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Abstract 

This study explores the application of Physics-Informed 

Neural Networks (PINN) for predicting the pressure coeffi-

cient distribution on the windward facade of a building. 

The key feature of this approach is the use of a combined 

loss function that simultaneously accounts for experimental 

data and physical constraints derived from Bernoulli's prin-

ciple. This integration enables PINN to combine physical 

rigor with high accuracy in reproducing experimental data. 

The overall loss function of the PINN model consists of two 

components: a mathematical loss function that minimises 

deviations of model predictions from experimental data, and 

a physics-based loss function, derived from Bernoulli's prin-

ciple for the flow of an ideal fluid and gas, which ensures 

alignment with physical laws. A PINN model is developed 

and trained, demonstrating adaptability to various condi-

tions, including wind direction angles and the weight of the 

physical loss function. The analysis reveals that the weight 

of the physical loss function significantly influences the 

prioritisation of predictions: at lower weights, the model 

prioritises experimental data, whereas at higher weights, it 

aligns more closely with physical calculations. Instances of 

prediction anomalies are observed, where the results deviate 

significantly from both data sources, highlighting the need 

for careful monitoring of the model's outputs. Future research 

directions include incorporating more advanced physical 

laws, such as turbulence and friction models, to improve 

prediction accuracy. Results demonstrate the potential of 

PINN for applications in building aerodynamics, effectively 

integrating theoretical calculations and empirical data for 

precise modelling. 

Ključne reči 

• neuronske mreže podržane fizičkim zakonima (PINN) 

• aerodinamika zgrada 

• Bernulijev princip 

• modeliranje strujanja vazduha 

• kombinovani pristup 

• projektovanje konstrukcija 

• opterećenja od vetra 

Izvod 

U radu se istražuje primena neuronske mreže podržane 

fizičkim zakonima (PINN) za predviđanje raspodele koefici-

jenta pritiska na zgradi sa vetrovite strane. Ključna karak-

teristika ovog pristupa je upotreba kombinovane funkcije 

gubitka koja istovremeno uzima u obzir eksperimentalne 

podatke i fizička ograničenja izvedena iz Bernulijevog princi-

pa. Ova integracija omogućava PINN modelu da poveže 

fizičku preciznost sa visokom tačnošću u reprodukovanju eks-

perimentalnih podataka. Ukupna funkcija gubitka PINN 

modela sastoji se iz dva dela: matematičke funkcije gubitka, 

koja minimizuje odstupanja koja se modelom predviđaju iz 

eksperimentalnih podataka, i funkcije gubitka zasnovane na 

fizici, izvedene iz Bernulijevog principa strujanja idealnog 

fluida i gasa, čime se obezbeđuje usklađenost sa fizičkim 

zakonima. PINN model je razvijen i istreniran, pokazujući 

prilagodljivost različitim uslovima, uključujući uglove prav-

ca vetra i težinsku funkciju fizičkih gubitaka. Analiza poka-

zuje da težinska funkcija fizičkih gubitaka značajno utiče na 

određivanje prioriteta predviđanja: pri manjim težinama 

model daje prioritet eksperimentalnim podacima, dok pri 

većim težinama, više prati fizičke proračune. Uočeni su slu-

čajevi anomalija u predviđanjima, gde rezultati značajno 

odstupaju i od eksperimentalnih podataka i od fizičkih modela, 

što ukazuje na potrebu za pažljivim praćenjem izlaza modela. 

Buduća istraživanja uključuju uvođenje naprednijih fizičkih 

zakona, kao što su modeli turbulencije i trenja, radi pobolj-

šanja tačnosti predviđanja. Dobijeni rezultati pokazuju 

potencijal PINN za primene u aerodinamici zgrada, efikasno 

kombinujući teorijske proračune i empirijske podatke za 

precizno modeliranje. 

INTRODUCTION 

Rapid development of machine learning and artificial 

intelligence technologies (AI) in recent years has opened up 

vast opportunities for modernising various sectors of the 

economy, including architecture, construction, and design. 

These technologies actively contribute to improving process 

efficiency, enhancing project management, and introducing 

automation in the construction industry /1-4/. One of the key 

and rapidly evolving areas of AI application is building 
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aerodynamics, where intelligent algorithms provide new 

approaches to design. Traditionally, wind load analysis on 

buildings and structures relies on standard calculation 

methods, wind tunnel modelling, and numerical techniques 

such as Computational Fluid Dynamics (CFD), which remains 

the most popular tool for addressing hydraulic and aerody-

namic problems. CFD offers high accuracy in modelling air-

flow, particularly in complex conditions of urban environ-

ments /5/ and serves as the foundation for analysing aero-

dynamic loads on unique architectural forms, including 

iconic skyscrapers /8/. At the same time, the development of 

simplified numerical approaches accelerates flow modelling 

in the context of limited computational resources /6/. These 

methods, along with the advanced application of CFD in 

high-rise building design, have proven their reliability and 

are widely adopted in engineering practice /7/. 

The increasing number of modern high-rise buildings with 

unique architecture, the complexity of structural solutions, 

and active urbanisation demand the development of more 

accurate and efficient approaches to calculating wind loads. 

This is particularly important in the context of advancements 

in computational aerodynamics over the past 30 years, which 

include modelling the interaction of buildings with their sur-

roundings /9/, as well as recent achievements in fluid dy-

namics, aerodynamics, and turbulence modelling /10/. Stand-

ard calculation methods often fail to account for non-stand-

ard scenarios, while wind tunnel modelling remains labour-

intensive, requiring significant financial and time invest-

ments. CFD modelling effectively addresses a wide range of 

challenges, including optimising wind resistance systems for 

high-rise buildings /11/ and analysing peak wind loads on 

buildings within the atmospheric boundary layer using large 

eddy simulations /12/. However, this approach demands sub-

stantial computational resources and the involvement of 

highly qualified specialists, particularly for implementing 

complex engineering projects. Moreover, errors in setting 

initial parameters or using incorrect input data significantly 

reduce the accuracy of calculations and the quality of the 

results. 

Recent studies demonstrate the successful application of 

artificial intelligence methods to a wide range of engineer-

ing challenges, including those in structural aerodynamics. 

Classical machine learning methods such as Gradient Boost-

ing and Random Forest show high accuracy in predicting 

aerodynamic coefficients for various building types. These 

approaches are effectively used to analyse aerodynamic inter-

actions between low-rise and high-rise buildings /13/, predict 

unsteady wind loads in three-dimensional coordinates on tall 

structures /14/, and evaluate the capabilities of different AI 

methods for calculating aerodynamic characteristics /15/. 

Generative Adversarial Networks (GANs) are an example 

of successful implementation of modern machine learning 

techniques in structural aerodynamics. Research has demon-

strated their efficiency in predicting mean and fluctuating 

pressure coefficients on building surfaces /17/ and optimis-

ing urban block design to improve pedestrian-level wind 

conditions in combination with CFD optimisation /16/. 

Machine learning techniques, including convolutional and 

recurrent neural networks, have gained wide adoption and 

allow for modelling complex dependencies between building 

parameters and wind loads. These approaches have been 

successfully applied to forecast aerodynamic damping in 

structures experiencing airflow-induced oscillations /18/ and 

assess the impact of wind speed on high-rise buildings by 

combining experimental studies with machine learning models 

/19/. AI models have also been used in research applica-

tions such as thermal process modelling and material me-

chanics. These include graph-based models for building ther-

mal dynamics /20/, neural networks for hydrodynamics and 

heat transfer /21/, multiscale modelling of thermal conduc-

tivity in phase-transitioning materials /22/, and vibration 

dynamics analysis for precise vibration identification and 

structural optimisation /23/. However, a key limitation of 

many AI models remains the high demand for large volumes 

of training data, which restricts their application in practical 

engineering. This is particularly relevant in modelling airflow 

for building design, where access to accurate and repre-

sentative data is often challenging /24, 25/. 

One of the advanced neural network models that signifi-

cantly reduces the data requirements for training is PINN. 

These networks integrate physical laws into the training 

process and have been applied to a wide range of engineer-

ing problems, such as analysing vibrations induced by vortex 

shedding with consideration of variable structural stiffness 

/26/, modelling pile-soil interactions to assess load-bearing 

capacity /27/, predicting fluid flows based on visualised data in 

bridge construction /28/, analysing tunnel settlement, such as 

in the Hong Kong-Zhuhai-Macau Tunnel /29/, modelling chlo-

ride diffusion in concrete for durability assessment /30/, and 

solving direct and inverse problems for complex beam sys-

tems, including Euler-Bernoulli and Timoshenko beams /31/. 

The integration of physical laws is particularly important 

for tasks where compliance with regulatory requirements and 

physical constraints plays a key role in ensuring the reliabil-

ity and safety of designed systems. In structural aerodynam-

ics, neglecting such constraints can lead to serious conse-

quences, including structural failures and risks to human life 

and safety. The use of physics-informed approaches improves 

the accuracy of calculations and enhances the interpretabil-

ity of results, which is critical for creating resilient and safe 

engineering solutions. However, the application of PINN in 

structural aerodynamics remains underexplored, presenting 

opportunities for future research. Potential directions include 

the development of innovative methods for assessing wind 

loads, optimising building geometry considering aerodynam-

ic characteristics, and improving the accuracy of wind impact 

predictions in dense urban environments. 

The aim of this study is to develop and evaluate the effec-

tiveness of PINN for calculating the mean pressure coeffi-

cient on the windward facade of a building, integrating exper-

imental data obtained from wind tunnel testing and the 

physical laws of structural aerodynamics into the model. The 

research objectives include: 

1) developing a PINN model that incorporates the physical 

laws of aerodynamics for calculating the mean pressure 

coefficient on the windward facade of a building; 

2) assessing the impact of the weight of the physics-informed 

loss function, based on Bernoulli's law, on the predictions of 
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the PINN model, including its accuracy and agreement with 

experimental data; 

3) analysing the influence of wind direction angle on the 

behaviour of the PINN model and its ability to balance 

experimental and physically calculated data. 

These objectives are aimed at comprehensively exploring 

the application of PINN in structural aerodynamics to evalu-

ate its potential for precise modelling and adaptation to real-

world design conditions. The scientific novelty of this work 

lies in the use of PINN for calculating wind loads on high-

rise buildings. By integrating physical laws, PINN signifi-

cantly reduces dependence on uncertainties and errors in 

experimental data. This approach enhances the accuracy and 

reliability of calculations and improves the interpretability 

of model predictions, enabling detailed analysis of the influ-

ence of physical parameters on results. 

MATERIALS AND METHODS 

The study utilised a dataset generated from wind tunnel 

tests of high-rise building models conducted in the ZD-1 

wind tunnel at Zhejiang University /32/. The ZD-1 wind 

tunnel is a closed-circuit facility with a closed test section 

measuring 18 metres in length and a maximal airflow veloc-

ity of up to 55 m/s. Figure 1 illustrates the schematic diagram 

of the computational setup and a fragment of wind tunnel 

modelling. To simulate the atmospheric boundary layer and 

create conditions corresponding to terrain class B, roughness 

elements are installed on the wind tunnel floor, enabling the 

setting of a roughness coefficient of  = 0.15 /33/. The tests 

are conducted on scaled models of high-rise buildings, fabri-

cated from ABS plastic at a scale of 1:300. The airflow im-

pacted the models at angles  ranging from 0° to 180° with 

a step of 10°. The building models had rectangular cross-

sections with aspect ratios ranging from 1 to 8, and their 

height in full scale is 182.88 m. Each model is equipped with 

9 levels of measurement points j. The total number of 

measurement points varies from 252 to 468 depending on the 

cross-sectional aspect ratio (Table 1). The airflow velocity at 

the control point in the wind tunnel is 11.4 m/s, consistent 

with standard conditions for atmospheric boundary layer 

modelling. For each wind direction angle, data are sampled 

over 32 s at a frequency of 312.5 Hz, resulting in approxi-

mately 10,000 measurements for each measurement point 

on the model. Ultimately, a dataset comprising over 45,000 

rows is generated, containing the pressure coefficient values 

(Cp,i) at measurement points i. 

a)

      

b)

 

c)

 

d)

  
Figure 1. Schematic of models and tests: a) arrangement of levels j 

of measurement points; b) sketch of building model; c) schematic 

of wind direction and placement of points at level j for a building 

scale of 1.5; d) example of model placement in the wind tunnel. 

Table 1. Geometric parameters of building models and the number 

of measurement points. 

Model Building dimensions (m) 

Length-to-

width ratio 

(scale) 

Number of 

measurement 

points 

A 30.48 × 30.48 × 182.88 1 252 

B 30.48 × 45.72 × 182.88 1.5 290 

C 30.48 × 60.96 × 182.88 2 288 

D 30.48 × 91.44 × 182.88 3 324 

E 30.48 × 121.92 × 182.88 4 360 

F 30.48 × 182.88 × 182.88 6 414 

G 30.48 × 243.84 × 182.88 8 468 

To address the objectives of this study, a PINN model is 

developed that employs a total loss function, Losstotal, as 

represented by Eq.(1). This function combines two key com-

ponents: the mathematical component, LossMSE, responsible 

for minimising the error between predicted and experimental 

data, and the physical component, Lossphysic, which ensures 

the model's compliance with fundamental physical laws. A 

weighting coefficient, λphysic, is introduced to balance the con-

tributions of these components, determining the significance 

of the physical component in the total loss function, 

(1 )total physic MSE physic physicLoss Loss Loss = − + , (1) 

where: Losstotal is overall weighted loss function of the PINN 

model; LossMSE is the data loss function based on the mean 

squared error (MSE), measuring the deviation of predicted 

values from target values; Lossphysic is physical loss function, 

representing the deviation of predicted values from the phys-

ical law; λphysic is the weight of the physical loss function. 

The physical loss function, Lossphysic, is based on Ber-

noulli's principle for an ideal fluid, applied to airflow in the 
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wind tunnel. The following assumptions are made to ensure 

the correct application of this law: air in the flow is consid-

ered as incompressible and inviscid medium which is justi-

fied at a wind tunnel airflow speed of 11.4 m/s; the airflow 

speed at each point remains constant throughout the tests; 

vortices and turbulence effects around the building are not 

considered; and the frictional effects of airflow on the build-

ing surface are assumed to be negligible. These assumptions 

simplify the computational model while maintaining suffi-

cient accuracy for aerodynamic characteristic analysis. Tak-

ing these assumptions into account, the physical loss function 

is expressed as, Eq.(2): 

 


2

, ,1( )N
p j U jj

physic

C C
Loss

N

= −
=


, (2) 

where: 


,p jC  is coefficient of pressure predicted by the model 

at level j; CU,j is theoretically calculated coefficient of pres-

sure at level j; N is number of measurement levels j along 

the building height. 

The coefficient of pressure CU,j at level j is determined 

using the formula: 

 
,

0
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where: U0 is average flow velocity at height z0, set to U0 = 

11.4 m/s for z0 = 182.88 m under test conditions; U(zj) repre-

sents the flow velocity at height zj in the boundary layer, 

calculated as per Eq.(4): 
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where:  is empirical coefficient for the velocity profile, 

determined based on the test conditions and the simulated 

terrain type /33/; z = zj is height of measurement points j 

relative to the building base. 

Figure 2 shows the graphs of the theoretically calculated 

and experimentally measured wind velocity within the bound-

ary layer height. The high degree of agreement between the 

graphs confirms the validity of proposed formulas: Eq.(3) for 

determining the average pressure coefficient at level j and 

Eq.(4) for calculating the air flow velocity in the boundary 

layer. Thus, the physical component of the total loss function, 

based on the Bernoulli principle, is applicable to the devel-

oped PINN model. 

 

 
Figure 2. Graphs of theoretically calculated and experimentally 

measured wind speed within the height of the boundary layer. 

The training and calculations using PINN for pressure 

coefficients at levels Cp,j are conducted under several bound-

ary conditions: only positive mean pressures Cp,j at each level 

j are considered, excluding suction effects; measurements 

from the edge points of the facade are excluded due to the 

high likelihood of flow separation; and the analysis is limited 

to the windward facade, where positive external pressures 

dominate. Taking these constraints into account, pressure coef-

ficient distribution graphs are generated for wind direction 

angles  ranging from 0° to 50°. Variations of Cp,j distribu-

tions for the ratio Scale =1.5 are presented in Fig. 3. 

The overall architecture of the PINN model represents an 

adapted fully connected neural network with three hidden 

layers, each containing 50 neurons. The activation function 

used is GELU (Gaussian Error Linear Unit), ensuring smooth-

ness and efficient training. The input data includes the build-

ing scale, the height level of measurement points j, and the 

wind direction angle , combined into a two-dimensional 

vector. The output layer consists of a single neuron that gen-

erates the pressure coefficient Cp,j. The Adam optimisation 

algorithm is employed with a fixed learning rate of 0.001. 

Early stopping with a tolerance parameter of 20 epochs is 

used to prevent overfitting, with the maximum number of 

training epochs limited to 1000. 

a)  

 

b)  

  
Figure 3. Profiles a), and heat map b), of the pressure coefficient 

distribution across levels Cp,j for the windward facade at a building 

scale of scale = 1.5. 

The model's performance is evaluated using both graph-

ical analysis and calculated metrics by comparing predicted 

pressure coefficient values Cp,j with experimental and theoret-

ically computed data. Experimental and theoretical pressure 

coefficients Cp,j are used as relative benchmarks to analyse 

the model's behaviour under different conditions. Quantita-

tive metrics such as mean squared error (MSE) and coeffi-
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cient of determination (R2) are calculated to measure the 

degree of agreement between the model's predictions and 

these data. 

Graphical analysis complements the metrics by providing 

a visual representation of the model's predictions. It enables 

the identification of trends, consistencies, and deviations 

between predicted, experimental, and theoretical Cp,j values. 

This combined approach demonstrates the model's ability to 

account for physical processes while offering a comprehen-

sive understanding of its performance. The results emphasise 

the importance of tuning physic to achieve an optimal bal-

ance between accurately reproducing experimental data and 

maintaining physical consistency. 

The development, training of models, and data analysis 

are conducted using Python version 3.12.3. Specialised tools 

include PyTorch for implementing neural networks, NumPy 

and Pandas for data processing, Matplotlib for result visual-

isation, and Scikit-learn for calculating metrics and accuracy 

analysis. Development is carried out in the Visual Studio 

environment. 

RESULTS 

This section presents the results of training the PINN 

model for predicting the distribution of pressure coefficient 

Cp,j across height levels j on the windward facade of the 

building. Figure 4 illustrates the cases corresponding to a 

building scale of Scale = 1.5 and a wind direction angle of 

 = 0 for a range of physical loss function weights physic from 

0 to 1. Using graphical analysis, the influence of physical 

loss function on the agreement of model predictions with 

experimental and theoretically calculated data, as well as the 

balance between prediction accuracy and alignment with 

theoretical pressure coefficient values Cp,j at different height 

levels, is determined. 

 

 
Figure 4. Influence of physical loss function weight physic on PINN 

model's predictions of pressure coefficient Cp,j for Scale = 1.5,  = 0°. 

It is noteworthy that the experimental and theoretically 

calculated values of pressure coefficient Cp,j exhibit certain 

discrepancies which increase with the height of measurement 

levels j. These discrepancies are likely due to assumptions 

made for the correct application of Bernoulli's principle in 

the implementation of the physical loss function. Specifi-

cally, air is considered incompressible and inviscid, while 

turbulent and vortex effects are excluded from the analysis. 

These simplifications streamline the calculations but result 

in deviations at greater heights. Nevertheless, such discrep-

ancies are acceptable within the scope of the research task. 

Furthermore, the differences between experimental and theo-

retical data visually demonstrate the impact of physical loss 

function weight on the training outcomes of PINN model and 

its ability to balance between mathematical loss LossMSE and 

physical loss Lossphysic components of the total loss function. 

Analysing the graphs in Fig. 4, it can be observed that 

with a physical loss function weight physic = 0 which repre-

sents one of the extreme cases, the PINN model is trained 

exclusively using mathematical loss function LossMSE. This 

loss function minimises the discrepancy between model's 

predictions and experimental data. The green line represent-

ing the model's predictions demonstrates good agreement 

with experimental values of pressure coefficient Cp,j (blue 

markers) at all height levels. However, significant deviations 

from physically calculated values of Cp,j (red markers), deter-

mined based on Bernoulli's principle, are noticeable. The 

absence of the physical loss function causes the model to 

align exclusively with experimental data, neglecting the 

system's physical constraints. Thus, with physic = 0, the 

model's predictions are fully oriented toward empirical data, 

enabling accurate reproduction of experimental values but 

leading to disregard of physical characteristics of the airflow. 

Continuing the analysis of the influence of physical loss 

function weight, the other extreme case at physic = 1 is con-

sidered. In this mode, the PINN model is trained exclusively 

using the physical loss function Lossphysic which minimises 

the discrepancy between the model's predictions and physi-

cally calculated values of pressure coefficient Cp,j. As shown 

in the graphs in Fig. 4, the model's predictions exhibit excel-

lent agreement with physically calculated values across all 

height levels. However, notable deviations from experi-

mental values of Cp,j are observed. This is because, with 

physic = 1, the model entirely focuses on physical principles, 

ignoring specific features of the experimental data. Thus, 

with physic = 1, the model's predictions become physically 

consistent but lose accuracy in reproducing experimental data. 

Considering the intermediate case at physic = 0.5, it can be 

noted that the PINN model training in this regime incorpo-

rates both the mathematical loss function LossMSE which 

minimises the deviation from experimental values of the pres-

sure coefficient Cp,j, and the physical loss function Lossphysic 

which ensures alignment with physically calculated values 

of Cp,j. Analysis of graphs in Fig. 4 shows that the model's 

predictions at physic = 0.5 demonstrate a balanced agreement 

with both experimental and physically calculated values at 

all height levels. Deviations from the experimental points 

significantly decrease compared to the case of physic = 1, 

while partial alignment with physical values is maintained. 
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Thus, with physic = 0.5, a compromise is achieved between 

the accuracy of reproducing experimental data and the phys-

ical consistency of the model. This allows the PINN model 

to account for both the specifics of experimental measure-

ments and fundamental physical principles, providing more 

balanced and reliable prediction results. A similar trend is 

observed for other values of physic, with the model's predic-

tions demonstrating varying degrees of balance between 

experimental and theoretically calculated data depending on 

the magnitude of this parameter. 

In Fig. 5, an illustration of the PINN model's predictions 

for pressure coefficient Cp,j at various wind direction angles 

 and physical loss function weights physic is presented. The 

analysis includes values of physic equal to 0.2, 0.5, and 0.9, 

as well as wind direction angles  of 0°, 40°, and 50°. The 

graphs clearly demonstrate the influence of the wind direc-

tion angle on the distribution of pressure coefficient Cp,j, 

showing how the model's behaviour changes depending on 

the balance between the mathematical loss function LossMSE 

and physical loss function Lossphysic. As expected, at physic = 

0.2, the PINN model predominantly minimises the mathe-

matical loss function LossMSE, resulting in the best align-

ment with experimental data. At physic = 0.5, the model 

strikes a balance between experimental data and physical 

constraints, producing more balanced predictions. At physic = 

0.9, the model focuses on minimising deviations from phys-

ically calculated pressure coefficient values, leading to near-

complete agreement between the model's predictions and the 

physical values of Cp,j. As the wind direction angle increases, 

the discrepancies between experimental and physically cal-

culated values of Cp,j decrease, and the overall model behav-

iour becomes more stable. Nonetheless, the change in wind 

direction angle  does not significantly affect the model's 

behaviour: at small values of physic, the model's predictions 

for Cp,j align closely with experimental data, while at larger 

values of physic, they approach theoretically calculated values. 

 
Figure 5. Influence of physical loss function weight physic and 

wind direction angle  on PINN model's predictions of the 

pressure coefficient Cp,j. 

DISCUSSION 

The section focuses on discussing the research results and 

analysing the dependence of model's predictions on the phys-

ical loss function weight  and wind direction angle . Key 

features of the model's behaviour under various conditions 

are identified. Special attention is given to interpreting ob-

served patterns and assessing the limitations of the proposed 

approach. 

The graphical analysis of the PINN model's predictions 

at various values of physical loss function weight physic 

demonstrates its ability to generalise experimental data and 

physically calculated pressure coefficients Cp,j for different 

building height levels. The adopted architecture of the PINN 

model and the training conditions, based on Bernoulli's law 

with certain assumptions, enable the model to achieve a con-

ditional balance between experimental and theoretical data. 

It is observed that the weight of the physical loss function 

directly influences the prioritisation of predictions: at low 

values of physic close to 0, the model focuses on experimental 

data, almost perfectly replicating them. Conversely, at high 

values of physic approaching 1, the model’s predictions align 

entirely with physically calculated pressure coefficients. 

The behaviour of the PINN model also depends on the 

wind direction angle . Graph analysis shows that with 

increasing wind direction angle, discrepancies between exper-

imental and physically calculated pressure coefficients Cp,j 

decrease. This trend is consistent regardless of the physical 

loss function weight physic. However, certain combinations 

of physic and wind direction angles, such as large angles and 

low weights, reveal cases of prediction collisions. In such 

cases, the model's predictions significantly deviate from both 

experimental data and physical calculations, highlighting 

the need for user oversight and proper interpretation of the 

model's outputs. 

For a quantitative evaluation of PINN model’s predic-

tions, Table 2 presents metrics characterising its accuracy 

relative to experimental and physically calculated data. The 

table includes values for mean squared error (MSE), coeffi-

cient of determination (R²), and total error for various values 

of physical loss function weight physic and wind direction 

angles . The analysis shows that at smaller wind direction 

angles ( = 0°, 20°), the model exhibits higher error for both 

types of data. As the wind direction angle increases, the 

model's accuracy improves due to reduced discrepancies 

between experimental and physically calculated values which 

also decreases the total error. This confirms that the PINN 

model can adapt to various conditions, but its predictions for 

the developed model require careful evaluation and verification. 

The analysis of results demonstrates that the weight of 

physical loss function physic has a direct impact on the behav-

iour of the PINN model. At low values of physic, the model 

primarily focuses on minimising deviations from experi-

mental data, achieving high accuracy in reproducing meas-

urement results. However, under these conditions, the model 

exhibits limited consideration of physical laws. Conversely, 

at high values of physic, the model minimises deviations from 

physically calculated data, ensuring the physical consistency 

of predictions, albeit with increased discrepancies from ex-
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perimental data. This approach provides users with the ability 

to flexibly adjust the balance between empirical and theo-

retical methods based on the modelling objectives, making 

the PINN model a versatile tool. However, it requires careful 

parameter tuning, such as the weight of the physical loss 

function, and thorough analysis of results to avoid errors 

and ensure physical validity of predictions. 

The analysis of results demonstrates that the weight of 

the physical loss function physic has a direct impact on the 

behaviour of the PINN model. At low values of physic, the 

model primarily focuses on minimising deviations from 

experimental data, achieving high accuracy in reproducing 

measurement results. However, under these conditions, the 

model exhibits limited consideration of physical laws. Con-

versely, at high values of physic, the model minimises devia-

tions from physically calculated data, ensuring the physical 

consistency of predictions, albeit with increased discrepan-

cies from experimental data. This approach provides users 

with the ability to flexibly adjust the balance between 

empirical and theoretical methods based on the modelling 

objectives, making the PINN model a versatile tool. How-

ever, it requires careful parameter tuning, such as the weight 

of the physical loss function, and thorough analysis of results 

to avoid errors and ensure the physical validity of predictions. 

Table 2. Evaluation metrics of the PINN model for varying physic 

and wind direction angles . 

physic 

Wind 

direction 

angle,  

Experiment Physical 
Total 

Error MSE R² MSE R² 

0.1 

0 0.0004 0.9487 0.0206 -1.4859 0.0024 

20 0.0003 0.9689 0.0068 0.2859 0.001 

30 0.0003 0.9515 0.0034 0.4062 0.0006 

50 0.0001 0.9026 0.0054 -2.6465 0.0007 

0.3 

0 0.0023 0.7258 0.0131 -0.5818 0.0056 

20 0.001 0.8986 0.0042 0.5639 0.0019 

30 0.0011 0.8064 0.002 0.6438 0.0014 

50 0.001 0.3252 0.0034 -1.3026 0.0017 

0.5 

0 0.0065 0.221 0.0065 0.2226 0.0065 

20 0.0022 0.7689 0.0022 0.773 0.0022 

30 0.0011 0.8078 0.0011 0.8102 0.0011 

50 0.0017 -0.1399 0.0017 -0.139 0.0017 

0.7 

0 0.0128 -0.5355 0.0023 0.7265 0.0054 

20 0.0045 0.5321 0.0011 0.8825 0.0021 

30 0.0022 0.6149 0.0004 0.9297 0.0009 

50 0.0034 -1.3196 0.0006 0.5645 0.0015 

0.9 

0 0.0209 -1.5184 0.0003 0.9685 0.0023 

20 0.0072 0.251 0.0001 0.986 0.0008 

30 0.0035 0.3823 0.000 0.9922 0.0004 

50 0.0055 -2.7183 0.0001 0.955 0.0006 

CONCLUSION 

As part of this study, a PINN model is developed and 

trained to predict the distribution of the pressure coefficient 

on the windward facade of a building. The behaviour of the 

model under various wind flow directions is analysed. The 

primary objective of this work is to evaluate the effective-

ness of using PINN for solving practical problems in building 

aerodynamics. The key feature and scientific novelty of this 

approach lie in the use of a combined loss function that 

incorporates both experimental pressure coefficient values 

and physical constraints based on Bernoulli's principle. Inte-

grating these two approaches into a single model demon-

strates potential for more accurate and flexible aerodynamic 

process modelling, opening opportunities for its application 

in building practices. 

The study examines the behaviour of the PINN model at 

different values of physical loss function weight. This made 

it possible to establish that the weight of the physical loss 

function directly influences the prediction priorities. At low 

weight values, the model predominantly focuses on experi-

mental data, while at higher values, it emphasises physical 

calculations. This approach enables flexible model adjust-

ments depending on the tasks, allowing for an optimal 

balance between empirical and theoretical data. 

To enhance the accuracy and universality of the PINN 

model in building aerodynamics, more complex physical 

laws need to be considered in future research. This study 

employed simplified assumptions, such as the absence of 

flow separation from surfaces and the neglect of air flow 

friction on building surfaces. While these assumptions sim-

plify calculations, they overlook several critical factors 

essential for accurate modelling. A promising direction is 

the use of turbulence models capable of describing complex 

vortex motion of airflows near building surfaces. This is 

particularly relevant for tasks requiring consideration of local 

turbulence effects. The behaviour of airflows around building 

corners, as well as on side and leeward facades, calls for the 

integration of flow separation theories which describe the 

complex interactions of flows with building geometries. 

Furthermore, the roughness of building surfaces should be 

accounted for using friction theories that describe airflow 

interaction with facades. 

In general, the application of more complex physical 

models and laws can significantly enhance the physical com-

ponent of the loss function, bringing it closer to real-world 

system behaviour. This not only improves the accuracy of 

the model's predictions but also makes it a universal tool for 

solving a wide range of building aerodynamics problems. In 

the future, integrating complex physical models and improv-

ing the architecture of the PINN model will open new per-

spectives for both research and engineering applications, ena-

bling the resolution of more complex and large-scale tasks. 

Thus, this study demonstrates that the PINN model holds 

great potential for applications in building aerodynamics. 

The integration of experimental data and physical constraints 

makes it a universal modelling tool capable of filling gaps in 

training data. However, the model requires further develop-

ment, including the incorporation of more complex physical 

laws such as turbulence, friction, and flow separation theo-

ries. At the same time, implementing such models will 

increase computational complexity and require precise hyper-

parameter tuning. Nonetheless, the prospects for applying 

the PINN model in building aerodynamics and architectural 

design appear promising, offering new opportunities for both 

research and engineering challenges. 
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