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Abstract 

In this paper, numerical solutions of the nonlinear gener-

alised Kuramoto-Sivashinsky equation are presented using 

a modified quintic B-spline differential quadrature method. 

The Crank-Nicolson and forward finite difference schemes 

are applied for discretization, while the Rubin and Graves 

approach is utilised for linearization. The matrix stability 

approach is used to analyse the method’s stability. Numeri-

cal examples demonstrate the accuracy of the method. The 

computed results are presented in tables and graphs along 

with a comparative analysis with previous results. The ob-

tained numerical results demonstrate the method’s reliabil-

ity and its compatibility with the exact solutions. 

Ključne reči 

• modifikovan petostepeni B-splajn 

• metoda diferencijalne kvadrature 

• proširena jednačina Fišer-Kolmogorov 

• jednačina Kuramoto-Sivashinsky 

• metoda stabilne matrice 

Izvod 

U radu su predstavljena numerička rešenja nelinearne 

generalisane jednačine Kuramoto-Sivashinsky, primenom 

modifikovane diferencijalne metode kvadrature petostepenog 

B-splajna. Primenjuje se postupak Krank-Nikolson sa konač-

nom razlikom unapred za diskretizaciju, dok se pristup 

Rubina i Grejvsa koristi za linearizaciju. Metoda stabilne 

matrice se koristi za analizu stabilnosti korišćene metode. 

Numerički primeri pokazuju tačnost metode. Izračunati 

rezultati su predstavljeni tabelarno i grafički sa uporednom 

analizom ranijih rezultata. Dobijeni numerički rezultati 

ukazuju na pouzdanost korišćene metode i na poklapanje sa 

tačnim rešenjima. 

INTRODUCTION 

A fourth order partial differential equation known as the 

Generalised Kuramoto-Sivashinsky (GKS) equation charac-

terizes the spatiotemporal evolution of the amplitude of 

coherent structures in specific nonlinear systems. It has found 

applications in various fields, including physics, chemistry, 

and fluid dynamics. The GKS equation has been used to 

investigate the dynamics of flame fronts in combustion pro-

cesses. Comprehending the progression of flame fronts is 

essential for optimising combustion effectiveness and man-

aging pollutants. It can also be used to simulate the surface 

growth of thin films or crystal growth in materials science. 

This equation is important for studying turbulent flows, 

because it helps to explain the dynamics and generation of 

coherent structures in turbulent boundary layers. The GKS 

equation have been used to describe the evolution of concen-

tration patterns which can be used to explore pattern devel-

opment in a variety of systems, including chemical reactions. 

Certain biological phenomena, such as the dynamics of 

spatial patterns in reaction-diffusion systems within biolog-

ical tissues, can be modelled using the GKS equation. The 

GKS equation can be used to model chemical kinetics, 

particularly when reaction and diffusion processes interact 

to create spatial patterns. These applications demonstrate 

applicability of GKS equation to a variety of scientific and 

engineering fields to describe a broad range of complex 

phenomena. In this paper we consider the following GKS 

equation: 

 U UU U U U (U) 0t x xx xxx xxxx g   + + + + + = . (1) 

The Eq.(1) frequently lacks analytical solutions for gen-

eral situations due to the presence of nonlinearity and up to 

fourth-order partial derivatives. Therefore, numerical solu-

tions are essential to examine its behaviour in practical situ-

ations. Many well-known equations can be obtained by 

changing the values of real constants and nonlinear function 

g(U). The following high order PDEs (PDEs involving third 

and fourth order derivatives) are taken into consideration as 

specific cases of the generalised equation mentioned above. 

Extended Fisher-Kolmogorov equation 

The spatial and temporal evolution of populations is com-

monly explained by the Extended Fisher-Kolmogorov (EFK) 

equation, which has applications in the fields of population 

biology and ecology. Coullet et al. /7/ and Van Saarlos /10/ 

introduced this equation. EFK arises from the usage of partic-

ular values  =  = 0,  = –1, and g(U) = U3 – U in Eq.(1), 

 U U U (U) 0t xx xxxx g− + + = . (2) 
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Equation (2) reduces to the standard form of the Fisher-

Kolmogorov equation by the replacement  = 0. 

Researchers have concentrated on examining the equa-

tion’s steady state which is based on  and exhibits periodic 

solutions that are either heteroclinic or homoclinic. There are 

two types of solution behaviours for the EFK equation, 

depending on . In the case  > 1/8, the solution is non-mon-

otonic, and for   1/8, it is both unique and exists. Using 

the shooting method, Peletier and Troy in /26, 27/ investigate 

the solution in a steady state. A simple lower bound on the 

fronts’ velocities is found by Benguria and Depassier /5/ to 

aid in predicting when the front with the lowest speed will 

be pushed for a particular reaction term. Zuo /32/ proposed 

two high-order compact finite difference schemes to solve 

the EFK equation. Using a variety of numerical techniques, 

numerous researchers have provided solutions to this equa-

tion in recent years. A fully discrete Galerkin approximation 

has been developed by Gudi and Gupta /11/. 

Kuramoto-Sivashinsky equation 

Applications of the Kuramoto-Sivashinsky (KS) equation 

is available in many scientific and engineering fields where 

an understanding of turbulence, pattern formation, and non-

linear dynamics is essential to the explanation of complex 

phenomena. Equation (1) in the case of vanishing nonlinear 

term g(U) = 0 turns into the following KS equation 

 U UU U U U 0t x xx xxx xxxx   + + + + = . (3) 

Turbulence and complex pattern creation are greatly aided 

by the nonlinear term UUx in Eq.(3). Numerous scholars 

have worked with this equation and developed exact and 

numerical methods. Some of them are: a moving least 

squares meshless method /9/, B-spline function based collo-

cation method /18/, meshless method of lines /12/, quintic B-

spline collocation method /24/, a modified tanh-coth method 

/30/, lattice Boltzmann method /17/, a time-adaptive finite 

volume method /8/, Chebyshev spectral collocation methods 

/16/, local discontinuous Galerkin methods /31/, implicit-

explicit BDF methods /1/, quartic-trigonometric tension B-

spline /13/. 

Partial differential equations have been frequently solved 

numerically using B-splines in combination with the collo-

cation method /19, 20/ and differential quadrature methods 

/6, 21/. Mittal and Dahiya /22/ described a quintic B-spline 

based differential quadrature method for a class of Fisher-

Kolmogorov equations. Ismail et al. /14/ developed three-

level linearized high-order accuracy difference scheme. Since 

Differential Quadrature Method (DQM) commonly yields 

high accuracy solutions and frequently needs fewer grid 

points to attain equivalent accuracy than finite difference or 

finite element approaches. The combination of B-splines with 

DQM yield a numerical solution that benefits from both 

DQM’s precision and B-splines’ smoothness. As a result, 

the PDE solution approximations become more precise. 

In this paper, modified quintic B-spline functions and 

DQM are combined to approximate solutions of Kuramoto-

Sivashinsky (KS) equation and extended Fisher-Kolmogorov 

(EFK) equation. The following section presents the DQM 

based on modified quintic B-spline functions. The further 

section presents a numeral scheme. Then we discuss the 

scheme’s stability analysis and give a validation of pre-

sented numerical scheme considered by examples. Finally, 

we give the final conclusions. 

MODIFIED DQM SUPPORTED BY QUINTIC B-SPLINE 

The DQM was first introduced by Bellman et al. /3/. This 

method involves the technique of approximating derivatives 

of a function at certain grid points using the weighted sum 

of functional values. These weighting coefficients only depend 

on the spatial grid spacing. 

Several test functions, including spline functions, Lagrange 

interpolated cosine functions, Legendre polynomials, Lagrange 

interpolation polynomials, and others, have been used by 

numerous authors to develop various types of DQMs /3, 4, 

28, 29/. DQM offers a significant advantage over traditional 

approaches since it avoids perturbations for obtaining better 

solutions to the nonlinear PDEs. Its broad applicability, 

simple execution, and easy-to-understand concepts make it 

an advantage over other approaches. 

Let us consider N uniform grid points x1,…, xN within a 

finite interval [a1, a2] on the real axis, and assume a1 = x1 < 

x2 < x3 < ⋯ < xN = a2 with h = x(i+1) – x(i). Using DQM, the 

nth order derivative of a function U(x,t) at a point xi can be 

approximated by the rule 
(n)(n) N

1U ( , ) w U( , )x i jj ijx t x t==   i = 1…N, n = 1…N–1, (4) 

in which wij
(n) are unknown weighting coefficients of the nth 

order derivative. 

The uniform quintic B-spline functions Ri(x) are uniformly 

distributed over the interval [a1, a2] and B-splines consisting 

of {R–1, R0, R1, …, RN+2} form a basis over the interval [a1, 

a2]. The quintic B splines Ri(x) are given by 
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Quintic B-splines and their derivatives are given in Table 

1 for different grid points. 

Table 1. Quintic B-splines and its derivatives at different grid points. 

 xi–3 xi–2 xi–1 xi xi+1 xi+2 xi+3 

Ri(x) 0 1 26 66 26 1 0 

Ri
(1)(x) 0 5/h 50/h 0 –50/h –5/h 0 

Ri
(2)(x) 0 20/h2 40/h2 –120/h2 40/h2 20/h2 0 

Ri
(3)(x) 0 60/h3 –120/h3 0 120/h3 –60/h3 0 

Ri
(4)(x) 0 120/h4 –480/h4 720/h4 –480/h4 120/h4 0 

When quintic B-splines are used as the test functions in 

DQM, a total of four ghost points are introduced outside the 

boundary, two on the left and two on the right hand side. If 

these ghost points are directly used in DQM to compute 

weighing coefficients, additional weighting coefficients appear 
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in the resulting system and then additional equations are 

required to eliminate these weighting coefficients. There-

fore, the tedious nature of the process may arise from the 

need to solve these additional equations. As a result, quintic 

B-splines are modified by eliminating ghost points that are 

not in the domain from both the left and the right side. The 

modified quintic B-splines basis function defined inside the 

domain [a1, a2] is given in /2/ as 

1 1 0 1( ) R ( ) 2R ( ) 3R ( )x x x x− = + + , 

2 2 0 1( ) R ( ) R ( ) 2R ( )x x x x− = − − , 

k k( ) R ( ),   k 3 N 2x x = = − , 

N 1 N 1 N 1 N 2( ) R ( ) R ( ) 2R ( )x x x x− − + + = − − , 

N N N 1 N 2( ) R ( ) 2R ( ) 3R ( )x x x x+ + = + + . 

In comparison to quintic B-spline, modified quintic B-

spline functions show a few advantages. For instance, no 

additional equations are needed in modified quintic B-spline 

functions to obtain any coefficients for order weighting and 

perform better compared to quintic B-splines. 

Determining the weighting coefficients 

Taking Eq.(4) into consideration, the following is obtained 
(n) (n)N

k1k
( ) w ( )i jj ijx x= =  ,  i = 1…N, n = 1…4 . (5) 

The linear system of equations obtained from Eq.(5), for 

any choice of k is given by 

 

(n)
,1

1,1 1,2 1,3
(n)

2,1 2,2 2,3 2,4 ,2

(n)3,1 3,2 3,3 3,4 3,5
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

.  (6) 

The following system is obtained by substituting the values 

of modified quintic B-splines 

 (n) (n)=Mβ γ , 

wherein 
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and the right hand side (n) is calculated by 
(n)

(n) (n) (n) (n)1
1 1 0 1(n)

( )
( ) R ( ) 2R ( ) 3R ( )i

i
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x
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
, 

(n)
(n) (n)k
k k(n)

( )
( ) R ( )   for   k 3, ,N 2i

i

x
x x

x

 
 = = = −


, 

(n)
(n) (n) (n) (n)N 1
N 1 N 1 N 1 N 2(n)

( )
( ) R ( ) R ( ) 2R ( )i

i

x
x x x x

x

−
− − + +

 
 = = − −


, 

(n)
(n) (n) (n) (n)N
N N N 1 N 2(n)

( )
( ) R ( ) 2R ( ) 3R ( )i

i

x
x x x x

x
+ +

 
 = = + +


. 

The system Eq.(6) is a pentadiagonal system of linear 

equations which can be solved to get the weighting coeffi-

cient wij
(n). 

For n = 1, the process to find the weighting coefficients 

is as follows. 

First for the grid point x = x1 the system M1
(1) = 1

(1) is 

obtained, where 1
(1) is calculated as below. 

(1) (1) (1)
1 1 11 2 3

115 110 5
( ) ,   ( ) ,   ( )

h h h
x x x

−
 =  =  = ,   and 

(1)
1( ) 0i x =    for   i = 4, 5, …, N. 

The obtained system is solved to get the weighting coef-

ficients 

 
T

(1) (1) (1) (1) (1)
1,1 1,2 1,3 1,N 1 1,Nw ,w ,w , ,w ,w−

 =
 

(1)
1β

, 

where: 
T

115 110 5
, , ,0, ,0,0

h h h

− 
=   

(1)
1γ

. 

For x = x2, the corresponding system of the pattern is 

M2
(1) = 2

(1), wherein 

 
T

(1) (1) (1) (1) (1)
2,1 2,2 2,3 2,N 1 2,Nw ,w ,w , ,w ,w−

 =
 

(1)
2β

, 

 
T

60 5 50 5
, , , ,0, ,0,0

h h h h

− 
=   

(1)
2γ

. 

Similarly, x = xk, for (3  k  N–2), weighting coefficients 

can be obtained by solving the system Mk
(1) = k

(1), where  

 
T

(1) (1) (1) (1) (1)
k,1 k,2 k,3 k,N 1 k,N

w ,w ,w , ,w ,w
−

 =
 

(1)
kβ , 

 
T

k 3 times

5 50 50 5
0, ,0 , , ,0, , ,0, ,0,0

h h h h
−

− − 
=  
  

(1)
kγ

. 

For x = xN–1, it is obtained 
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T

(1) (1) (1) (1) (1)
N 1,1 N 1,2 N 1,3 N 1,N 1 N 1,Nw ,w ,w , ,w ,w− − − − − −

 =
 

(1)
N-1β , 

 
T

5 50 5 60
0, ,0, , , ,

h h h h

− − − 
=   

(1)
N-1γ . 

Finally, the following situation appears at x = xN, 

 
T

(1) (1) (1) (1) (1)
N,NN,1 N,2 N,3 N,N 1w ,w ,w , ,w ,w−

 =
 

(1)
Nβ

, 

 
T

5 110 115
0, ,0, , ,

h h h

− − − 
=   

(1)
Nγ

. 

The same process can be used to derive the weighting 

coefficients for higher order derivatives. 

NUMERICAL SCHEME 

The GKS equation is discretized using Crank Nicolson 

and forward finite difference method Eq.(1) as follows: 
n 1 n n 1 n n 1 nn 1 n

2 2 3 3(UU ) (UU ) U U U UU U

2 2 2

x x x x x x

t
  

+ + ++ + + +−
+ + + +


 

 
n 1 n n 1 n
4 4U U ( (U)) ( (U))

0
2 2

x x g g


+ ++ +
+ + = . (7) 

Rewriting Eq.(7) by separating the (n+1)th and nth time 

levels, it can be obtained 
n 1 n 1 n 1 n 1 n 1 n 1

2 3 42U ( (UU ) U U U ) ( (U))x x x xt t g   + + + + + ++ + + + + = 
n n n n n n

2 3 42U ( (UU ) U U U ( (U)) )x x x xt g   = − + + + +  . 

Linearization of KS equation 

Consider the KS equation 

 U UU U U U 0t x xx xxx xxxx   + + + + = . (8) 

The nonlinear term UUx in Eq.(8) is linearized using the  

 n 1 n 1 n n n 1 n n(UU ) U U U U U Ux x x x
+ + += + − , 

 n n n(UU ) U Ux x= . (9) 

Substituting Eq.(9) in Eq.(7) and rearranging the terms at 

(n+1)th and nth time levels, leads to the system 
n 1 n 1 n n n 1 n 1 n 1

2 32U [ (U U U U ) U Ux x x xt   + + + + ++ + + + +  

 n 1 n n n n
4 2 3 4U ] 2U [ U U U ]x x x xt   ++ = − + + . 

Now, partial order derivatives of U are approximated 

using modified DQM at the grid point x = xi at the nth time, 

the partial orders are denoted as follows: 

 n n n n n nA U ( ),  B U ( ),  C U ( )i x i i xx i i xxx ix x x x x x= = = = = = , 

 n nD U ( )i xxxx ix x= = . 

The following system is obtained by reorganising the 

terms for each grid point: 
(1) (2) (3) (4)n n n 1(2 [ (A U w ) w w w ])Ui i iii ii ii iit     ++ + + + + +  

(1) (2) (3) (4)n n 1 nN
1, [ (U w ) w w w ]Ui j ij i j ij ij ij ijt     +
= +  + + + =   (10) 

where: i
n = 2Ui

n – t[Bi
n + Ci

n + Di
n], for i = 1,2,…,N. 

Finally, after applying the boundary conditions to the 

system of Eqs.(10), the first and last equations get eliminated 

yielding the system 
n 1
2

2,2 2,3 2,N 1
n 1
33,2 3,3 3,N 1

n 1N 2,2 N 2,3 N 2,N 1
N 2

N 1,2 N 1,3 N 1,N 1 n 1
N 1

UQ Q Q

UQ Q Q

Q Q Q
U

Q Q Q
U

+

−
+

−

+− − − −
−

− − − − +
−

 
   
   
   
  = 
   
   
    

  

 

 

n n 1 n 1
2 2,1 1 2,N N

n n 1 n 1
3 3,1 1 3,N N

n n 1 n 1
N 2 N 2,1 1 N 2,N N

n n 1 n 1
N 1 N 1,1 1 N 1,N N

Q U Q U

Q U Q U

Q U Q U

Q U Q U

+ +

+ +

+ +
− − −

+ +
− − −

  − −
 
  − −
 

=  
 
 − − 
 
 − −  

, (11) 

in which 

 (1) (2) (3) (4)n n
,Q 2 [ (A U w ) w w w ])i i i i ii ii ii iit    = + + + + + , 

 (1) (2) (3) (4)n
,Q [ (U w ) w w w ]i j i ij ij ij ijt    = + + + . 

The solution U(x,t) of the system of Eqs.(11) is obtained 

by the Gauss elimination process. 

Linearization of EFK equation 

Consider the EFK equation 

 3U U U (U U) 0t xx xxxx− + + − = . (12) 

The nonlinear term U3 in Eq.(12) is linearized by the 

Rubin and Graves technique as follows: 

 3 n 1 2(n) n 1 3(n)(U ) 3U U 2U+ += − . 

Now, the above equation is substituted in Eq.(7) and then 

nth and (n+1)th term are arranged separately, as follows 
n 1 n 1 n 1 2(n) n 1 n 1

4 22U [ U U 3U U U ]x xt + + + + ++ − + − =  

 n n n 3(n) n
4 22U [ U U U U ]x xt = − − − − . 

The following system is obtained after approximating 

partial order derivatives 
(4) (2) 2(n) n 1(2 [ w w 3U 1])Uiii ii it  ++ − + − +  

 (4) (2) n 1 nN
1, [ w w ]U j ij i j ij ijt  +
= +  − = , (13) 

where: i
n = 2Ui

n – t[Di
n – Bi

n – Ui
3(n) – Ui

n], for i = 1 … N. 

Finally, after applying boundary conditions to the system 

of equations, a similar system of equations is obtained as in 

Eqs.(11), in which 

 (4) (2) 2(n)
,Q 2 [ w w 3U 1]i i ii ii it = + − + − , 

 (4) (2)
,Q [ w w ]i j ii iit = − . 

The system of Eqs.(11) is solved utilising the Gauss 

elimination, and the solution U(x,t) is obtained. 

STABILITY ANALYSIS 

Stability analysis of the proposed method is investigated 

using the matrix stability method, /15/. 

Consider the linearized KS equation in Eq.(10). It is sim-

plified as follows 
(1) (2) (3) (4)n n n 1(2 [ (A U w ) w w w ])Ui i iii ii ii iit     ++ + + + + +  

 (1) (2) (3) (4)n n 1N
1, [ (U w ) w w w ]Ui jj i j ij ij ij ijt     +
= +  + + + =  

(2) (3) (4) n(2 [ w w w ])Uiii ii iit   = − + + −  

 (2) (3) (4) nN
1, [ w w w ]U Lj ij i j ij ij ijt   = −  + + + , (14) 

such that Li is the non-homogeneous part along with bound-

ary conditions. The above systems of linear algebraic equa-

tions can be stated in the matrix form 
n 1
2

2,2 2,3 2,N 1
n 1
33,2 3,3 3,N 1

n 1N 2,2 N 2,3 N 2,N 1
N 2

N 1,2 N 1,3 N 1,N 1 n 1
N 1

UG G G

UG G G

G G G
U

G G G
U

+

−
+

−

+− − − −
−

− − − − +
−

 
   
   
   
  = 
   
   
    

  

 



Numerical solution of fourth order generalised Kuramoto- … Numeričko rešenje generalisane jednačine četvrtog reda … 

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 25, Specijalno izdanje A 2025, str. S57–S65 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 25, Special Issue A 2025, pp. S57–S65 

 

S61 

n
2

2,2 2,3 2,N 1
n
33,2 3,3 3,N 1

nN 2,2 N 2,3 N 2,N 1
N 2

N 1,2 N 1,3 N 1,N 1 n
N 1

US S S

US S S

S S S
U

S S S
U

−

−

− − − −
−

− − − −
−

 
   
   
   
 = + 
   
   
    

  

L , (15) 

in which L is a known (N–2)1 vector, G is an invertible 

matrix, and 
(1) (2) (3) (4)n nG 2 [ (A U w ) w w w ]ii i i ii ii ii iit    = + + + + + , 

(1) (2) (3) (4)nG [ (U w ) w w w ]ij i ij ij ij ijt    = + + + , 

(2) (3) (4)
S 2 [ w w w ]ii ii ii iit   = − + + , 

(2) (3) (4)
S [ w w w ]ij ij ij ijt   =− + + . 

The matrix in Eq.(15) can be written in a simplified form 

 n 1 n+ = +GU SU L . (16) 

Further, Eq.(16) can be rewritten as 

 n 1 n+ =Gε Sε , (17) 

where: n is the numerical error vector. Then Eq.(17) can be 

rewritten as n+1 = En, E = G–1S. 

If the eigenvalues i of E are distinct, then the error vector 

can be expanded in terms of eigenvectors Vi as follows, 

 n 1 n 1N 1
2 a i

i ii
+ +−

== ε V . 

The stability of the proposed method is achieved when 

  1 for all values of i as t tends to infinity. The graphs in 

Figs. 1 and 4 show that values  associated to the matrix E 

are less than 1 for different grid points, indicating that the 

proposed scheme is unconditionally stable for the KS equa-

tion. 

Similarly consider the linearized EFK equation in Eq.(13) 

and simplify it in the form 
(4) (2) (4) (2)n 1 N 1N

1,(2 [ w w 1])U [ w w ]Ui jj i jii ii ij ijt t + +
= + − − +  − =  

(4) (2) (4) (2)n nN
1,(2 [ w w 1])U [ w w ]U Li j ij i jii ii ij ijt t = = − − − −  − +  

in which Li contains the non-homogeneous part together with 

the boundary conditions. The above systems of linear alge-

braic equations are processed in the matrix form, similar as 

in Eq.(15), where: L is a known (N–2)1 vector and G is an 

invertible matrix defined as 
(4) (2) (4) (2)

G 2 [ w w 1],   G [ w w ]ii ijii ii ij ijt t = + − − = −
(4) (2) (4) (2)

S 2 [ w w 1], S [ w w ]ii ijii ii ii iit t = − − − =− −  

The matrix in Eq.(15) can be simplified in the same 

manner as in Eq.(16) for determining the stability. 

NUMERICAL EXAMPLES AND ORDER OF CONVER-

GENCE 

Different examples are solved using the proposed scheme 

and their accuracy is determined by evaluating error norms. 

Then, the order of convergence is found for both the error 

norms. The corresponding formulas are given as 

 ( )
1 2

N
2 N1L U (U )exact

j jjh = − , 

 
NL max U (U ) ,   1,2, ,Nexact

j j
j

j − =  

 
log(Error(2N) / Error(N))

Order
log(N/ 2N)

= , 

such that N is the number of partitions. 

Example 1 

The EFK equation in this example is solved on the domain 

[-4,4] under the conditions 

 U( ,0) sin( ),  [ 4,4]x x x=−  − , 

 U( 4, ) 0t = ,    
2U ( 4, ) 0x t = . 

The convergence rate L2 and L errors are arranged in 

Table 2 and compared against results derived in /22/ and 

/25/, for various values of N at t = 0.2,  = 0.1, t = 0.001. 

The results generated by the current approach and other 

methods show a good degree of agreement, with second 

order convergence. Figures 2 and 3 are simulated for 

several values of  with time t ranging from 0 to 0.2 and 

N = 201. The eigenvalues’ magnitude for various grid points 

under the environment t = 0.001, t = 0.2 is shown in Fig. 

1. Graphs involved in this figure show that the magnitude 

of eigenvalues E are less than 1, displaying stability of the 

suggested method in Example 1. 

  N 

Figure 1a. Eigenvalues in example 1 at t = 0.2 and N = 21. 

  N 

Figure 1b. Eigenvalues in example 1 at t = 0.2 and N = 41. 

  N 

Figure 1c. Eigenvalues in example 1 at t = 0.2 and N = 81. 
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Table 2. Comparison of L2, L errors and their orders of convergence in Example 1 for different values of N at t = 0.2. 

N Present method Mittal and Sumita /22/ Mittal and Arora /25/ 

 L2 order L order L2 order L order L2 Order L order 

21 1.141210–2  5.783610–3  2.134710–2  1.154710–3  1.115810–2  5.509710–3  

41 2.928110–3 2.03 1.476710–3 2.04 2.215910–3 2.91 1.223910–3 3.01 2.8145910–3 2.04 1.338710–3 2.04 

81 7.403510–4 2.02 3.790710–4 2.00 3.1230110–4 2.82 1.531310–4 2.93 5.657110–4 2.1 2.834010–4 2.23 
 

  x 

Figure 2a.  = 0, t = 0.001, and N = 201. 

  x 

Figure 2b.  = 0.0001, t = 0.001, and N = 201. 

  x 

Figure 3a.  = 0.1, t = 0.001, and N = 201. 

  x 

Figure 3b.  = 0.125, t = 0.001, and N = 201. 

Example 2 

Consider the EFK Eq.(2) with initial and boundary conditions 
 3 2U( ,0) 10 exp( ),    4 4x x x−= − −    

 
2U( 4, ) 1,     U ( 4, ) 0xt t =  =  

The L2, L∞ errors along with the order of convergence 

for parameter t = 0.001 are arranged in Table 3. Data in-

cluded in Table 3 reveal that the present method provides a 

better solution with the convergence rate of 2. The estimated 

solutions at different time levels with t = 0.001 and N = 

171 are given in Figs. 5 and 6. It is noticeable that the ap-

proximate solution of U decreases with time and eventually 

converges to the value 1. Graphs in Fig. 4 display the mag-

nitude of eigenvalues at t = 0.001 and t = 4.5 for different 

values of N. From the figure it is noticeable that the magni-

tude of eigenvalues of matrix E is smaller than 1, indicating 

the current method is also stable for the second example. 

  N 

Figure 4a. Eigenvalues in example 2 at t = 4.5 and N = 21. 

  N 

Figure 4b. Eigenvalues in example 2 at t = 4.5 and N = 41. 

  N 

Figure 4c. Eigenvalues in example 2 at t = 4.5 and N = 81. 



Numerical solution of fourth order generalised Kuramoto- … Numeričko rešenje generalisane jednačine četvrtog reda … 

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 25, Specijalno izdanje A 2025, str. S57–S65 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 25, Special Issue A 2025, pp. S57–S65 

 

S63 

Table 3. Errors L2, L with rates of convergence for various values 

of N in Example 2 at t = 4.5. 

N Present method 

 L2 order L order 

21 3.987810–4  2.129410–4  

41 8.740410–5 2.27 4.598310–5 2.29 

81 2.191010–5 2.03 1.152810–5 2.03 

  x 

Figure 5a.  = 0, t = 0.001, and N = 171. 

  x 

Figure 5b.  = 0.0001, t = 0.001, and N = 171. 

  x 

Figure 6a.  = 0.1, t = 0.001, and N = 171. 

  x 

Figure 6b.  = 0.120, t = 0.001, and N = 171. 

Example 3 

The model considered in this example is the KS Eq.(3) 

with parameters  =  =  = 1,  = 0, under initial condition 

U(x,0) = exp(–x2), x  [–30,30] and boundary condition 

U(30,t) = 0. 

Graphs plotted in Figs. 8 and 9 give a representation of 

the numerical solution for t = 1, 5, 10, 20 at t = 0.001 and 

N = 201. These graphs exhibit the same characteristics as in 

/23/. The magnitude of eigenvalues for t = 0.001 at t = 20 is 

shown in Fig. 7 for different values of N. The suggested 

approach is stable for Example 3, as shown by this graph, in 

which eigenvalue magnitudes for various values of N remain 

less than 1. 

  N 

Figure 7a. Eigenvalues in example 3 at t = 20 and N = 41. 

  N 

Figure 7b. Eigenvalues in example 3 at t = 20 and N = 81. 

  x 

Figure 8a. t = 1, t = 0.001, and N = 201. 

  x 

Figure 8b. t = 5, t = 0.001, and N = 201. 
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  x 
Figure 9a. t = 10, t = 0.001, and N = 201. 

  x 
Figure 9b. t = 20, t = 0.001, and N = 201. 

Example 4 

In this example, the KS Eq.(3) is solved for parameters 

 =  = 1,  = 0, for various values of , and with the fol-

lowing conditions in the domain [–1, 1]: 
 U( ,0) sin( ),   [ 1,1],   U( 1, ) 0.x x x t=−  −  =  

Figures 11 and 12 are plotted for values of  = 0.4/(2), 

 = 0.8/(2), and  = 1.2/(2) at different time levels. These 

graphs exhibit the same behaviour as in /24/. In Fig. 10, the 

magnitude of eigenvalues is plotted for different values of 

N with t = 0.001 and t = 2. It is obvious that the magnitude 

of eigenvalues E is less than 1, displaying that the present 

method is stable in Example 4. 

  N 
Figure 10a. Eigenvalues in example 4 at t = 2 and N = 21. 

  N 
Figure 10b. Eigenvalues in example 4 at t = 2 and N = 41. 

  N 
Figure 10c. Eigenvalues in example 4 at t = 2 and N = 81. 

  x 
Figure 11a.  = 0.4/2, t 0.001 and N = 41. 

  x 
Figure 11b.  = 0.8/2, t = 0.001 and N = 41. 

  x 
Figure 12.  = 1.2/2, t = 0.001 and N = 41. 

CONCLUSION 

This work proposes a modified quintic B-spline based 

differential quadrature method to obtain the numerical solu-

tion of the nonlinear generalised Kuramoto-Sivashinsky 

(GKS) equation. Two reduced forms of the GKS equation are 

considered, namely extended Fisher-Kolmogorov equation 

and Kuramoto-Sivashinsky equation. Stability is examined 

using matrix stability analysis, and unconditional stability is 

confirmed. Four numerical problems are studied to verify 

theoretical results and to bolster the significance of the 

method. Through numerical data arranged in tables and plot-

ted graphs it is perceptible that obtained numerical results 
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are better than the solutions available in literature. In sum-

mary, various classes of nonlinear differential equations can 

be solved using modified quintic B-spline based DQM owing 

to its accuracy and computational efficiency. 
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