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Abstract 

This study presents a closed-form analytical solution for 

the thick spherical shell's thermal creep stress components. 

The thick-walled spherical shell under consideration com-

prises functionally graded isotropic material loaded axisym-

metrically. It is no longer necessary to assume creep-strain 

laws when using Seth's transition theory which is based on 

the concept of generalised strain measure. The obtained 

result demonstrates that stresses are significantly impacted 

by the non-homogeneity features of the FGMs structure. 

The research concludes that a highly functionally graded 

thick spherical shell is on the safer side of design. This is 

because of the reason that less non-homogeneous spherical 

shell is having high circumferential stress as compared to 

the highly non-homogeneous spherical shell. 

Ključne reči 

• puzanje 

• ljuska 

• termički 

• funkcionalni kompozitni materijal 

• pritisak 

Izvod 

U radu je prikazano analitičko rešenje zatvorenog oblika 

za termičke napone puzanja u komponentama debelozide 

sferne ljuske. Razmatrana debelozida sferna ljuska je sači-

njena od izotropnog funkcionalnog kompozitnog materijala, 

asimetrično opterećena. Sa primenom teorije prelaznih 

napona Seta, koja se bazira na konceptu generalisane mere 

deformacija, ne postoji potreba za pretpostavkom zakona 

deformacija puzanja. Dobijeni rezultat pokazuje da na 

napone u velikoj meri utiču karakteristike nehomogenosti 

FKM konstrukcije. Zaključuje se da sferna ljuska, od funk-

cionalnog kompozitnog materijala dobrih osobina, ima 

povoljnije osobine sigurnosti. Ovo je zbog toga što sferna 

ljuska smanjene nehomogenosti ima veći obimski napon u 

poređenju sa sfernom ljuskom povećane nehomogenosti. 

INTRODUCTION 

From the past few decades, considerable attention has 

been given to the study of the mechanics of highly deformed 

shells. This is due to the emergence of high technological 

applications in mechanical, automobile, biomedical, civil, 

architecture, aeronautical, and marine engineering. Within 

structural design, the spherical shell's structural strength and 

stiffness are highly valuable since they can bear the load. 

Therefore, it would be more cost-effective to use a spherical 

pressure vessel rather than a large pressure vessel to store a 

large volume of pressured liquid or gas. Because they are 

utilised in nuclear reactors, petrochemical facilities, and oil 

refineries, spherical pressure containers are the ideal option 

for high storage fluids. One of the hardest things to do is 

design materials for high temperature applications. Func-

tionally graded materials (FGMs) allow the spatial variation 

of material properties to fully use the material everywhere. 

FGMs are designed with dynamic properties that include 

changing mechanical properties, chemical, thermal, mag-

netic, and electrical properties. Few recent researchers, i.e., 

Nie et al. /12/, Ghannad et al. /8/, and Gharooni et al. /9/ 

worked on the problems of elasticity for functionally graded 

pressure vessels. Creep plays an important part in design of 

structure and, therefore, to make the best use of shells and 

maximize their performance, creep stress and strain analysis 

of thick-walled shells is a focus of ongoing research. The 

creep theory was first suggested by Bailey /1/ for an idealised 

homogeneous material loaded uniaxially, accounting for the 

minimum creep rate strain, the transient creep strain, and the 

initial elastic strain. The analytical method of creep design 

within a nonlinear range was described by Freudenthal et al. 

/5/, while Penny /14/ looked at the creep of spherical shells 

with discontinuities. In 2008, Betton /2/ conducted research 

on the steady-state creep solution for engineering materials 

in a spherical vessel under internal pressure. Sharma et al. 

/17/ used the finite difference approach to determine the 

strain rates and thermal creep stresses in a functionally 

graded stainless steel composite cylinder. Nejad et al. /11/ 

investigated how stresses change with temperature and over 

time in spherical vessels composed of functionally graded 

materials. All of these authors used ad hoc, semi-empirical 

principles, and the infinitesimal strain theory to analyse the 

issues. A transition theory of elastic-plastic and creep defor-

mation on a sound analytical base was developed by Seth 

/16/ and applied by a number of authors, including Bhatnagar 

et al. /3/, who examined an internally pressurized homoge-

neous, orthotropic rotating cylinder subjected to a steady state 

creep condition. Under internal pressure, Hulsulkar /10/ 

examined creep stresses in composite spherical shells. Gupta 
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/6/ examined the creep behaviour of a thick, isotropic spher-

ical shell at steady state temperature and internal pressure 

and concluded that incompressible material shells needed 

high pressure to yield as compared to shells made of com-

pressible material. Under steady-state temperature and inter-

nal pressure, Pankaj /13/ studied creep stresses for a thick 

isotropic spherical shell using finitesimal deformation. In a 

2013 study, Sharma et al. /18/ examined the stresses and 

strains caused by thermal creep in a thick-walled, non-ho-

mogenous cylinder under both internal and external pressure. 

Under external loading a shell cannot change from an elastic 

state to creep state without passing through an intermediate 

state called a transition state. Borah /4/ explained at a tran-

sition state complete breakdown of the macroscopic structure 

causes the degeneracy of the shell. Spin, vorticity, rotation, 

and other nonlinear effects result from the shell's constitu-

ent particles rearranging themselves. This indicates that 

nonlinear factors are crucial at transitions and that ignoring 

them may lead to an inaccurate representation of the under-

lying physical reality. A thorough examination of the studies 

conducted on shells reveals a gap in the analysis of creep 

stresses caused by nonlinearity in the strain measure. As 

functionally graded isotropic materials used to create thick-

walled spherical shells becoming more and more popular in 

engineering applications. Therefore, the objective of this 

research paper is to analyse creep stresses and strain rates 

under the influence of non-homogeneity parameter using the 

concept of finite deformation without considering Norton’s 

law. The problem is solved by taking the generalised princi-

pal strain measures and the asymptotic solution obtained at 

transition points of the nonlinear differential equation defin-

ing the deformed state of a spherical shell. 

This paper is an extension of Nejad et al. /11/ which 

includes the effect of compressibility without using Norton's 

law. Considering the non-homogeneity as the compressibility 

of the material in the shell, 
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where: n is nonlinear measure; and eii
A be finite component 

of principal strain measure. 

OBJECTIVE 

The objective of this paper is to evaluate creep stresses 

and the permanent strains at the steady state condition, result-

ing from loading of the shell under internal and external pres-

sure with temperature. To explain the transition from elastic 

to creep, it is observed that the solid first deforms elas-

tically. If the loading is sustained, plastic flow might set 

which leads to creep state. So, there exists an intermediate 

state in between the elastic and creep state that is known as 

transition state. Thus, a differential system defining the creep 

state should reach a critical value in the transition state. 

First, we need to recognise the transition state as an asymp-

totic one which eliminates the need to assume yield condi-

tions, jump conditions, creep strain laws, etc. 

MATHEMATICAL FORMULATION 

Consider a thick-walled pressurized functionally graded 

spherical shell of internal and external radii a and b, respec-

tively, as seen in Fig. 1. The shell's non-homogeneity is 

caused by variations in compressibility . 

In spherical polar coordinates, displacements are given as 

 u1 = r(1 – ),  u2 = 0,  and  u3 = 0, (3) 

where:  is a function of r only. 

 
Figure 1. A pressurized functionally graded thick-walled spherical shell 

with internal pressureP1 and external pressure P2 at the boundary. 

The finite components of strain are given as follows 
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where: 
d

dr


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Sokolinokoff's /19/ thermal stress-strain relation for iso-

tropic materials is as follows: 
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where: I1 = ekk; and Tij, eij are stress and strain tensors, respec-

tively; ,  are Lame's constants; ij is the Kronecker delta; 
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The equation for equilibrium is 

 
(2 2 )

( ) 0
rr

rr

T Td
T

dr r

−
+ = . (6) 

Substituting Eq.(5) with the use of Eq.(4) in Eq.(6) yields 

a nonlinear differential equation in  as 
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where: P = r / ; and  = 2 /( + 2). 

Equation (7) indicates that the possible transition points 

are P → –1 and P → . 

Boundary conditions are as follows: 

 
1[ ]rr r aT p= = − ,   

2[ ]rr r bT p= = − . (8) 
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METHOD OF APPROACH 

We observe that the material can transit from elastic to 

creep condition under internal or external loading. Because 

only principal stresses are examined, the transition can occur 

either when the principal stresses become critical or when 

the principal stress differential becomes critical. Several 

studies (Bhatnagar et al. /3/, Hulsulkar /10/, Gupta et al. /7/, 

Borah /4/, Sharma /18/) have demonstrated that transitioning 

across the principal stress differential results in the creep con-

dition at critical point P → –1. 

TR can be defined as  

 2
[1 ( 1) ]

n
n

rrTR T T P
n




= − = − + . (9) 

Applying logarithmic differentiation to Eq.(9) with respect 

to r and substituting in Eq.(7), one gets 
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Taking asymptotic value of  as P → –1 and integrating 

the above equation, one gets 

 3(3 2 ) expnTR A r f−= − , (11) 

where: A is constant of integration; f = 2(1 – n)(0/k)(b/r)k – 

F1(r) – F2(r) + F3(r), 
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Using the asymptotic value of  as P → –1 ( = D/r, D 

being a constant), Eq.(12) becomes 
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Equations (9) and (11) yield 

 Trr – T = ArF , (13) 

where: F = (3 – 2)r–3n–1exp f. 

Substituting the value of Trr – T from Eq.(13) in Eq.(6) 

and integrating, we get 

 2rrT B A Fdr= −  , (14) 

where: B is a constant of integration. 

The constants A and B are obtained by using boundary 

conditions Eq.(8) as 
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. 

As the non-homogeneity in the shell is due to variable 

compressibility  in the radial direction according to power 

law function given by Eq.(1), thermal creep stresses in a non-

homogeneous shell under internal and external pressure are 

obtained as 
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Equation (15) evaluates thermal creep stresses for a thick-

walled spherical shell under internal and external pressure 

with varying compressibility. 

Introducing the following non-dimensional components as 
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STRAIN RATES 

When the creep sets in, the strain should be replaced by 

strain rates. The thermal stress-strain relation Eq.(5) can be 

written as 

 
1 3

ij ij ije T
Y Y
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where: 
ije  is strain rate tensor with respect to flow parameter 

t; and  = Trr + T + Tzz; and  = (1 – C)/(2 – C) is Pois-

son’s ratio. 

Equation (4) on differentiating with respect to t, gives 

 1ne  −= − , (18) 

for Swainger measure (n = 1) 

 
 = − . (19) 

where: 
  is Swainger’s strain measure. 

The asymptotic value of  from Eq.(9), as P → –1, is 
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These are the constitutive equations for determining the 

creep strains for N = 1/n. 

NUMERICAL DISCUSSION 

The material property of the spherical shell fabricated of 

functionally graded material (FGM) is defined as: compress-

ibility coefficient 0 = 0.5. The material considered is mild 

steel. The internal and external radii of the shell are taken as 

a = 1 and b = 2, respectively. The parameters of compressi-

bility are considered as k = -5, -3, -1. To observe the influ-

ence of various parameters, i.e., temperature 1 = 0, strain 

measure N, and pressure P1 and P2 on thick-walled spheri-

cal shell fabricated of (FGM), Table 1 and graphs between 

radii ratio and creep stresses for various pressure and tem-

perature combinations show effects of various parameters, 

such as temperature, strain measurement, and pressure, on 

thick-walled spherical shells fabricated of FGM. When the 

pressure vessel is exposed to assumed pressure, the material 

comprising the vessel is subjected to pressure load, and 

hence, stressed from all directions. The principal stresses 

resulting from this pressure are functions of the radius of 

the element under consideration due to the spherical shape 

of the pressure vessel, as well as the applied pressure. Creep 

strain distribution is also shown graphically. 

The mechanical property of the sphere such as compressi-

bility is assumed to be varying through the radius. Figures 

2-7 have been drawn for creep stresses with various tem-

perature and pressure combinations for linear and nonlinear 

strain measure when internal pressure is more than that of 

external pressure. Radial and circumferential stresses are 

calculated at the internal and external surface of the spheri-

cal shell. Figures 2-3 are drawn with internal pressure P1 = 

1.0 and external pressure P2 = 0.3. Distributions of creep 

stress components rr and  for values k = -5, -3, -1 are 

plotted in Fig. 2. It must be noted from Fig. 2a that the 

circumferential stress increases as k decreases and that the 

circumferential stress for different values of k approaches 

tensile from compressive. The absolute maximum of circum-

ferential stress occurs at the outer edge. It means that the 

maximum shear stress which is max = ( – rr)/2 for each 

value of k, will be very high on the outer surface of the 

vessel. It is observed from Fig. 2 that circumferential stress-

es are maximum at outer surface with linear measure. Also, 

these stresses are maximum at external surface for highly 

non-homogeneous (k = -1) spherical shell, as compared to 

less non-homogeneous spherical shell (k = -5) at room tem-

perature. Circumferential stress shown in Fig. 2b remain 

tensile throughout, and decrease with increasing radius for 

k = -5, -3, -1 and reach the minimum value somewhere 

towards the inner radius followed by an increase with a 

further increase of the radius. It can be seen in Fig. 2b that 

with the introduction of thermal effects, the circumferential 

stresses for the highly non-homogeneous spherical shell are 

tensile, while these stresses approach tensile from compres-

sive for the less non-homogeneous spherical shell. Also, with 

increase in thermal effects, these circumferential stresses 

decrease significantly which can be seen in Table 1. 

With the change in measure from linear to nonlinear, the 

circumferential stresses decrease significantly as can be seen 

in Fig. 3. Also, it is noticed in Fig. 3a that circumferential 

stress approaches tensile from compressive without thermal 

effects. With the introduction of temperature, these circum-

ferential stresses become tensile as can be seen from Fig. 3b. 

Also, it is noticed that with increase in temperature, circum-

ferential stresses for the highly non-homogeneous spherical 

shell are maximum at internal surface, while these circum-

ferential stresses are maximum at the external surface for 

less non-homogeneous spherical shell. As can be seen from 

Table 1, with increase in nonlinearity of the measure from 

N = 3 to N = 5, these circumferential stresses decrease sig-
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nificantly and are maximum at the external surface. Figures 

4-5 show the effect of increased internal pressure on circum-

ferential stresses. With increase in internal pressure, circum-

ferential stresses increase, as can be seen in Figs. 4-5, and 

are tensile in nature. These stresses decrease with increase 

in temperature as can be seen in Figs. 4b and 5b. It has also 

been noticed that highly non-homogeneous spherical shell 

is having a high circumferential stress, as compared to the 

less non-homogeneous spherical shell at room temperature, 

while reverse is the case with temperature. 

Table 1. Thermo-creep circumferential stresses in a thick-walled FGM spherical shell under internal and external pressure. 

Pressure P1 = 1, P2 = 0.3 P1 = 1.7, P2 = 0.3 P1 = 1.7, P2 = 1 

Non-homogeneity i 
R = r/b R = r/b R = r/b 

0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

  n = 1 (linear measure) 

k = -5 

0 -0.471 0.49446 0.85299 -0.64226 1.28892 2.00598 -1.1711 -0.2055 0.15299 

2 -0.410 0.36142 1.30361 -0.52051 1.02283 2.90723 -1.1103 -0.3386 0.60361 

4 -0.377 0.362 1.26968 -0.45401 1.024 2.83936 -1.077 -0.338 0.56968 

k = -3 

0 -0.520 0.41975 1.21368 -0.74031 1.13949  2.72737 -1.2202 -0.2803 0.51368 

2 -0.3955 0.35008 1.37279 -0.49108 1.00015 3.04558 -1.0955 -0.3499 0.67279 

4 -0.3503 0.35765 1.29894 -0.4006 1.0153 2.89788 -1.0503 -0.3423 0.59894 

k = -1 

0 -0.8289 0.0738 2.97937  -1.35783 0.44761 6.25874 -1.5289 -0.6262 2.27937 

2 0.12481 0.37633 0.77065  0.549627 1.05265 1.84131 -0.5752 -0.3237 0.07065 

4 -0.0314 0.37022 0.94951 0.237252 1.04044 2.19903 -0.7314 -0.3298 0.24951 

  n = 1/3 (nonlinear measure) 

k = -5 

0 -0.2757 0.4539 0.83788 -0.25136 1.20779 1.97576 -0.9757 -0.2461 0.13788 

2 -0.0055 0.42164 0.70664  0.289061 1.14329 1.71328 -0.7055 -0.2784 0.00664 

4 0.29129 0.36521 0.66655  0.882569 1.03041 1.6331 -0.4087 -0.3348 -0.0335 

k = -3 

0 -0.2579 0.43881 0.89813 -0.21575 1.17761 2.09625 -0.9579 -0.2612 0.19813 

2 0.01716 0.4027 0.77569  0.334326 1.1054 1.85138 -0.6828 -0.2973 0.07569 

4 0.37875 0.3558 0.63802 1.0575 1.0116 1.57603 -0.3212 -0.3442 -0.062 

k = -1 

0 -0.2198 0.42069 0.93719 -0.1397 1.14139 2.17439 -0.9198 -0.2793 0.23719 

2 0.52841 0.35948 0.48209 1.35682 1.01896 1.26419 -0.1716 -0.3405 -0.2179 

4 3.38017 0.02795 -0.2859 7.06035 0.35589 -0.2719 2.68017 -0.6721 -0.9859 

  n = 1/5 (nonlinear measure) 

k = -5 

0 -0.1475 0.4654 0.67179  0.005093 1.2308 1.64359 -0.8475 -0.2346 -0.0282 

2 -0.0397 0.45191 0.62181 0.220581 1.20382 1.54362 -0.7397 -0.2481 -0.0782 

4 0.07833 0.43633 0.57324 0.456658 1.17266 1.44648 -0.6217 -0.2637 -0.1268 

k = -3 

0 -0.1278 0.45024 0.72452 0.044433 1.20048 1.74904 -0.8278 -0.2498 0.02452 

2 -0.0157 0.43409 0.68043 0.268584 1.16818 1.66085 -0.7157 -0.2659 -0.0196 

4 0.10309 0.41709 0.63686 0.50618 1.13419 1.57371 -0.5969 -0.2829 -0.0631 

k = -1 

0 -0.1004 0.42866  0.78462  0.099175 1.15732 1.86923 -0.8004 -0.2713 0.08461 

2 0.13869 0.40645 0.64503 0.577377 1.1129 1.59006 -0.5613 -0.2936 -0.055 

4 0.53798 0.36463 0.45201 1.37595 1.02926 1.20401 -0.162 -0.3354 -0.248 
 

Figures 6-7 show the effect of increasing external pres-

sure to circumferential stresses. With increase in external 

pressure, circumferential stresses decrease significantly as 

can be seen in Figs. 6-7. Also, without thermal effects these 

circumferential stresses are approaching tensile from com-

pressive for linear measure, as can be seen in Fig. 6a. 

With the change in measure from linear to nonlinear and 

increase of temperature, stresses decrease significantly as 

can be seen in Figs. 7a and 7b. 

Figures 8-11 are drawn for creep strain rates with various 

temperatures and pressure combinations for linear and non-

linear measure when internal pressure is higher than exter-

nal pressure. 

It is observed from Fig. 8 that circumferential strain rates 

are maximum at the external surface with linear measure. 

Also, these strain rates are maximum at external surface for 

highly non-homogeneous spherical shell, as compared to the 

less non-homogeneous spherical shell at room temperature. 

Also, it is noticed that circumferential strain rates for less 

non-homogeneous spherical shell are tensile, while these 

strain rates approach tensile from compressive for the highly 

non-homogeneous spherical shell. With the introduction of 

thermal effects, strain rates are maximum at the internal sur-

face. Also, less non-homogeneous spherical shell is having 

maximum strain rate as compared to the highly non-homo-

geneous spherical shell. It is observed from Fig. 9 that with 

the change in measure from linear to nonlinear, strain rates 

decrease. As can be seen from Figs. 8b and 9b that with the 

introduction of thermal effects, strain rates increase signifi-

cantly which further increase with increase in temperature. 

At room temperature circumferential strain rates are maxi-

mum at the external surface, while with the introduction of 

temperature, strain rates are maximum at the internal surface. 

It is noticed from Figs. 10-11 that with increase in internal 

pressure, strain rates increase significantly. At room temper-

ature, these circumferential strain rates are maximum at the 

external surface, while with the introduction of thermal 

effects, these strain rates are maximum at internal surface 

for linear and nonlinear measure. Also, it is noticed that at 

room temperature, circumferential strain rates are high for 

highly non-homogeneous thick-walled spherical shell, as 

compared to the less non-homogeneous spherical shell, while 

reverse is the case with the introduction of thermal effects. 

Also, circumferential stresses are maximum for the less non-
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homogeneous spherical shell, as compared to the highly non-

homogeneous spherical shell. The internal pressure must 

exceed external pressure in order to avoid inward buckling. 
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Figure 2. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1 and P2 = 0.3, 

with linear measure n = 1. 
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Figure 3. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1 and P2 = 0.3, 

with nonlinear measure n = 1/5. 
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Figure 4. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1.7 and P2 = 0.3, 

with linear measure n = 1. 
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Figure 5. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled spherical shell under pressure P1 = 1.7 and P2 = 0.3, with 

nonlinear measure n = 1/5. 
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Figure 6. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1.7 and P2 = 1, 
with linear measure n = 1. 
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Figure 7. Thermal creep stresses (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1.7 and P2 = 1, 

with nonlinear measure n = 1/5. 
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Figure 8. Creep strain rates (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1 and P2 = 0.3, 

with linear measure n = 1. 
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Figure 9. Creep strain rates (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1 and P2 = 0.3, 

with nonlinear measure n = 1/5. 
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Figure 10. Creep strain rates (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1= 1.70 and P2 = 0.3, 

with linear measure n = 1. 
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Figure 11. Creep strain rates (1 = 0, 2 resp. a) and b)) for thick-

walled FGM spherical shell under pressure P1 = 1.70, and P2 = 

0.3, with nonlinear measure n = 1/5. 

CONCLUSIONS 

In this paper, thermal creep stresses and thermal creep 

strain rates are obtained for the thick-walled spherical shell 

made up of functionally graded material under internal and 

external pressure using the concept of transition theory and 

generalised principal strain measures. It has been concluded 

from the numerical discussion that by introducing a suitably 

chosen temperature gradient, the material in-homogeneity 

parameter has a significant influence on the mechanical 

behaviour of thick-walled spherical shells made up of func-

tionally graded materials. Highly non-homogeneous thick-

walled spherical shell with nonlinear strain measure is on 

the safer side of the design, as compared to less the non-

homogeneous thick-walled spherical shell, because less non-

homogeneous spherical shell is having high circumferential 

stresses, as compared to the highly non-homogeneous spher-

ical shell, which leads to the idea of ‘stress saving’ thus 

minimizing the possibility of fracture of the spherical shell. 

This problem can help engineers to design a specific FGM 

sphere that can meet some special requirements. 
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