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Abstract 

Pressure vessels are such type of engineering structure 

commonly used in many aspects in many industries such as 

aerospace industry, transport industry for transfer of fuels, 

nuclear reactors. In this paper we analyse the creep behav-

iour of an isotropic pressure vessel with hemispherical ends 

made of Al-SiCp composite subjected to internal pressure and 

establish a mathematical model for the pressure vessel with 

hemispherical ends as a modular structure made of two 

parts: first part is the middle portion of the vessel as a 

cylinder subjected to internal pressure; and the second part 

as hemispherical ends of the pressure vessel subjected to 

internal pressure. We analyse the effect of reinforcement size 

(P = 1.7 m, 14.5 m, and 45.9 m) on the creep behaviour 

and strength of pressure vessel. Threshold creep law has 

been used for this analysis, because due to apparently high 

activation energy and high stress exponent, Norton’s law is 

not preferable. We conclude that the creep rates for cylin-

drical and spherical parts of the pressure vessel composed 

of composite material with 1.7 m size of reinforcement as 

compared with other cases with reinforcement sizes of 

14.7 m and 45.9 m, show highly reliable character of the 

structure. This concludes that the structure with reinforce-

ment size of 1.7 m is highly reliable for the design. 

Ključne reči 

• modeliranje 

• posuda pod pritiskom 

• polusferna danca 

• zakon dopuštenog napona puzanja 

• puzanje 

Izvod 

Posude pod pritiskom su takav tip inženjerske konstruk-

cije koje se često koriste u mnogim aspektima industrija, kao 

što su aerokosmička, industrija transporta za transport gori-

va, nuklearni reaktori. U ovom radu analiziramo ponašanje 

puzanja izotropne posude pod pritiskom sa polusfernim dan-

cem od Al-SiCp kompozita, koja je opterećena unutrašnjim 

pritiskom, i definišemo matematički model za posudu pod 

pritiskom sa polusfernim dancem kao modularnu konstruk-

ciju sastavljenu iz dva dela: prvi deo je srednji cilindrični 

deo posude pod dejstvom unutrašnjeg pritiska; a drugi deo 

su polusferna danca posude opterećena unutrašnjim pritis-

kom. Dajemo analizu uticaja veličine čestičnog ojačanja 

(P = 1,7 m, 14,5 m i 45,9 m) na ponašanje puzanja i 

čvrstoću posude. Za analizu je primenjen zakon dopuštenog 

napona puzanja, jer je Nortonov zakon neprikladan zbog 

evidentno velike aktivacione energije i velikog eksponenta 

napona. Zaključujemo da brzine puzanja cilindričnog i sfer-

nih delova posude pod pritiskom od kompozitnog materijala 

sa čestičnim ojačanjem 1,7 m, pokazuju mnogo veću pouz-

danost u ponašanju konstrukcije u odnosu na ostale sluča-

jeve veličine ojačanja od 14,7 m i 45,9 m. Time zaključu-

jemo da je konstrukcija izvedena kompozitom sa veličinom 

čestičnog ojačanja 1,7 m vrlo pouzdana u projektovanju. 

INTRODUCTION 

Pressure vessels composed of composite materials offer 

significant advantages over traditional materials like steel or 

aluminium. The main causes of these benefits are composite 

materials' high strength, low weight, and resistance to corro-

sion, /1-3/. Pressure vessels are very common structures used 

in different ways in many industries. Spacecraft, satellites, 

and launch vehicles are among the aerospace applications that 

use composite pressure vessels. Their lightweight design 

makes them perfect for holding gases such as propellants, 

pressurised air, or other fluids, as it minimises the overall 

weight and fuel consumption of vehicles. Composite pressure 

vessels are used in the automobile sector to store hydrogen 

or compressed natural gas (CNG) for fuel cell vehicles. The 

internal pressure is distributed more evenly over the whole 

surface of the pressure vessel with hemispherical ends. In 

comparison to pressure vessels with flat ends, this leads to 

smaller stress concentration, reducing the possibility of struc-

tural collapse. Spherical ends are naturally sturdy and resili-

ent to pressure from both the inside and the outside due to 

their curvature. Because of its strength, pressure vessels with 

hemispherical ends have improved structural integrity and 

can tolerate high pressures. Vessels with flat or dished ends 

typically have sharp corners and transitions; spherical ends 

eliminate this. The lack of stress concentration spots at junc-
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tions lowers the possibility of fatigue and increases the ves-

sel's overall durability. We consider the pressure vessel with 

hemispherical ends subjected to internal pressure and we 

establish a mathematical model for the pressure vessel with 

hemispherical ends as modular structure made of two parts: 

first part is the mid portion of the vessel as a cylinder sub-

jected to internal pressure; and the second part are hemi-

spherical ends of the pressure vessel subjected to internal 

pressure. The performance and behaviour of a structure can 

be greatly influenced by the size and volume content of the 

reinforcement, especially in reinforced concrete structures. 

This parameter is essential for figuring out the structure's 

strength, durability, structural integrity, and other character-

istics. Strength and load-bearing capability of a structure are 

generally improved by increasing the volume content of the 

reinforcement. The amount of reinforcement present in a 

structure can affect its shear and flexural properties. In order 

to avoid excessive deflection, cracking and shear failure, 

enough reinforcing is necessary. In recent times many re-

searchers have studied creep behaviour of pressure vessels. 

Primary creep analysis of an anisotropic thick-walled spher-

ical shell under internal pressure was investigated by Bhatna-

gar et al. /4/. Miller /5/ evaluated solutions for stresses and 

displacements in a thick spherical shell subjected to internal 

and external pressure. You et al. /6/ presented a highly 

precise model to carry out elastic analysis of thick-walled 

spherical pressure vessels. Nejad et al. /7/ studied creep 

stresses in isotropic and homogeneous thick-walled spherical 

pressure vessels under internal and external pressure and dis-

cussed the creep response of the material using Norton’s 

law and the effect of changes in material properties on the 

stresses and displacement. Bhatnagar and Arya /8/ evaluated 

creep behaviour of thick-walled cylinder considering large 

strains using finite strain theory. Bhatnagar et al. /9/ studied 

creep analysis of thick-walled orthotropic rotating cylinder 

using finite strain theory to examine the effect of anisotropy 

on strain rate and stresses. Creep deformation for internally 

pressurised spherical and cylindrical vessels also was done by 

some researchers in recent times /10-12/. Singh and Gupta 

/13/ studied the effect of content, size and reinforcement, 

and operating temperature on the strain rate and stresses in 

Al-SiCp composite cylinder considering the internal pressure 

using threshold creep law and observing a significant varia-

tion in stresses and strain rate with variation in the size and 

content of the reinforcement and operational temperature. 

MATHEMATICAL MODEL 

The following assumptions are made in the analysis: 

‑ the material is homogeneous and remains isotropic during 

creep; 

‑ there are no volume changes during creep; 

‑ the total strain is composed of elastic and creep strain 

components. 

Consider an anisotropic pressure vessel made of Al-SiCp 

composite with hemispherical ends, with inner radius ‘a’ and 

outer radius ‘b’ for the cylindrical part as well as hemi-

spherical ends, subjected to internal pressure ‘p’, i.e., follow-

ing boundary conditions, which implies 

at inner radius (a), 

radial stress rr = a = –p , (1) 

at outer radius (b), 

radial stress rr = b = 0 . (2) 

 
Figure 1. Cross section of pressure vessel with hemispherical ends 

subjected to internal pressure. 

In aluminium matrix composite materials subjected to 

creep conditions, the effective strain rate is linked with effec-

tive stress, with well established threshold stress base law: 

 
0[ ( )]nM  = − , (3) 

where:  , , and 0 are effective strain rate, effective stress, 

and threshold stress, respectively. 

So effective stress is written as, 

 
1

0

n

M


 = + , (4) 

where: M and 0 are known as creep parameters and depend 

upon the material and application temperature (T). The size 

of reinforcement and the quantity of reinforcement are im-

portant for analysis. Creep parameters have been estimated 

from creep results reported in literature for Al-SiCp compo-

site (Singh and Gupta, /14/). The relation between strain rates 

and displacement rate are given as 

 
r

du

dr
 = , (5) 

 
u

r
 = . (6) 

Eliminating ̇u from the above equations, we get compati-

bility equation as 

 
r

d
r

dr





 = − . (7) 

Now we analyse the pressure vessel with hemispherical 

ends as two sections. The first one is the cylindrical mid sec-

tion, the second section are hemispherical sections on both 

ends of the pressure vessel. 

ANALYSIS OF CYLINDRICAL MIDDLE SECTION OF 

PRESSURE VESSEL 

The equilibrium equation for cylinder is given as 

 ( )r
r

d
r

dr



 = − . (8) 

Assuming there is no change in volume, then the sum of 

creep strain rates is given as 

 0r z  + + = . (9) 

Fundamental constitutive equations for isotropic materials 

given by Bhatnagar and Gupta /15/ are given as 

 [2 ]
2

r r z


   


= − − , (10) 

 [2 ]
2

z r 


   


= − − , (11) 
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 [2 ]
2

z z r 


   


= − − , (12) 

where: r, , and z are radial, tangential and longitudinal 

stresses. The structure does not change in volume, therefore 

plane strain condition is applicable, i.e., longitudinal strain 

rate is zero, and we get 

 0z = , (13) 

 
2

r
z

 


+
= . (14) 

Putting the value of the longitudinal stress in Eq.(10) and 

Eq.(11), we have 

 
3

[ ]
4

r r 


  


= − , (15) 

 
3

[ ]
4

r 

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

= − . (16) 

The effective stress is given as 

2 2 2 1 21
[( ) ( ) ( ) ]

2
z z r r       = − + − + − . (17) 

Substituting value of longitudinal stress, we get 

 
3

( )
2

r  = − . (18) 

Solving Eq.(15) and Eq.(16) with the help of Eq.(18), we get 

 
2 2

3 3
r   = − = . (19) 

From Eqs. (7) and (19), we have 

 2 0
d

r
dr





+ = . (20) 

Separating the variables and integrating the above equation, 

we get 

 1

2

C

r
 = . (21) 

Now putting the value of   in Eq.(19), we get effective 

strain rate as 

 1

2

22

3 3

C

r
 = = . (22) 

Now we solve Eq.(8) with the help of Eqs. (4) and (22), 

we get 
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1
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2

2 2

3
3

n

nn
r

n

n n

Cd
r
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r M




+

+
= +  (23) 

Integrating the above equation and taking limits from inner 

radius ‘a’ to radius ‘r’, we get 
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2

2 2
ln
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nn
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n C r
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a
M

 
− −

+

 
  = − + −   
 

. (24) 

Now we substitute the boundary condition from Eq.(2), 

and we get 

 

1
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112 2

2
ln

33
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nn n
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p

Mb
C

na b


+

− −

 
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 
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 
 − 

. (25) 

Putting the value of integrating constant and radial stress 

becomes 

1 1
2 20 2

1 12 2

2

2
ln
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r n
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− −
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0

2
ln

3

r
p

a


 
+ − 

 
. (26) 

We rewrite the above equation as 

 

2 2

0
2

ln
3

n n
r

r
X r a p

a
 

− − 
  = − + −   
 

, (27) 

where: X is given as 

 
0

2 2

2
ln

3

n n

a
p

b
X

a b



− −

 
+  

 
=

−

. (28) 

Also from Eq.(18), we calculate the value of tangential 

stress as 

 
2

3
r  = + . (29) 

Radial stresses are calculated from Eq.(27) for particular 

composite material. From Eq.(29) with the help of effective 

stress we find out the tangential stress. Also, the longitudinal 

stress is calculated from Eq.(14) by using radial and tangen-

tial stresses. We calculate the effective strain rate as well as 

radial and tangential strain rates from Eqs. (3) and (19). 

ANALYSIS OF HEMISPHERICAL SECTION OF PRES-

SURE VESSEL 

A small element of the hemispherical ends of the pressure 

vessel is considered in equilibrium of forces in the radial 

direction and we may write, 

 2( )r
r

d
r

dr



 = − . (30) 

Now, constitutive equations of steady state creep in the 

isotropic material are considered, and due to the spherical 

symmetry of the spherical vessel, we write,  =  

 [ ]r r 


  


= − , (31) 

 [ ]
2

r 


  


= − , (32) 

 [ ]
2

r 


  


= − , (33) 

where: r, , and  are radial, tangential, and longitudinal 

stresses. The well known Von-Mises yield criterion is 

 ( )r  = − . (34) 

Solving Eqs. (31), (32), and (33) with the help of Eq. 

(34), we get 

 2 2r     = − = = . (35) 

Using this in Eq.(7), we get 

 3 0
d

r
dr





+ = . (36) 

Separating the variables and integrating the above equation, 

we get 

 1

3

C

r
 = . (37) 

Now, we put the value of   in Eq.(35) and we get the 

effective strain rate as, 
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 1

3

2
2

C

r
 = = . (38) 

Now, solving Eq.(30) with the help of Eqs. (4) and (38), 

we get 
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1
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2
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n

nn
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n
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r
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


+

= + . (39) 

Integrating the above equation and taking limits from inner 

radius ‘a’ to radius ‘r’, we get 

 

11
3 3

1
0

2
2 ln

3

n

nn
n n

r

Cn r
r a p

M a
 

+

− − 
  = − − + −   
 

. (40) 

Now, substituting the boundary condition from Eq.(2), 

we get 

1
0

113 3

2 ln
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Putting the value of integrating constant and radial stress 

becomes, 
1

3 30

013 3

2 ln
2 3

2 ln
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n

n
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nn n

r
p

n M ra
r a p
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+
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  (42) 

We rewrite the above equation as 

 

3 3

02 lnn n
r

r
Y a r p

a
 

− − 
  = − + −   
 

, (43) 

where Y is given as       
0

3 3

2 ln

n n

a
p

b
Y

a b



− −

 
+  

 
=

−

. (44) 

Also from Eq.(34), we calculate the value of tangential 

stress as 

 
r  = + . (45) 

Radial stresses are calculated from Eq.(34), for particular 

composite material. From Eq.(45) with the help of effective 

stress we find out the tangential stress. We calculate the 

effective strain rate as well as the radial and tangential strain 

rates from Eqs. (3) and (35). 

PARAMETERS USED IN THIS STUDY 

We consider a pressure vessel made of Al-SiCp with hemi-

spherical ends subjected to internal pressure. Based on the 

mathematical solution present above, values of stresses and 

strain rates are calculated for different combinations rein-

forcement size. Results are established by considering the 

following data: inner radius of pressure vessel is 500 mm; 

outer radius of pressure vessel is 800 mm; internal pressure 

is 100 MPa. 

The creep parameters M and 0 required in the calcula-

tions are shown in Table 1. 

Table 1. Creep parameters for Al-SiCp composite. 

P 

(m) 

T 

(°C) 

V 

(vol.%) 

M 

(s–1/5MPa) 
 0  

(MPa) 

Coefficient of 

correlation 

1.7 350 10 0.00435 19.83 0.945 

14.5 350 10 0.00872 16.50 0.999 

45.9 350 10 0.00939 16.29 0.998 

NUMERICAL RESULTS 

Stress distribution at different reinforcement size at 10 % of 

reinforcement volume 

Numerical results from the current analysis for the stress 

distribution for different reinforcement sizes (P = 1.7 m, 

14.5 m, and 45.9 m) at 10 % of reinforcement volume for 

both cylindrical and spherical parts of an isotropic pressure 

vessel with hemispherical ends are plotted in Figs. 2 to 4. 

The variations in stress magnitude for the three different 

cases (P = 1.7 m, 14.5 m, and 45.9 m) are clearly not 

significant. Radial stresses for cylindrical and spherical part 

of a pressure vessel are similar for all three cases of differ-

ent reinforcement size and show a compressive nature on 

the entire radii. Tangential and longitudinal stresses remain 

tensile in nature on the entire radii for both cylindrical and 

spherical part of the pressure vessel. The tangential stresses 

developed in the spherical part are much lower as compared 

to the cylindrical part of the vessel. Variations in radial and 

longitudinal stresses are not significant in both cylindrical 

and the spherical part of the pressure vessel. All three stresses 

(radial, tangential, and longitudinal) have least magnitude at 

the inner radius and increase along inner to outer radius. 

The effective stress for the cylindrical and spherical parts 

of the pressure vessel are plotted in Fig. 4. It is clearly seen 

that effective stresses developed in the spherical part are 

much lower as compared to the cylindrical part of pressure 

vessel for all three cases of different reinforcement size. 

 
Figure 2a. Variation of radial stress for the cylindrical part of 

pressure vessel. 

 
Figure 2b. Variation of tangential stress for the cylindrical part of 

pressure vessel. 
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Figure 2c. Variation of longitudinal stress for the cylindrical part 

of pressure vessel. 

 

 
Figure 3a. Variation of radial stress for the spherical part of 

pressure vessel. 

 

 
Figure 3b. Variation of tangential stress for the spherical part of 

pressure vessel. 

 

 
Figure 3c. Variation of longitudinal stress for the spherical part of 

pressure vessel. 

The magnitude of effective stress has maximum value at 

inner radii and decreases from inner to outer radii. 

Effective strain rates are significantly lower when size of 

reinforcement is taken as 1.7 m among the three cases of 

reinforcement size for both cylindrical and spherical part of 

the pressure vessel. 

 
Figure 4a. Variation of effective stresses in the cylindrical part of 

pressure vessel. 

 
Figure 4b. Variation of effective stresses in the spherical part of 

pressure vessel. 

Creep rates for different reinforcement size at 10 % of rein-

forcement volume 

Creep rates for different reinforcement size for the cylin-

drical and spherical part of the pressure vessel are plotted in 

Figs. 5 and 6. 

 
Figure 5a. Variation of effective strain rates for the cylindrical part 

of pressure vessel. 
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Figure 5b. Variation of radial strain rates for the cylindrical part of 

pressure vessel. 

 
Figure 5c. Variation of tangential strain rates for the cylindrical 

part of pressure vessel. 

In the second case when reinforcement size is taken as 

14.5 m, the effective strain rates are lower as compared to 

45.9 m reinforcement size, but have larger values as com-

pared to 1.7 m. Similarly, tangential strain rates follow same 

trends as effective strain rates, but with lower values for all 

three cases of reinforcement size for both the cylindrical and 

spherical part of pressure vessel as shown in Figs. 5 and 6. 

In the spherical part of pressure vessel effective strain rate 

and tangential strain rates have positive values and much 

lower values as compared to the cylindrical part of pressure 

vessel for all three cases of reinforcement size at 10 % rein-

forcement volume. 

 
Figure 6a. Variation of effective strain rates for the spherical part 

of pressure vessel. 

 

 
Figure 6b. Variation of radial strain rates for the spherical part of 

pressure vessel. 

 

 
Figure 6c. Variation of tangential strain rates for the spherical part 

of pressure vessel. 

Radial strain rates are negative for both cylindrical and 

spherical part of pressure vessel. Absolute values of radial 

strain rates for 1.7 m reinforcement size are much lower 

among the three cases of reinforcement size. In the second 

case when reinforcement size is 14.5 m the modulus values 

of radial strain rates are lower as compared to the 45.9 m 

reinforcement size but are larger as compared to 1.7 m for 

both cylindrical and spherical part of pressure vessel. Among 

the cylindrical and spherical part, absolute values of radial 

strain rates are much lower for all three cases of reinforce-

ment size for 10 % volume of reinforcement. 

Stress distribution at reinforcement size P = 1.7 m at 10 % 

of reinforcement volume 

Further, we compare stresses in cylindrical and spherical 

parts of pressure vessel when reinforcement size is taken as 

1.7 m. Radial stresses do not have a significant difference 

for cylindrical and spherical parts of the pressure vessel as 

shown in Fig. 7 and remain compressive in nature through-

out the radius. We observe that the tangential stress in the 

cylindrical part is higher as compared to the spherical part 

of pressure vessel and has minimal value at inner radii and 

increases with increase in radius, as shown in Fig. 7, and 

shows tangential nature throughout the entire radius. Longi-

tudinal stresses in the cylindrical and spherical part of the 

pressure vessel do not have much significant difference, as 

seen from Fig. 7. Longitudinal stress has a minimal value at 

the inner radius as the tangential stress and increases with 

increase in radius. 
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Figure 7a. Variation of radial stress for reinforcement size P = 

1.7 m at 10 % volume for the cylindrical and spherical part of 

pressure vessel. 

 

 
Figure 7b. Variation of tangential stress for reinforcement size P = 

1.7 m at 10 % volume for the cylindrical and spherical part of 

pressure vessel. 

 

 
Figure 7c. Variation of longitudinal stress for reinforcement size 

P = 1.7 m at 10 % volume for the cylindrical and spherical part 

of pressure vessel. 

Effective stresses have a significant difference for the 

cylindrical and spherical part of pressure vessel. From Fig. 

8 it is observed that effective stresses for the cylindrical part 

are much higher than for the spherical part of the pressure 

vessel and shows a tensile nature throughout the entire radii. 

Creep rates for reinforcement size P = 1.7 m at 10 % of 

reinforcement volume 

Creep rates are plotted in Fig. 9 when we consider the size 

of reinforcement as 1.7 m at 10 % reinforcement volume.  

 

 
Figure 8. Variation of effective stress for reinforcement size P = 

1.7 m at 10 % volume for the cylindrical and spherical part of 

pressure vessel. 

From Fig. 9 it is observed that in the spherical part the creep 

rates are significantly lower as compared to the cylindrical 

part of pressure vessel. Effective strain and tangential strain 

rate remain positive throughout the entire radii and have a 

maximal value at the inner radii and decrease when moving 

from inner to outer radii. The tangential strain rate shows 

similar trends as compared to effective strain rates but with 

lower values for both cylindrical and spherical part of the 

pressure vessel. Radial strain rate remains negative on the 

entire radii. The absolute value of radial strain rate is much 

lower in the case of the spherical part of pressure vessel as 

compared to the cylindrical part. 

 

 
Figure 9a. Variation of effective strain rate for reinforcement size 

P = 1.7 m at 10 % volume for the cylindrical and spherical part 

of pressure vessel. 

 
Figure 9b. Variation of radial strain rate for reinforcement size P = 

1.7 m at 10 % volume for the cylindrical and spherical part of 

pressure vessel. 
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Figure 9c. Variation of tangential strain rate for reinforcement size 

P = 1.7 m at 10 % volume for the cylindrical and spherical part 

of pressure vessel. 

Creep rates of cylindrical part at P = 1.7 m and spherical 

part at P = 14.5 m at 10 % of reinforcement volume 

From Fig. 9 it is observed that creep rates for cylindrical 

and spherical part have a significant difference. We compare 

creep rates for cylindrical part with reinforcement size of 

1.7 m and spherical part of the pressure vessel with rein-

forcement size of 14.5 m, as shown in Fig. 10. In this situ-

ation the effective strain rate is higher in the spherical part as 

compared to the cylindrical part of pressure vessel at inner 

radii, but at outer radii the difference is much less as shown 

in Fig. 10. 

 
Figure 10a. Variation of effective strain rate for the cylindrical part 

at P = 1.7 m and spherical part at P = 14.5 m at 10 % volume. 

 
Figure 10b. Variation of radial strain rate for the cylindrical part at 

P = 1.7 m and spherical part at P = 14.5 m at 10 % volume. 

 
Figure 10c. Variation of tangential strain rate for the cylindrical part 

at P = 1.7 m and spherical part at P = 14.5 m at 10 % volume. 

The tangential strain rate at inner radii for the spherical 

part is higher but when we move from inner to outer radii 

the tangential strain rate for the cylindrical part is higher, as 

compared to the spherical part of pressure vessel. Effective 

and tangential strain rates remain positive throughout the 

entire radii, tangential strain rates having lower value than 

effective strain rates for both cylindrical and spherical part of 

pressure vessel. Radial strain rates are negative for the entire 

radii. Absolute value of radial strain rate is lower in the case 

of the cylindrical part as compared to the spherical part of 

the pressure vessel. At inner radii there is a larger difference 

between the absolute value of radial strain rate, but at the 

outer radii the difference is much lesser. 

CONCLUSIONS 

It is primarily concluded that: 

‑ Stress concentrations for cylindrical and spherical parts of 

the pressure vessel accumulate at varying radii (500 - 800 

mm) with highly similar intensity for different sizes of 

reinforcement. The effective stresses have maximal inten-

sity/concentration at the internal radius and diminish as 

we approach the outer radius for all different sizes of the 

reinforcement. The nonlinear character is visible in the 

graphs. 

‑ The effective strain rate for cylindrical and spherical parts 

of the pressure vessel composed of composite material 

with 1.7 m reinforcement size is compared with other 

cases with reinforcement sizes of 14.7 m and 45.9 m 

and shows a highly reliable character of the structure. The 

strains do not suddenly drop as we approach the outer 

radius in the case of 1.7 m reinforcement size compared 

to the other cases. This concludes that the structure with 

reinforcement size of 1.7 m is highly reliable in the 

design. 

‑ Radial, tangential and effective stresses are much higher 

in the cylindrical part of the pressure vessel as compared 

to the spherical part. Also, strain rates are much higher in 

the cylindrical part as compared to the spherical part of 

the pressure vessel. 

FUTURE SCOPE 

We made analysis with 10 % of reinforcement volume. 

As observed, the cylindrical part has much higher values of 
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stresses and strains as compared to the spherical part of the 

pressure vessel. We shall increase the reinforcement volume 

to form/fabricate a structure in which the stresses and strain 

concentration/distribution are uniform. 
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