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Abstract 

In this paper, elastic-plastic stress analysis is done for a 

pressurized thick-walled functionally graded cylinder rotat-

ing along its axis with angular velocity  so that the col-

lapse of the cylinder under loading can be avoided. The 

problem is formulated for functionally graded transversely 

isotropic material by using Seth’s transition theory. Results 

are analysed theoretically and discussed numerically. From 

this analysis, it has been concluded that the cylinder made up 

of functionally graded transversely isotropic material (beryl) 

has less circumferential stresses than cylinder of transversely 

isotropic material (magnesium) and isotropic material (steel). 

Thus, transversely isotropic material (beryl) is safe as com-

pared to the cylinder made up of transversely isotropic 

material (magnesium) and isotropic material (steel). 

Ključne reči 

• funkcionalni kompozitni materijal 

• elastičnost 

• plastičnost 

• transverzalno izotropan 

• cilindar 

• unutrašnji pritisak 

• spoljašnji pritisak 

Izvod 

Izvedena je elastoplastična analiza napona kod debelozi-

dog cilindra po pritiskom koji rotira oko sopstvene ose ugao-

nom brzinom , napravljen od funkcionalnog kompozitnog 

materijala, tako da se kolaps cilindra pod opterećenjem 

može izbeći. Problem se formuliše za funkcionalni kompo-

zitni transverzalno izotropni materijal primenom teorije 

prelaznih napona Seta. Rezultati se analiziraju teorijski uz 

diskusiju numeričkih podataka. Zaključuje se da se u cilindru 

od funkcionalnog kompozitnog transverzalnog izotropnog 

materijala (berilijum) javljaju manji obimski naponi u odnosu 

na cilindar od transverzalnog izotropnog (magnezijum) i izo-

tropnog materijala (čelik). Stoga je transverzalni izotropni 

materijal (berilijum) sigurniji u odnosu na transverzalni 

izotropni (magnezijum) i izotropni materijal (čelik). 

INTRODUCTION 

Functionally graded materials (FGMs) are non-homoge-

neous materials. Their physical properties vary throughout 

the material. Advantages of FGMs over laminated compo-

sites include eliminating interfaces between different layers 

by avoiding points of high-stress concentration. The hollow 

cylindrical structure can be designed by suitably varying its 

thermal, mechanical, and physical properties as a function of 

position within material. The problem of rotating cylinders 

or disks has wide applications in rotating machinery such as 

high-speed cameras, gas and steam turbines, planetary land-

ings, etc. The stress analysis of rotating functionally graded 

cylinders is a popular subject for most of investigators. The 

solution to the problem of homogeneous isotropic cylinders 

is discussed in various books /1-2/. Nadai /3/ first studied 

the deformation behaviour of rotating perfectly plastic cylin-

ders beyond the elastic limits but was unable to satisfy the 

compatibility requirements. Hodge et al. /4/ solved the prob-

lem described by Nadai with a more general condition. 

Lenard et al. /5/ calculated the instability speed for rotating 

solid cylinder using the Nadai approach of plastic flow. 

However, Gamer et al. /6/ gave a new concept of plastic flow 

and stated that in an edge regime of Tresca’s hexagon in 

principal stress space when yielding occurs in the shaft at 

the centre of the rotating solid, another plastic region in a 

side regime rises simultaneously and these two regions 

spread together into the elastic region with increase in rota-

tion speed. Mack /7/ obtained the analytical solution for the 

rotating elastic-perfectly plastic solid shaft with axially un-

constrained ends in 1991. Lance and Gamer /8/ obtained 

stresses and radial displacement in rotating linearly harden-

ing hollow shafts with fixed ends in 1983. Mack /7/ treated 

the problem of rotating elastoplastic hollow shafts with free 

ends in 1991. In /7/, he investigated the unloading and the 

secondary flow in a rotating elastic-plastic hollow cylinder. 

Sharma et al. /10/ investigated thermal elastic-plastic stresses 

for a rotating functionally graded stainless steel composite 

cylinder under internal and external pressure with general 

nonlinear strain-hardening law and von Mises’ yield criterion 

using finite difference method. Analytical solutions obtained 

by these authors considered yield criterion, linear strain meas-

ure, and jump conditions, using the concept of infinitesimal 

strain theory. The drawback of the classical theory is that it 

https://orcid.org/0009-0002-7698-845X
https://orcid.org/0009-0007-2895-9626
https://doi.org/10.69644/ivk-2025-siA-0075
mailto:rekhapanchalmath@gmail.com


Thermal elastic-plastic transition of functionally graded thick- … Termički elastoplastični prelazni naponi kod debelozidog … 

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 25, Specijalno izdanje A 2025, str. S75–S83 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 25, Special Issue A 2025, pp. S75–S83 

 

S76 

cannot provide the solution for the physical problem of finite 

deformation. Seth /11/ introduced a new concept of the tran-

sition state in his theory called transition theory and subse-

quently identified the transition state analytically with the 

asymptotic representation at the turning point of the nonlin-

ear differential equation through a series of papers. The tran-

sition theory /11/ is an analytical and most powerful tool of 

nonlinear analysis which provides a constructive approach 

for solving various physical problems related to the diverse 

disciplines of science and engineering. It has been exten-

sively studied, and its concept of generalised strain measure 

is utilized and extended in the literature by several authors 

on various problems (see for instance /12-16/). Sharma et 

al. /14/ analysed thermal hoop stresses in the transversely 

isotropic thick-walled rotating cylinder under internal pres-

sure. In /14/, he obtained the solution for the elastic-plastic 

transition of a pressurized transversely isotropic cylinder 

with steady-state temperature. Aggarwal et al. /15/ investi-

gated safety factors in the transversely isotropic thick-walled 

cylinder under internal and external pressure using the Lebes-

gue strain measure and concluded that transversely isotropic 

material is a better choice for the design of cylinder as com-

pared to isotropic material. Sharma et al. /16/ investigated 

the thermal creep stresses in rotating pressurized spherical 

shells and concluded that the effect of non-homogeneity is 

very pronounced. The present study is directed toward devel-

oping an analytical solution for functionally graded trans-

versely isotropic cylinder. Our results extend some of the 

well-known previous results. 

MATHEMATICAL FORMULATION OF PROBLEM 

We consider a thick-walled circular cylinder made up of 

functionally graded transversely isotropic material with inner 

and outer radii a and b, respectively, subjected to inner pres-

sure Pi and outer pressure Po. The cylinder is taken so large 

that the plane sections remain planar during the expansion, 

and hence the longitudinal strain is the same for all elements 

at each stage of the expansion. 

 

Figure 1. A functionally graded rotating transversely isotropic cyl-

inder with inner pressure Pi and outer pressure Po at the boundary. 

Displacement components in cylindrical polar coordinates 

are given by 

 (1 ),   0,   r zu r u u dz= − = = , (1) 

where:  is function of r = (x2 + y2) only; and d is a constant. 

The finite components of strain /13/ are given as follows: 

 
1 1

[1 ( ) ],   [1 ],n n
rre r e

n n
  = − + = −  

 
1

[1 (1 ) ],   0n
zz r z zre d e e e

n
 = − − = = = . (2) 

Stress-strain relations for transversely isotropic material: 

 
11 11 66 13 1( 2 )rr rr zzT C e C C e C e T = + − + − , 

 
11 66 11 13 2( 2 ) rr zzT C C e C e C e T  = − + + − , 

13 13 33 2zz rr zzT C e C e C e T = + + − , 0zr z rT T T = = =  (3) 

where: 1 = C111 + 2C122; 2 = C121 + (C22 + C33)2; 1 

is coefficient of linear thermal expansion along the axis of 

symmetry; 2 is coefficient of linear thermal expansion 

orthogonal to the axis of symmetry; Cij = C0ij(r/b)–k; Cij are 

stiffness constants; and k  0 is non-homogeneity parame-

ter. 

Using Eqs.(2) in Eqs.(3), we get 
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0r z rzT T T = = = .  (4) 

Equations of equilibrium are all satisfied except, 

 2( ) 0rr
rr

T Td
T r

dr r

  
− 

+ + = 
 

. (5) 

where:  is density of the material. The temperature field 

satisfying the Laplace equation (2T = 0) and T = T0 at r = 

a, T = 0 at r = b, where T0 is constant given by 

 
0 log

log

r
T

b
T

a

b

 
 
 

=
 
 
 

. (6) 

IDENTIFICATION OF TRANSITION POINT 

We know that as the point in the material has yielded, 

the material at the neighbouring points is on its way to yield-

ing rather than remaining in its complete elastic or fully plas-

tic state. Thus, we can assume that there exists some state 

in-between elastic and plastic, called as a transition state. 

So, at transition the differential system defining the elastic 

state should attain some criticality. The differential equation 

which comes out to be nonlinear at the transition state is 

obtained by substituting Eqs.(4) in Eq.(5), 

1 1
11 11 11 66 66 1 0 2 1 0(1 ) (1 ) ( 2 ) 2 {1 (1 ) } ( ) log( )n n n n n n ndP r

nPC P nPC P C C nP C P n T nrT
d b

      


+ −  + = − + − − + − + − + − +
 

 

 2 2
11 11 66 13 0 1[1 (1 ) ] ( 2 )[1 ] [1 (1 ) ] log( )n n n n r

nr kC P k C C kC d nT k
b

    + − − + − − − − − − + , (7) 

where: r  = P; and T̅0 = T0/log(r/b).  
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Critical points or transitional points of Eq.(7) are P → -1 

and P → . 

The boundary conditions are given by 

 Trr = –pi   at   r = a ;   Trr = –po   at   r = b. (8) 

The resultant axial force is given by 

 2 0
b

zz
a

rT dr = . (9) 

MATHEMATICAL APPROACH 

The material from the elastic state goes into the plastic 

state as P →  or to the creep state as P → -1 under inner 

and outer pressure. It has been shown /7, 8, 10-12/ that the 

asymptotic solution through the principal stress leads from 

an elastic to plastic state at the transition point P → . For 

finding the plastic stress at the transition point P → , we 

define the transition function TR in terms of Trr as, 

11 66 13 12( ) zz rrTR C C nC e nT n T B= − + − − + =  

 
11 66 11[ 2 (1 ) ]n nC C C P B= − + + + . (10) 

Taking the logarithmic differentiation of Eq.(10) with 

respect to ‘r’, with asymptotic value as P → , which on 

integration yields, 

 1C
TR Ar

−
= . (11) 

where: A is a constant of integration; and C1 = 2C066/C011. 

Using Eq.(11) in Eq.(10), we get 

 1
3 0( ) ( )log ( / ) ( / )

C
rr

r
T C r r A n r B n

b
 − 

= − − + 
 

, (12) 

where: 0(r) = 1(r)T̅0; and  

011 012 013

3

2
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k k k
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C C nC e
b b b

C r
n

− − −       
 + +     
       

= . 

Using boundary condition Eq.(8) in the above equation, 

 
1

1
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a
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   

− 
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, 

and 
1

0 3 0 3 3 0
1

( ) ( ) ( ) ( )log

1

iC

a
B n p C b p p C b C a a

bb

a


   

= − − + − − + −   
    

−    

. 

Substituting the value of A and B in Eq.(12), we get 

 

1

1
0 3 3 0 0 3 3 0

1

( ) ( ) ( )log ( ) ( ) ( )log

1

C

rr iC

b

r ar
T p C r C b r p p C b C a a

b bb

a

 

 
−       

= − + − − + − − + −    
     

− 
 

. (13) 

Using Eq.(13) in Eq.(5), we have 
1

1

1
2 2

3 0 0 0 0 3 3 0

( 1) 1

(1 ) ( ) (1 ) ( )log ( ) ( ) ( ) ( )log

1

C

iC

b
C

r ar
T k C r k r r p p p C b C a a r

b bb

a
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 
− +       
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     

− 
 

 . (14) 

The axial stress is obtained from Eq.(4) as 

 
( )

2
13 33 11 66 13 13 1 2 2 11 66

11 66 11 66 11 66

( ) [ ( ) 2 ( )]
( )

2( ) 2( )
zz rr zz

C C C C C T C C C
T T T e

C C C C C C


  − − + − −
= + + +

− − −
. (15) 

From Eqs. (13) and (14), we get 
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1
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1
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C
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a
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 
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− 
 

. (16) 

From the above equation, it is found that the value of Trr – T  is maximum at r = a, which means yielding of the 

cylinder will take place at the internal surface. Therefore, we have 
1

1

1
2 2

3 0 0 0 3 3 0( ) ( )log ( ) ( ) ( ) ( )log  (say)

1

C

rr i ir a C
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a
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 
       

− = − + − + + − − + −     
     

− 
 

 . 

The pressure required for initial yielding is given by 
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where: 0i
ii io i

i i

p p
P P P

Y Y
− = − =  . 

Using Eq.(17) in Eqs. (12), (13), and (14), we get transitional stresses as 

 

1

1

0 3 3 0
3 3

( )log ( ) ( ) ( )log
( ) ( )

1

C
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rr io iC

i i i i i
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Equations (18)-(20) give elastic-plastic transitional stresses in the thick-walled cylinder under inner and outer pressure. 

For a fully plastic state (C1 → 0), Eq.(16) becomes 

 2 2
3 0 3 3

1
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f
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P P P
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The pressure required for fully plastic state is 
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Now we introduce the following non-dimensional components as: 
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The necessary effective pressure required for initial yielding is given by Eq.(17) in non-dimensional form as 
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The transitional stresses given by Eqs. (18) and (19) become 
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The effective pressure required for full plasticity is given by 
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HOMOGENEOUS TRANSVERSELY ISOTROPIC MATE-

RIAL 

If we substitute k = 0 and Po = 0 in Eqs. (3) and (7), we have 

 
0ij ijC C= . (26) 

Using Eq.(26) in Eq.(24), the radial and circumferential 

stresses of transversely isotropic cylinder become 
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The Eqs. (27) and (28) are the same as those obtained by 

Sharma et al. /14/ for transversely isotropic cylinders made 

of homogeneous material without external pressure. 

NUMERICAL DISCUSSION 

To observe the effect of pressure required for initial yield-

ing and fully plastic state against various radii ratios, Tables 

2-4, Figs. 2 and 3, using Table 1 have been drawn. 

Table 1. Elastic constants Cij used (in units of 1010 N/m2). 

Material C11 C12 C13 C33 C44  

steel (isotropic) 2.908 1.27 1.27 2.908 0.819 8.05 

magnesium 

(transversely isotropic) 
5.97 2.62 2.17 6.17 1.64 1.7364 

beryl 

(transversely isotropic) 
2.746 0.98 0.67 4.69 0.883 2.68 

To study the impact of pressure needed for initial 

yielding as well as a full plastic state along with many 

ratios of radii, as shown in Figs. 2-5 and Tables 2-4 for k = 

-0.5, -1, -2, respectively, have been drawn. 

From Table 2, we can see that the percentage increase in 

effective pressure required for initial yielding to become fully 

plastic is very high for cylinder whose radii ratio is 0.2, as 

compared to radii ratios 0.4 and 0.6 at room temperature. 

With the introduction of thermal effects, this percentage 

increases with an increase in temperature. 

Also, it has been noticed from Tables 2-4 that this per-

centage increase in effective pressure required for initial yield-

ing to become fully plastic is high for transversely isotropic 

material (magnesium) as compared to transversely isotropic 

(beryl), and isotropic material (steel). 

Table 2. Pressure % for initial yielding to reach full plastic state for cylinder made of beryl with  = 0.5 under Pi = 0.05 and Po = 0.01. 

Temper-

ature 

Non-homo-

geneity 

k 

Pressure needed for initial yielding Pi and full 

plastic state Pf at various ratio of radii 

Required % increase in pressure for initial yielding to reach 

full plastic state [(Pf – Pi)/Pf ]100 

R0 

P 
0.2 0.4 0.6 0.2 0.4 0.6 

0 

-2 
Pi 4.89462 4.42925 3.29211 

69.96778726 52.26458305 36.35778412 
Pf 16.2979 9.27875 5.17284 

-1 
Pi  3.0672 2.64306 1.91563 

68.45703567 52.25712288 37.93117973 
Pf  9.72388 5.53603 3.0863 

-0.5 
Pi 2.15348 1.74997 1.22739 

66.54471336 52.24754207 39.92305546 
Pf 6.43689 3.66467 2.04303 

10 

-2 
Pi 4.29815 4.10059 3.15175 

72.68813583 54.23244341 36.90076498 
Pf 15.7373 8.9596 4.99491 

-1 
Pi 2.72153 2.45396 1.83523 

70.2996737 52.96115686 36.89833137 
Pf 9.1633 5.21688 2.90837 

-0.5 
Pi 1.93321 1.63065 1.17697 

67.10163351 51.2586982 36.89507265 
Pf 5.87631 3.34552 1.8651 

Table 3. Pressure % for initial yielding to reach full plastic state for cylinder of magnesium with  = 0.5 under Pi = 0.05 and Po = 0.01. 

Temper-

ature 

Non-homo-

geneity 

k 

Pressure needed for initial yielding Pi and full 

plastic state Pf at various ratio of radii 

Required % increase in pressure for initial yielding to reach 

full plastic state [(Pf – Pi)/Pf ]100 

R0 

P 
0.2 0.4 0.6 0.2 0.4 0.6 

0 

-2 
Pi 5.9604 5.18454 3.76379 

70.66732283 55.18476579 41.64169038 
Pf 20.32 11.5687 6.44945 

-1 
Pi 3.89679 3.21184 2.26599 

70.72987711 57.62464543 46.37370075 
Pf 13.3132 7.5795 4.22552 

-0.5 
Pi 2.86498 2.22549 1.51709 

70.79450709 60.15173029 51.2745901 
Pf 9.80973 5.58491 3.11355 

10 

-2 
Pi 5.25605 4.80412 3.6035 

73.29256457 57.122916 42.31030922 
Pf 19.6801 11.2044 6.24635 

-1 
Pi 3.49575 2.99651 2.17558 

72.41620112 58.46936598 45.91351951 
Pf 12.6732 7.21518 4.02241 

-0.5 
Pi 2.61561 2.0927 1.46162 

71.47585392 59.91449242 49.78010198 
Pf 9.16981 5.22059 2.91044 
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Table 4. Pressure percentage for initial yielding to reach full plastic state for cylinder of steel with  = 0.5 under Pi = 0.05 and Po = 0.01. 

Temper-

ature 

Non-homo-

geneity 

k 

Pressure needed for initial yielding Pi and full plastic 
state Pf at various ratio of radii 

Required % increase in pressure for initial yielding to reach full 
plastic state [(Pf – Pi)/Pf ]100 

R0 

P 0.2 0.4 0.6 0.2 0.4 0.6 

0 

-2 
Pi 5.91168 5.15298 3.74522 

70.55818957 54.92337031 41.2331987 
Pf 20.0792 11.4316 6.37302 

-1 
Pi 3.85115 3.18204 2.24817 

70.53893819 57.24317337 45.81378029 
Pf 13.072 7.44218 4.14897 

-0.5 
Pi 2.82089 2.19658 1.49964 

70.51853245 59.67720914 50.62003201 
Pf 9.56835 5.44749 3.03694 

10 

-2 
Pi 5.21028 4.77396 3.58547 

73.20007818 56.86895243 41.89421109 
Pf 19.4414 11.0685 6.17059 

-1 
Pi 3.45161 2.9674 2.15802 

72.24099661 58.08200524 45.31854566 
Pf 12.4342 7.07906 3.94653 

-0.5 
Pi 2.57228 2.06413 1.44429 

71.19681453 59.40244317 49.04603987 
Pf 8.93054 5.08437 2.8345 

Table 5. Circumferential stresses for various temperature and non-homogeneity parameters for cylinder made of a) beryl; b) magnesium; c) steel. 

 R Non-homo- 
geneity k 

Transitional circumferential stresses Full plastic stresses 

beryl magnesium steel beryl magnesium steel 

T0 = 0 

Pi = 0.05 

Pf = 0.01 

 =  

0.2 
-2 5.50836 5.94074 5.93523 5.48403 5.92334 5.91766 

-1 3.68165 3.99375 3.98813 3.65732 3.97635 3.97055 

-0.5 2.7683 3.02025 3.01458 2.74397 3.00285 2.997 

0.4 
-2 7.91873 8.73972 8.71623 7.89656 8.72068 8.69712 

-1 5.33537 5.98625 5.96262 5.3132 5.96721 5.9435 

-0.5 4.0437 4.60952 4.58581 4.02152 4.59048 4.56669 

0.6 
-2 9.86238 11.1924 11.139 9.84599 11.177 11.1236 

-1 6.69843 7.82014 7.7665 6.68204 7.80475 7.75109 

-0.5 5.11645 6.13399 6.08026 5.10006 6.1186 6.06485 

0.8 
-2 11.6047 13.582 13.4865 11.5939 13.5708 13.4753 

-1 7.95126 9.68799 9.59235 7.94048 9.67678 9.58114 

-0.5 6.12455 7.741 7.64524 6.11377 7.72978 7.63404 

T0 = 10 

Pi = 0.05 

Pf = 0.01 

 =  

0.2 
-2 4.91217 5.28151 5.27764 4.9535 5.31773 5.31404 

-1 3.33616 3.6207 3.61578 3.3775 3.65691 3.65217 

-0.5 2.54815 2.79029 2.78484 2.58949 2.82651 2.82124 

0.4 
-2 7.43605 8.20239 8.18032 7.49852 8.26631 8.24424 

-1 5.05454 5.67934 5.65636 5.11701 5.74326 5.72028 

-0.5 3.86379 4.41782 4.39438 3.92626 4.48173 4.4583 

0.6 
-2 9.55063 10.8419 10.7895 9.61085 10.9086 10.856 

-1 6.5245 7.62693 7.57378 6.58472 7.69366 7.64036 

-0.5 5.01143 6.01944 5.96595 5.07165 6.08617 6.03252 

0.8 
-2 11.4817 13.439 13.3441 11.5291 13.4968 13.4017 

-1 7.89779 9.62432 9.52895 7.94522 9.6822 9.58655 

-0.5 6.10584 7.717 7.62139 6.15327 7.77488 7.67899 
 

It has been observed that with a decrease in non-homo-

geneity (k = -0.5 to -2) pressure required for initial yielding 

increases. It has been observed from Fig. 2 that the pressure 

required for initial yielding in a functionally graded rotating 

cylinder under pressure is maximum at the internal surface. 

It has also been noticed that the effective pressure required 

for initial yielding to become fully plastic is high for less 

non-homogeneous material as compared to rotating cylinder 

made of highly non-homogeneous material. It is noticed in 

Figs. 2 and 3 that with an increase of nonlinearity, pressure 

required for initial yielding increases significantly for rotat-

ing cylinder of isotropic and transversely isotropic materials. 

The pressure required for initial yielding for the fully plas-

tic state is maximum at the internal surface as illustrated in 

Figs. 4 and 5. As the angular speed of the cylinder increases 

the pressure required for the initial yielding and fully plastic 

state increases, as can be seen in Figs. 2 to 5. Also, to calcu-

late the transitional circumferential and fully plastic stresses 

based on the above analysis, definite integrals in Eqs. (23) 

to (25) have been evaluated by the use of Mathematica®. To 

discuss the effects of transitional and circumferential stresses 

in the thick-walled transversely isotropic cylinder under pres-

sure, Table 3 and Figs. 6 to 10 are made for various tem-

perature and non-homogeneity parameter between stresses 

and radii ratio R = r/b. 

It is observed from Table 3 that for transitional and fully 

plastic state, circumferential stress is maximum at the exter-

nal surface. Also, circumferential stresses are less for the 

highly non-homogeneous cylinder as compared to the less 

non-homogeneous cylinder of transversely isotropic and iso-

tropic material. These circumferential stresses decrease with 

increase in temperature. Fully plastic stresses decrease with 

the introduction of temperature. It can be seen from Figs. 6 

and 7 that transitional circumferential stress increases with 

increase in nonlinearity. These stresses increase with the 

increase in angular velocity as can be seen in Figs. 6 to 8. 

These circumferential stresses increase with the increase in 

inner pressure as illustrated in Fig. 8. Also, circumferential 

stresses are less for cylinder made of beryl, as compared to 

magnesium and steel. It is noticed from Figs. 9 to 10 that 

fully plastic stresses for the highly homogeneous cylinder are 

less as compared to a less non-homogeneous cylinder. It can 

be seen from Fig. 10 that with the increase in nonlinearity, 

fully plastic stresses increase. 
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  R0 

  R0 

  R0 
Figure 2. Initial yielding effective pressure needed for cylinders 

(beryl, magnesium, steel) with N = 3.  

  R0 

  R0 

  R0 
Figure 3. Initial yielding effective pressure needed for cylinders 

(beryl, magnesium, steel) with N = 7.  

  R0 

  R0 

  R0 
Figure 4. Effective pressure needed for full plasticity for cylinders 

(beryl, magnesium, steel) with N = 3.  

  R0 

  R0 

  R0 

Figure 5. Effective pressure needed for full plasticity for cylinders 
(beryl, magnesium, steel) with N = 7. 
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  R 
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  R 
Figure 6. Transitional circumferential stresses for cylinders (beryl, 

magnesium, steel) with Pi = 0.05, Po = 0.01, and N = 3. 

  R 

  R 

  R 
Figure 7. Transitional circumferential stresses for cylinders (beryl, 

magnesium, steel) with Pi = 0.05, Po = 0.01, and N = 7. 

  R 

  R 

  R 
Figure 8. Transitional circumferential stresses for cylinders (beryl, 

magnesium, steel) with Pi = 1, Po = 0.01, and N = 7. 

  R 

  R 

  R 
Figure 9. Full plastic circumferential stresses for cylinders (beryl, 

magnesium, steel) with Pi = 0.05, Po = 0.01, and Ng = 3. 
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  R 

  R 

  R 
Figure 10. Full plastic circumferential stresses for cylinders (beryl, 

magnesium, steel) with Pi = 0.05, Po = 0.01, and N = 7. 

CONCLUSIONS 

The following conclusions are derived from the elastic-

plastic stress analysis of a functionally graded transversely 

isotropic rotating cylinder. 

- Plastic yielding occurs first at the inner surface where the 

stress difference is maximum. 

- Circumferential stresses and fully plastic stresses at the 

outer surface are found to be maximum. 

- If the inner pressure of the thick cylinder is increased suf-

ficiently, yielding will occur starting at the inner surface and 

spread outwards until the whole cross-section becomes plastic. 

- Highly functionally graded material has less circumferen-

tial stresses as compared to less functionally graded material. 

- Introduction of thermal effects decreases the circumferen-

tial stresses. 

Cylinder made of transversely isotropic material (beryl) is 

a better choice for design as compared to transversely iso-

tropic (magnesium) and isotropic material (steel), because 

circumferential stress is less for beryl as compared to mag-

nesium and steel. 
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Nomenclature of symbols 

a, b : inner and outer radii of cylinder 
ur, u, uz : displacement components 
d : constant 
R : radial distance 
x, y, z : Cartesian coordinates 
eii : first strain invariant 
r, , z : cylindrical polar coordinates  
 : function of r only 
eij and Tij : strain and stress tensor 
P : function of  only 
Cij : material constants 
 and  : Lame’s constants 
rr = Trr /C11  : radial stress 
R = r/b, R0 = a/b 
 = T /C11  : circumferential stress 
zz = Tzz /C11  : axial stress 
 : angular velocity 
 : density 
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