Fedor Zakharov'™ @, Jie Qian?, Yi Xu®

PHYSICS-INFORMED NEURAL NETWORKS FOR MODELLING PRESSURE
DISTRIBUTION ON BUILDING FACADES

NEURONSKE MREZE PODRZANE FIZICKIM ZAKONIMA ZA MODELIRANJE
RASPODELE PRITISKA NA FASADAMA ZGRADA

Originalni naucni rad / Original scientific paper
Rad primljen / Paper received: 19.04.2025
https://doi.org/10.69644/ivk-2025-02-0310
Adresa autora / Author's address:

1 Research Institute of Bluetown Leju Construction Management
Co. Ltd., Hangzhou, China “email: zaharof2010@gmail.com

F. Zakharov https://orcid.org/0009-0006-6242-8776

2) Research Institute of Bluetown Leju Construction Management
Co. Ltd, Hangzhou, China

3 Zhejiang Province Institute of Architectural Design and Research,
Hangzhou, China

Keywords

« Physics-Informed Neural Networks (PINN)
« building aerodynamics

+ Bernoulli's principle

« airflow modelling

« combined approach

« structural design

+ wind load

Abstract

This study explores the application of Physics-Informed
Neural Networks (PINN) for predicting the pressure coeffi-
cient distribution on the windward facade of a building.
The key feature of this approach is the use of a combined
loss function that simultaneously accounts for experimental
data and physical constraints derived from Bernoulli's prin-
ciple. This integration enables PINN to combine physical
rigor with high accuracy in reproducing experimental data.
The overall loss function of the PINN model consists of two
components: a mathematical loss function that minimises
deviations of model predictions from experimental data, and
a physics-based loss function, derived from Bernoulli's prin-
ciple for the flow of an ideal fluid and gas, which ensures
alignment with physical laws. A PINN model is developed
and trained, demonstrating adaptability to various condi-
tions, including wind direction angles and the weight of the
physical loss function. The analysis reveals that the weight
of the physical loss function significantly influences the
prioritisation of predictions: at lower weights, the model
prioritises experimental data, whereas at higher weights, it
aligns more closely with physical calculations. Instances of
prediction anomalies are observed, where the results deviate
significantly from both data sources, highlighting the need
for careful monitoring of the model's outputs. Future research
directions include incorporating more advanced physical
laws, such as turbulence and friction models, to improve
prediction accuracy. Results demonstrate the potential of
PINN for applications in building aerodynamics, effectively
integrating theoretical calculations and empirical data for
precise modelling.

INTRODUCTION

Rapid development of machine learning and artificial
intelligence technologies (Al) in recent years has opened up
vast opportunities for modernising various sectors of the
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Kljucne reci

« neuronske mreze podrzane fizickim zakonima (PINN)
« aerodinamika zgrada

« Bernulijev princip

« modeliranje strujanja vazduha

 kombinovani pristup

« projektovanje konstrukcija

- optereéenja od vetra

Izvod

U radu se istrazuje primena neuronske mreze podrzane
fizickim zakonima (PINN) za predvidanje raspodele koefici-
Jjenta pritiska na zgradi sa vetrovite strane. Kljucna karak-
teristika ovog pristupa je upotreba kombinovane funkcije
gubitka koja istovremeno uzima u obzir eksperimentalne
podatke i fizicka ogranicenja izvedena iz Bernulijevog princi-
pa. Ova integracija omogucava PINN modelu da poveze
fizicku preciznost sa visokom tacnoséu u reprodukovanju eks-
perimentalnih podataka. Ukupna funkcija gubitka PINN
modela sastoji se iz dva dela: matematicke funkcije gubitka,
koja minimizuje odstupanja koja se modelom predvidaju iz
eksperimentalnih podataka, i funkcije gubitka zasnovane na
fizici, izvedene iz Bernulijevog principa strujanja idealnog
fluida i gasa, ¢ime se obezbeduje uskladenost sa fizickim
zakonima. PINN model je razvijen i istreniran, pokazujuci
prilagodljivost razlicitim uslovima, ukljucujuci uglove prav-
ca vetra i tezinsku funkciju fizickih gubitaka. Analiza poka-
zuje da tezinska funkcija fizickih gubitaka znacajno utice na
odredivanje prioriteta predvidanja: pri manjim tezinama
model daje prioritet eksperimentalnim podacima, dok pri
vecim tezinama, vise prati fizicke proracune. Uoceni su slu-
Cajevi anomalija u predvidanjima, gde rezultati znacajno
odstupaju i od eksperimentalnih podataka i od fizickih modela,
Sto ukazuje na potrebu za pazljivim pracenjem izlaza modela.
Buduéa istrazivanja ukljucuju uvodenje naprednijih fizickih
zakona, kao Sto su modeli turbulencije i trenja, radi pobolj-
Sanja tacnosti predvidanja. Dobijeni rezultati pokazuju
potencijal PINN za primene u aerodinamici zgrada, efikasno
kombinujuci teorijske proracune i empirijske podatke za
precizno modeliranje.

economy, including architecture, construction, and design.
These technologies actively contribute to improving process
efficiency, enhancing project management, and introducing
automation in the construction industry /1-4/. One of the key
and rapidly evolving areas of Al application is building
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aerodynamics, where intelligent algorithms provide new
approaches to design. Traditionally, wind load analysis on
buildings and structures relies on standard calculation
methods, wind tunnel modelling, and numerical techniques
such as Computational Fluid Dynamics (CFD), which remains
the most popular tool for addressing hydraulic and aerody-
namic problems. CFD offers high accuracy in modelling air-
flow, particularly in complex conditions of urban environ-
ments /5/ and serves as the foundation for analysing aero-
dynamic loads on unique architectural forms, including
iconic skyscrapers /8/. At the same time, the development of
simplified numerical approaches accelerates flow modelling
in the context of limited computational resources /6/. These
methods, along with the advanced application of CFD in
high-rise building design, have proven their reliability and
are widely adopted in engineering practice /7/.

The increasing number of modern high-rise buildings with
unique architecture, the complexity of structural solutions,
and active urbanisation demand the development of more
accurate and efficient approaches to calculating wind loads.
This is particularly important in the context of advancements
in computational aecrodynamics over the past 30 years, which
include modelling the interaction of buildings with their sur-
roundings /9/, as well as recent achievements in fluid dy-
namics, acrodynamics, and turbulence modelling /10/. Stand-
ard calculation methods often fail to account for non-stand-
ard scenarios, while wind tunnel modelling remains labour-
intensive, requiring significant financial and time invest-
ments. CFD modelling effectively addresses a wide range of
challenges, including optimising wind resistance systems for
high-rise buildings /11/ and analysing peak wind loads on
buildings within the atmospheric boundary layer using large
eddy simulations /12/. However, this approach demands sub-
stantial computational resources and the involvement of
highly qualified specialists, particularly for implementing
complex engineering projects. Moreover, errors in setting
initial parameters or using incorrect input data significantly
reduce the accuracy of calculations and the quality of the
results.

Recent studies demonstrate the successful application of
artificial intelligence methods to a wide range of engineer-
ing challenges, including those in structural aerodynamics.
Classical machine learning methods such as Gradient Boost-
ing and Random Forest show high accuracy in predicting
aerodynamic coefficients for various building types. These
approaches are effectively used to analyse aerodynamic inter-
actions between low-rise and high-rise buildings /13/, predict
unsteady wind loads in three-dimensional coordinates on tall
structures /14/, and evaluate the capabilities of different Al
methods for calculating aerodynamic characteristics /15/.
Generative Adversarial Networks (GANs) are an example
of successful implementation of modern machine learning
techniques in structural aerodynamics. Research has demon-
strated their efficiency in predicting mean and fluctuating
pressure coefficients on building surfaces /17/ and optimis-
ing urban block design to improve pedestrian-level wind
conditions in combination with CFD optimisation /16/.

Machine learning techniques, including convolutional and
recurrent neural networks, have gained wide adoption and
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allow for modelling complex dependencies between building
parameters and wind loads. These approaches have been
successfully applied to forecast aerodynamic damping in
structures experiencing airflow-induced oscillations /18/ and
assess the impact of wind speed on high-rise buildings by
combining experimental studies with machine learning models
/19/. Al models have also been used in research applica-
tions such as thermal process modelling and material me-
chanics. These include graph-based models for building ther-
mal dynamics /20/, neural networks for hydrodynamics and
heat transfer /21/, multiscale modelling of thermal conduc-
tivity in phase-transitioning materials /22/, and vibration
dynamics analysis for precise vibration identification and
structural optimisation /23/. However, a key limitation of
many Al models remains the high demand for large volumes
of training data, which restricts their application in practical
engineering. This is particularly relevant in modelling airflow
for building design, where access to accurate and repre-
sentative data is often challenging /24, 25/.

One of the advanced neural network models that signifi-
cantly reduces the data requirements for training is PINN.
These networks integrate physical laws into the training
process and have been applied to a wide range of engineer-
ing problems, such as analysing vibrations induced by vortex
shedding with consideration of variable structural stiffness
/26/, modelling pile-soil interactions to assess load-bearing
capacity /27/, predicting fluid flows based on visualised data in
bridge construction /28/, analysing tunnel settlement, such as
in the Hong Kong-Zhuhai-Macau Tunnel /29/, modelling chlo-
ride diffusion in concrete for durability assessment /30/, and
solving direct and inverse problems for complex beam sys-
tems, including Euler-Bernoulli and Timoshenko beams /31/.

The integration of physical laws is particularly important
for tasks where compliance with regulatory requirements and
physical constraints plays a key role in ensuring the reliabil-
ity and safety of designed systems. In structural acrodynam-
ics, neglecting such constraints can lead to serious conse-
quences, including structural failures and risks to human life
and safety. The use of physics-informed approaches improves
the accuracy of calculations and enhances the interpretabil-
ity of results, which is critical for creating resilient and safe
engineering solutions. However, the application of PINN in
structural aerodynamics remains underexplored, presenting
opportunities for future research. Potential directions include
the development of innovative methods for assessing wind
loads, optimising building geometry considering aerodynam-
ic characteristics, and improving the accuracy of wind impact
predictions in dense urban environments.

The aim of this study is to develop and evaluate the effec-
tiveness of PINN for calculating the mean pressure coeffi-
cient on the windward facade of a building, integrating exper-
imental data obtained from wind tunnel testing and the
physical laws of structural aerodynamics into the model. The
research objectives include:

1) developing a PINN model that incorporates the physical
laws of aerodynamics for calculating the mean pressure
coefficient on the windward facade of a building;

2) assessing the impact of the weight of the physics-informed
loss function, based on Bernoulli's law, on the predictions of
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the PINN model, including its accuracy and agreement with
experimental data;

3) analysing the influence of wind direction angle on the
behaviour of the PINN model and its ability to balance
experimental and physically calculated data.

These objectives are aimed at comprehensively exploring
the application of PINN in structural aerodynamics to evalu-
ate its potential for precise modelling and adaptation to real-
world design conditions. The scientific novelty of this work
lies in the use of PINN for calculating wind loads on high-
rise buildings. By integrating physical laws, PINN signifi-
cantly reduces dependence on uncertainties and errors in
experimental data. This approach enhances the accuracy and
reliability of calculations and improves the interpretability
of model predictions, enabling detailed analysis of the influ-
ence of physical parameters on results.

MATERIALS AND METHODS

The study utilised a dataset generated from wind tunnel
tests of high-rise building models conducted in the ZD-1
wind tunnel at Zhejiang University /32/. The ZD-1 wind
tunnel is a closed-circuit facility with a closed test section
measuring 18 metres in length and a maximal airflow veloc-
ity of up to 55 m/s. Figure 1 illustrates the schematic diagram
of the computational setup and a fragment of wind tunnel
modelling. To simulate the atmospheric boundary layer and
create conditions corresponding to terrain class B, roughness
elements are installed on the wind tunnel floor, enabling the
setting of a roughness coefficient of &= 0.15 /33/. The tests
are conducted on scaled models of high-rise buildings, fabri-
cated from ABS plastic at a scale of 1:300. The airflow im-
pacted the models at angles 8 ranging from 0° to 180° with
a step of 10°. The building models had rectangular cross-
sections with aspect ratios ranging from 1 to 8, and their
height in full scale is 182.88 m. Each model is equipped with
9 levels of measurement points j. The total number of
measurement points varies from 252 to 468 depending on the
cross-sectional aspect ratio (Table 1). The airflow velocity at
the control point in the wind tunnel is 11.4 m/s, consistent
with standard conditions for atmospheric boundary layer
modelling. For each wind direction angle, data are sampled
over 32 s at a frequency of 312.5 Hz, resulting in approxi-
mately 10,000 measurements for each measurement point
on the model. Ultimately, a dataset comprising over 45,000
rows is generated, containing the pressure coefficient values

(Cp,i) at measurement points 7.
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Figure 1. Schematic of models and tests: a) arrangement of levels j
of measurement points; b) sketch of building model; c¢) schematic
of wind direction and placement of points at level j for a building

scale of 1.5; d) example of model placement in the wind tunnel.

Table 1. Geometric parameters of building models and the number
of measurement points.

Length-to- | Number of
Model | Building dimensions (m) | width ratio [measurement
(scale) points

A 30.48 x 30.48 x 182.88 1 252
B 30.48 x 45.72 x 182.88 1.5 290
C 30.48 x 60.96 x 182.88 2 288
D 30.48 x 91.44 x 182.88 3 324
E 30.48 x 121.92 x 182.88 4 360
F 30.48 x 182.88 x 182.88 6 414
G 30.48 x 243.84 x 182.88 8 468

To address the objectives of this study, a PINN model is
developed that employs a total loss function, LosSww, as
represented by Eq.(1). This function combines two key com-
ponents: the mathematical component, Lossuse, responsible
for minimising the error between predicted and experimental
data, and the physical component, Lossynysic, Which ensures
the model's compliance with fundamental physical laws. A
weighting coefficient, Apsic, is introduced to balance the con-
tributions of these components, determining the significance
of the physical component in the total loss function,
Losstotal =(- ﬂphysic )LOSSMSE + ﬁ’physicl‘ossphysic > M
where: Lossri 1s overall weighted loss function of the PINN
model; Lossuyse is the data loss function based on the mean
squared error (MSE), measuring the deviation of predicted
values from target values; Losspnysic 1S physical loss function,
representing the deviation of predicted values from the phys-
ical law; Apnysic 1s the weight of the physical loss function.

The physical loss function, Losspuysic, is based on Ber-
noulli's principle for an ideal fluid, applied to airflow in the
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wind tunnel. The following assumptions are made to ensure
the correct application of this law: air in the flow is consid-
ered as incompressible and inviscid medium which is justi-
fied at a wind tunnel airflow speed of 11.4 m/s; the airflow
speed at each point remains constant throughout the tests;
vortices and turbulence effects around the building are not
considered; and the frictional effects of airflow on the build-
ing surface are assumed to be negligible. These assumptions
simplify the computational model while maintaining suffi-
cient accuracy for aerodynamic characteristic analysis. Tak-
ing these assumptions into account, the physical loss function
is expressed as, Eq.(2):

2
Zﬂy:l(c p.i—Cu,j) @)
N

where: C, ; is coefficient of pressure predicted by the model

Loss physic =

at level j; Cy, is theoretically calculated coefficient of pres-
sure at level j; N is number of measurement levels j along
the building height.

The coefficient of pressure Cy; at level j is determined
using the formula: @)

Ul(z;
Cu,; Us ,

where: Uj is average flow velocity at height zo, set to Uy =
11.4 m/s for zo = 182.88 m under test conditions; U(z)) repre-
sents the flow velocity at height z; in the boundary layer,
calculated as per Eq.(4):

U(2)=U, [i] ;
20

where: « is empirical coefficient for the velocity profile,
determined based on the test conditions and the simulated
terrain type /33/; z= z; is height of measurement points j
relative to the building base.

Figure 2 shows the graphs of the theoretically calculated
and experimentally measured wind velocity within the bound-
ary layer height. The high degree of agreement between the
graphs confirms the validity of proposed formulas: Eq.(3) for
determining the average pressure coefficient at level j and
Eq.(4) for calculating the air flow velocity in the boundary
layer. Thus, the physical component of the total loss function,
based on the Bernoulli principle, is applicable to the devel-
oped PINN model.

3

Q)

Comparison of calculated and measured wind speed
300

e Calculated wind speed
—— Measured wind speed
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Figure 2. Graphs of theoretically calculated and experimentally
measured wind speed within the height of the boundary layer.
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The training and calculations using PINN for pressure
coefficients at levels C,; are conducted under several bound-
ary conditions: only positive mean pressures C,; at each level
j are considered, excluding suction effects; measurements
from the edge points of the facade are excluded due to the
high likelihood of flow separation; and the analysis is limited
to the windward facade, where positive external pressures
dominate. Taking these constraints into account, pressure coef-
ficient distribution graphs are generated for wind direction
angles @ ranging from 0° to 50°. Variations of C,; distribu-
tions for the ratio Scale =1.5 are presented in Fig. 3.

The overall architecture of the PINN model represents an
adapted fully connected neural network with three hidden
layers, each containing 50 neurons. The activation function
used is GELU (Gaussian Error Linear Unit), ensuring smooth-
ness and efficient training. The input data includes the build-
ing scale, the height level of measurement points j, and the
wind direction angle &, combined into a two-dimensional
vector. The output layer consists of a single neuron that gen-
erates the pressure coefficient C,,;. The Adam optimisation
algorithm is employed with a fixed learning rate of 0.001.
Early stopping with a tolerance parameter of 20 epochs is
used to prevent overfitting, with the maximum number of
training epochs limited to 1000.
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Figure 3. Profiles a), and heat map b), of the pressure coefficient
distribution across levels Cp, for the windward facade at a building
scale of scale = 1.5.

The model's performance is evaluated using both graph-
ical analysis and calculated metrics by comparing predicted
pressure coefficient values C,; with experimental and theoret-
ically computed data. Experimental and theoretical pressure
coefficients C,; are used as relative benchmarks to analyse
the model's behaviour under different conditions. Quantita-
tive metrics such as mean squared error (MSE) and coeffi-
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cient of determination (R?) are calculated to measure the
degree of agreement between the model's predictions and
these data.

Graphical analysis complements the metrics by providing
a visual representation of the model's predictions. It enables
the identification of trends, consistencies, and deviations
between predicted, experimental, and theoretical C,; values.
This combined approach demonstrates the model's ability to
account for physical processes while offering a comprehen-
sive understanding of its performance. The results emphasise
the importance of tuning Aujsic to achieve an optimal bal-
ance between accurately reproducing experimental data and
maintaining physical consistency.

The development, training of models, and data analysis
are conducted using Python version 3.12.3. Specialised tools
include PyTorch for implementing neural networks, NumPy
and Pandas for data processing, Matplotlib for result visual-
isation, and Scikit-learn for calculating metrics and accuracy
analysis. Development is carried out in the Visual Studio
environment.

RESULTS

This section presents the results of training the PINN
model for predicting the distribution of pressure coefficient
C,; across height levels j on the windward facade of the
building. Figure 4 illustrates the cases corresponding to a
building scale of Scale = 1.5 and a wind direction angle of
6= 0 for a range of physical loss function weights Appysic from
0 to 1. Using graphical analysis, the influence of physical
loss function on the agreement of model predictions with
experimental and theoretically calculated data, as well as the
balance between prediction accuracy and alignment with
theoretical pressure coefficient values C,;at different height
levels, is determined.

Aphysic = 0.1

Aphysic = 0.3 Aphysic = 0.5

06 08 10 06 08 10 06 08 10
cpj cp.j cpi
Aphysic = 0.7 Aphysic = 0.9 Aphysic = 1.0

0:6 (l.‘ﬂ 10 0.‘6 0.‘3 10 0.‘6 0:8 1.‘0
cp.j cp.j cp.j

Figure 4. Influence of physical loss function weight Apnysic on PINN
model's predictions of pressure coefficient Cp, for Scale = 1.5, = 0°.
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It is noteworthy that the experimental and theoretically
calculated values of pressure coefficient C,; exhibit certain
discrepancies which increase with the height of measurement
levels j. These discrepancies are likely due to assumptions
made for the correct application of Bernoulli's principle in
the implementation of the physical loss function. Specifi-
cally, air is considered incompressible and inviscid, while
turbulent and vortex effects are excluded from the analysis.
These simplifications streamline the calculations but result
in deviations at greater heights. Nevertheless, such discrep-
ancies are acceptable within the scope of the research task.
Furthermore, the differences between experimental and theo-
retical data visually demonstrate the impact of physical loss
function weight on the training outcomes of PINN model and
its ability to balance between mathematical loss Lossuse and
physical loss Losspnysic components of the total loss function.

Analysing the graphs in Fig. 4, it can be observed that
with a physical loss function weight Ansic = 0 which repre-
sents one of the extreme cases, the PINN model is trained
exclusively using mathematical loss function Lossyse. This
loss function minimises the discrepancy between model's
predictions and experimental data. The green line represent-
ing the model's predictions demonstrates good agreement
with experimental values of pressure coefficient C,; (blue
markers) at all height levels. However, significant deviations
from physically calculated values of C,; (red markers), deter-
mined based on Bernoulli's principle, are noticeable. The
absence of the physical loss function causes the model to
align exclusively with experimental data, neglecting the
system's physical constraints. Thus, with Apsic = 0, the
model's predictions are fully oriented toward empirical data,
enabling accurate reproduction of experimental values but
leading to disregard of physical characteristics of the airflow.

Continuing the analysis of the influence of physical loss
function weight, the other extreme case at Apjysic = 1 is con-
sidered. In this mode, the PINN model is trained exclusively
using the physical loss function Losspiysic which minimises
the discrepancy between the model's predictions and physi-
cally calculated values of pressure coefficient C,;. As shown
in the graphs in Fig. 4, the model's predictions exhibit excel-
lent agreement with physically calculated values across all
height levels. However, notable deviations from experi-
mental values of C,; are observed. This is because, with
Aphysic = 1, the model entirely focuses on physical principles,
ignoring specific features of the experimental data. Thus,
with Apnsic = 1, the model's predictions become physically
consistent but lose accuracy in reproducing experimental data.

Considering the intermediate case at Apnysic = 0.5, it can be
noted that the PINN model training in this regime incorpo-
rates both the mathematical loss function Lossuse which
minimises the deviation from experimental values of the pres-
sure coefficient C,, and the physical loss function Losspysic
which ensures alignment with physically calculated values
of C,,. Analysis of graphs in Fig. 4 shows that the model's
predictions at Ansic = 0.5 demonstrate a balanced agreement
with both experimental and physically calculated values at
all height levels. Deviations from the experimental points
significantly decrease compared to the case of Appsic = 1,
while partial alignment with physical values is maintained.
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Thus, with Apuysic = 0.5, a compromise is achieved between
the accuracy of reproducing experimental data and the phys-
ical consistency of the model. This allows the PINN model
to account for both the specifics of experimental measure-
ments and fundamental physical principles, providing more
balanced and reliable prediction results. A similar trend is
observed for other values of Ay, with the model's predic-
tions demonstrating varying degrees of balance between
experimental and theoretically calculated data depending on
the magnitude of this parameter.

In Fig. 5, an illustration of the PINN model's predictions
for pressure coefficient C,; at various wind direction angles
6 and physical loss function weights Ay is presented. The
analysis includes values of Apuic equal to 0.2, 0.5, and 0.9,
as well as wind direction angles € of 0°, 40°, and 50°. The
graphs clearly demonstrate the influence of the wind direc-
tion angle on the distribution of pressure coefficient C,},
showing how the model's behaviour changes depending on
the balance between the mathematical loss function Lossuse
and physical loss function Losspnysic. As expected, at Apjysic =
0.2, the PINN model predominantly minimises the mathe-
matical loss function Lossuse, resulting in the best align-
ment with experimental data. At Apysic = 0.5, the model
strikes a balance between experimental data and physical
constraints, producing more balanced predictions. At Appysic =
0.9, the model focuses on minimising deviations from phys-
ically calculated pressure coefficient values, leading to near-
complete agreement between the model's predictions and the
physical values of C,;. As the wind direction angle increases,
the discrepancies between experimental and physically cal-
culated values of C,; decrease, and the overall model behav-
iour becomes more stable. Nonetheless, the change in wind
direction angle & does not significantly affect the model's
behaviour: at small values of Apsic, the model's predictions
for C,; align closely with experimental data, while at larger
values of Ansic, they approach theoretically calculated values.
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Figure 5. Influence of physical loss function weight Apaysic and
wind direction angle 8 on PINN model's predictions of the
pressure coefficient Cp,.
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DISCUSSION

The section focuses on discussing the research results and
analysing the dependence of model's predictions on the phys-
ical loss function weight A and wind direction angle 6. Key
features of the model's behaviour under various conditions
are identified. Special attention is given to interpreting ob-
served patterns and assessing the limitations of the proposed
approach.

The graphical analysis of the PINN model's predictions
at various values of physical loss function weight Apnysic
demonstrates its ability to generalise experimental data and
physically calculated pressure coefficients C,; for different
building height levels. The adopted architecture of the PINN
model and the training conditions, based on Bernoulli's law
with certain assumptions, enable the model to achieve a con-
ditional balance between experimental and theoretical data.
It is observed that the weight of the physical loss function
directly influences the prioritisation of predictions: at low
values of Appsic close to 0, the model focuses on experimental
data, almost perfectly replicating them. Conversely, at high
values of Apnysic approaching 1, the model’s predictions align
entirely with physically calculated pressure coefficients.

The behaviour of the PINN model also depends on the
wind direction angle 6. Graph analysis shows that with
increasing wind direction angle, discrepancies between exper-
imental and physically calculated pressure coefficients C,;
decrease. This trend is consistent regardless of the physical
loss function weight A,nsic. However, certain combinations
of Apmysic and wind direction angles, such as large angles and
low weights, reveal cases of prediction collisions. In such
cases, the model's predictions significantly deviate from both
experimental data and physical calculations, highlighting
the need for user oversight and proper interpretation of the
model's outputs.

For a quantitative evaluation of PINN model’s predic-
tions, Table 2 presents metrics characterising its accuracy
relative to experimental and physically calculated data. The
table includes values for mean squared error (MSE), coeffi-
cient of determination (R?), and total error for various values
of physical loss function weight Apsic and wind direction
angles 6. The analysis shows that at smaller wind direction
angles (6= 0°, 20°), the model exhibits higher error for both
types of data. As the wind direction angle increases, the
model's accuracy improves due to reduced discrepancies
between experimental and physically calculated values which
also decreases the total error. This confirms that the PINN
model can adapt to various conditions, but its predictions for
the developed model require careful evaluation and verification.

The analysis of results demonstrates that the weight of
physical loss function A,psic has a direct impact on the behav-
iour of the PINN model. At low values of Apysic, the model
primarily focuses on minimising deviations from experi-
mental data, achieving high accuracy in reproducing meas-
urement results. However, under these conditions, the model
exhibits limited consideration of physical laws. Conversely,
at high values of Appsic, the model minimises deviations from
physically calculated data, ensuring the physical consistency
of predictions, albeit with increased discrepancies from ex-
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perimental data. This approach provides users with the ability
to flexibly adjust the balance between empirical and theo-
retical methods based on the modelling objectives, making
the PINN model a versatile tool. However, it requires careful
parameter tuning, such as the weight of the physical loss
function, and thorough analysis of results to avoid errors
and ensure physical validity of predictions.

The analysis of results demonstrates that the weight of
the physical loss function A has a direct impact on the
behaviour of the PINN model. At low values of Aupygic, the
model primarily focuses on minimising deviations from
experimental data, achieving high accuracy in reproducing
measurement results. However, under these conditions, the
model exhibits limited consideration of physical laws. Con-
versely, at high values of A,4ysic, the model minimises devia-
tions from physically calculated data, ensuring the physical
consistency of predictions, albeit with increased discrepan-
cies from experimental data. This approach provides users
with the ability to flexibly adjust the balance between
empirical and theoretical methods based on the modelling
objectives, making the PINN model a versatile tool. How-
ever, it requires careful parameter tuning, such as the weight
of the physical loss function, and thorough analysis of results
to avoid errors and ensure the physical validity of predictions.

Table 2. Evaluation metrics of the PINN model for varying Apaysic
and wind direction angles 6.

Wind Experiment Physical
Aohysi direction Total
Physie MSE R? MSE | R? | Error
angle, 6
0 0.0004 0.9487 |0.0206 |-1.4859(0.0024
20 0.0003 0.9689 |0.0068 [ 0.2859 | 0.001
0.1 30 0.0003 0.9515 |0.0034 | 0.4062 | 0.0006
50 0.0001 0.9026 |0.0054 [-2.6465]0.0007
0 0.0023 0.7258 |0.0131 |-0.5818 0.0056
20 0.001 0.8986 |0.0042 | 0.5639 | 0.0019
0.3 30 0.0011 0.8064 | 0.002 |[0.6438 [0.0014
50 0.001 0.3252 |0.0034 [-1.3026(0.0017
0 0.0065 0.221 |0.0065 | 0.2226 | 0.0065
20 0.0022 0.7689 |0.0022 | 0.773 |0.0022
0.5 30 0.0011 0.8078 |0.0011{0.8102 |0.0011
50 0.0017 -0.1399 |{0.0017 | -0.139 | 0.0017
0 0.0128 -0.5355 |0.0023 [ 0.7265 | 0.0054
20 0.0045 0.5321 |0.0011 | 0.8825(0.0021
0.7 30 0.0022 0.6149 |0.0004 [ 0.9297 | 0.0009
50 0.0034 -1.3196 | 0.0006 | 0.5645 | 0.0015
0 0.0209 -1.5184 |0.0003 | 0.9685 | 0.0023
20 0.0072 0.251 |0.0001 | 0.986 | 0.0008
0.9 30 0.0035 0.3823 | 0.000 |0.9922 | 0.0004
50 0.0055 -2.7183 |0.0001 | 0.955 |0.0006
CONCLUSION

As part of this study, a PINN model is developed and
trained to predict the distribution of the pressure coefficient
on the windward facade of a building. The behaviour of the
model under various wind flow directions is analysed. The
primary objective of this work is to evaluate the effective-
ness of using PINN for solving practical problems in building
aerodynamics. The key feature and scientific novelty of this
approach lie in the use of a combined loss function that
incorporates both experimental pressure coefficient values
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and physical constraints based on Bernoulli's principle. Inte-
grating these two approaches into a single model demon-
strates potential for more accurate and flexible aerodynamic
process modelling, opening opportunities for its application
in building practices.

The study examines the behaviour of the PINN model at
different values of physical loss function weight. This made
it possible to establish that the weight of the physical loss
function directly influences the prediction priorities. At low
weight values, the model predominantly focuses on experi-
mental data, while at higher values, it emphasises physical
calculations. This approach enables flexible model adjust-
ments depending on the tasks, allowing for an optimal
balance between empirical and theoretical data.

To enhance the accuracy and universality of the PINN
model in building aerodynamics, more complex physical
laws need to be considered in future research. This study
employed simplified assumptions, such as the absence of
flow separation from surfaces and the neglect of air flow
friction on building surfaces. While these assumptions sim-
plify calculations, they overlook several critical factors
essential for accurate modelling. A promising direction is
the use of turbulence models capable of describing complex
vortex motion of airflows near building surfaces. This is
particularly relevant for tasks requiring consideration of local
turbulence effects. The behaviour of airflows around building
corners, as well as on side and leeward facades, calls for the
integration of flow separation theories which describe the
complex interactions of flows with building geometries.
Furthermore, the roughness of building surfaces should be
accounted for using friction theories that describe airflow
interaction with facades.

In general, the application of more complex physical
models and laws can significantly enhance the physical com-
ponent of the loss function, bringing it closer to real-world
system behaviour. This not only improves the accuracy of
the model's predictions but also makes it a universal tool for
solving a wide range of building aerodynamics problems. In
the future, integrating complex physical models and improv-
ing the architecture of the PINN model will open new per-
spectives for both research and engineering applications, ena-
bling the resolution of more complex and large-scale tasks.

Thus, this study demonstrates that the PINN model holds
great potential for applications in building aerodynamics.
The integration of experimental data and physical constraints
makes it a universal modelling tool capable of filling gaps in
training data. However, the model requires further develop-
ment, including the incorporation of more complex physical
laws such as turbulence, friction, and flow separation theo-
ries. At the same time, implementing such models will
increase computational complexity and require precise hyper-
parameter tuning. Nonetheless, the prospects for applying
the PINN model in building aerodynamics and architectural
design appear promising, offering new opportunities for both
research and engineering challenges.
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