.39386 0.20696 0.3503 

0.18938 0.61607 0.18135 0.58591 0.17318 0.55644 0.16506 0.52810 0.15711 0.50124 0.14942 0.47605 

0.8 0.24931 0.65169 0.24104 0.56825 0.23259 0.49832 0.22403 0.44074 0.21542 0.39355 0.20680 0.35478 

0.19213 0.62452 0.18403 0.59405 0.17579 0.56417 0.16757 0.53552 0.15952 0.50834 0.15175 0.48283 

 C
F

C
F

 

0.0 0.24996 0.54623 0.23719 0.50407 0.22440 0.46527 0.21185 0.43043 0.19973 0.39958 0.18818 0.37237 

0.35632 0.77579 0.33782 0.71735 0.31934 0.66332 0.30127 0.61462 0.28383 0.57124 0.26727 0.53285 

0.2 0.24988 0.54617 0.23710 0.50401 0.22432 0.46521 0.21177 0.43037 0.19964 0.39952 0.18809 0.37228 

0.36163 0.78754 0.34291 0.72835 0.32421 0.67356 0.30590 0.62420 0.28826 0.58016 0.27148 0.54123 

0.4 0.24979 0.54607 0.23701 0.50391 0.22423 0.46511 0.21167 0.43030 0.19955 0.39942 0.18801 0.37222 

0.36684 0.79916 0.34790 0.73916 0.32899 0.68367 0.31047 0.63360 0.29261 0.58899 0.27563 0.54953 

0.6 0.24971 0.54601 0.23693 0.50385 0.22414 0.46505 0.21159 0.43021 0.19947 0.39936 0.18792 0.37215 

0.37200 0.81060 0.35286 0.74984 0.33370 0.69360 0.31498 0.64290 0.29691 0.59766 0.27972 0.55760 

0.8 0.24962 0.54592 0.23684 0.50376 0.22405 0.46496 0.21150 0.43015 0.19938 0.39930 0.18783 0.37209 

0.37705 0.82184 0.35770 0.76039 0.33838 0.70347 0.31941 0.65201 0.30113 0.60627 0.28374 0.56565 

 C
S

C
F

 

0.0 0.25777 0.54010 0.24761 0.49157 0.23703 0.44749 0.22622 0.40872 0.21532 0.37520 0.20450 0.34642 

0.36524 0.75543 0.35019 0.69140 0.33461 0.63272 0.31875 0.58060 0.30289 0.53511 0.28729 0.49568 

0.2 0.25766 0.53992 0.24750 0.49141 0.23692 0.44733 0.22609 0.40857 0.21520 0.37508 0.20438 0.34633 

0.37061 0.76699 0.35541 0.70202 0.33964 0.64252 0.32358 0.58971 0.30755 0.54353 0.29174 0.50354 

0.4 0.25755 0.53973 0.24739 0.49122 0.23680 0.44718 0.22597 0.40844 0.21507 0.37495 0.20425 0.34624 

0.37589 0.77830 0.36053 0.71251 0.34460 0.65226 0.32836 0.59863 0.31213 0.55182 0.29614 0.51130 

0.6 0.25745 0.53954 0.24728 0.49106 0.23668 0.44702 0.22585 0.40831 0.21495 0.37482 0.20413 0.34611 



Time period analysis of orthotropic plate having 1-D circular …  Analiza vremenskih serija ortotropne ploče sa 1-D kružnim  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 25, br.3 (2025), str. 471–478 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 25, No.3 (2025), pp. 471–478 

 

477 

0.38114 0.78948 0.36559 0.72288 0.34947 0.66175 0.33307 0.60749 0.31664 0.55999 0.30048 0.51890 

0.8 0.25735 0.53935 0.24716 0.49088 0.23657 0.44686 0.22573 0.40816 0.21482 0.37470 0.20400 0.34602 

0.38629 0.8005 0.37058 0.73306 0.35428 0.67117 0.33769 0.61619 0.32110 0.56810 0.30474 0.52641 

 S
F

S
F

 

0.0 0.20138 1.11710 0.18698 1.06710 0.17313 1.01960 0.16018 0.97503 0.14829 0.93331 0.13750 0.89441 

0.28765 1.60250 0.26692 1.53230 0.24702 1.46560 0.22844 1.40270 0.21140 1.34380 0.19595 1.28860 

0.2 0.20133 1.11700 0.18693 1.06700 0.17308 1.01950 0.16013 0.97490 0.14824 0.93321 0.13745 0.89432 

0.29229 1.62820 0.27132 1.55740 0.25116 1.48990 0.23233 1.42630 0.21506 1.36660 0.19938 1.31070 

0.4 0.20128 1.11690 0.18687 1.06690 0.17303 1.01940 0.16008 0.97481 0.14819 0.93312 0.13740 0.89423 

0.29688 1.65360 0.27564 1.58200 0.25524 1.51380 0.23617 1.44950 0.21866 1.38910 0.20277 1.33250 

0.6 0.20122 1.11680 0.18682 1.06680 0.17297 1.01930 0.16003 0.97471 0.14814 0.93302 0.13735 0.89413 

0.30138 1.67860 0.27990 1.60640 0.25924 1.53740 0.23992 1.47230 0.22219 1.41120 0.20609 1.35400 

0.8 0.20117 1.11670 0.18676 1.06670 0.17292 1.01920 0.15998 0.97462 0.14809 0.93293 0.13730 0.89401 

0.30581 1.70320 0.28409 1.63020 0.26319 1.56060 0.24364 1.49480 0.22567 1.43300 0.20935 1.37510 

Bold values are from /8/ 

Table 7. Comparison of frequency obtained for rectangular plate and obtained in /17/ corresponding to m. 

  = 0.0 

 C
C

C
C

 

m  = 0.2  = 0.4  = 0.6 

1 2 1 2 1 2 
0.0 18.58210 71.26085 19.58386 75.32703 20.64751 79.78275 

17.69009 70.95179 18.46363 74.00829 19.29844 77.30619 

0.2 18.58478 71.95179 19.58693 75.33397 20.65099 79.79032 

17.41533 69.73072 18.18466 72.70806 19.00451 75.92179 

0.4 18.58745 71.27348 19.59001 75.34091 20.65447 79.79788 

17.16211 68.57137 17.91795 71.47497 18.72359 74.61030 

0.6 18.59012 71.27979 19.59308 75.34785 20.65795 79.80545 

16.91961 67.46866 17.66263 70.30338 18.45475 73.36546 

0.8 18.59280 71.28610 19.59615 75.35479 20.66143 79.81301 

16.68709 66.41808 17.41791 69.18828 18.19716 72.18177 

 Bold values are from /17/ 

Table 8. Comparison of frequency obtained for orthotropic parallelogram plate and obtained in /5, 16/ corresponding to . 

  = 0.0 

C
C

C
C

 

  =   =   =  

 1 2 1 2 1 2 
0.0 12.29991 47.29683 10.20204 38.96943 8.236021 31.23626 

12.29991(a) 47.29683(a) 10.20204(a) 38.96943(a) 8.236021(a) 31.23626(a) 

12.29991(b) 47.29683(b) 10.20204(b) 38.96943(b) 8.236021(b) 31.23625(b) 

0.2 12.95164 49.86952 10.72632 41.00294 8.605456 32.57915 

13.59406(a) 52.30063(a) 11.27253(a) 43.07660(a) 9.090629(a) 34.47687(a) 

13.30670(b) 51.26746(b) 11.01818(b) 42.13835(b) 8.833342(b) 33.43458(b) 

0.4 13.65895 52.74715 11.29492 43.27130 9.004677 34.05189 

14.99186(a) 57.75569(a) 12.42439(a) 47.53016(a) 9.995941(a) 37.91090(a) 

14.42099(b) 55.79978(b) 11.92000(b) 45.74141(b) 9.489102(b) 35.87987(b) 

0.6 14.41051 55.90142 11.89916 45.75380 9.429454 35.64523 

16.46323(a) 63.54685(a) 13.63427(a) 52.24230(a) 10.93839(a) 41.49061(a) 

15.61409(b) 60.80032(b) 12.88514(b) {49.70862(b) 10.19108(b) 38.53703(b) 

0.8 15.19713 59.30373 12.53177 48.42933 9.875870 37.34955 

17.98677(a) 69.59111(a) 14.88549(a) 57.14975(a) 11.90823(a) 45.18163(a) 

16.86533(b) 66.18671(b) 13.89720(b) 53.97782(b) 10.92928(b) 41.37430(b) 

1.0 16.01172 62.92669 13.18710 51.27748 10.34049 39.15525 

19.54777(a) 75.82864(a) 16.16656(a) 62.20682(a) 12.89853(a) 48.95898(a) 

18.16060(b) 71.88982(b) 14.94474(b) 58.49637(b) 11.69597(b) 44.36403(b) 

Values (a) are from /5/ 

Values (b) are from /16/ 
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