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Abstract 

In this paper, we have used the Darcy-Brinkman model 

to study the influence of a magnetic field on a Jeffrey nano-

fluid layer saturated with a porous medium. The influence 

of thermophoresis and Brownian motion is incorporated into 

the Buongiorno model used for nanoparticles. Normal mode 

analysis and Galerkin method are used to analyse conser-

vation equations. We have considered three different bound-

ary conditions: free-free, rigid-rigid, and rigid-free. For sta-

tionary convection, the effects of Darcy-Brinkman number, 

Jeffrey parameter, nanoparticle Rayleigh number, Lewis 

number, porosity, modified diffusivity ratio and Chandra-

sekhar number for all the above-mentioned boundary con-

ditions are investigated analytically and graphically. 

Ključne reči 

• Jeffrey nanofluid 

• toplotna nestabilnost 

• Braunovo kretanje 

• Brinkman model 

Izvod 

U ovom radu smo primenili Darsi-Brinkman model za 

proučavanje uticaja magnetnog polja na Jeffrey nanofluid-

ni sloj koji je zasićen poroznom sredinom. Uticaji termofo-

reze i Braunovog kretanja su uvedeni u Buonđornov model 

koji se primenjuje za nanočestice. Za analizu jednačina 

održanja, upotrebljeni su analiza u normalnom modu i meto-

da Galerkin. Razmotrili smo tri različita granična uslova: 

slobodno-slobodno, kruto-kruto i kruto-slobodno. U uslovi-

ma stacionarne konvekcije, za gore navedene granične uslo-

ve, analitički i grafički su proučeni uticaji Darsi Brinkman 

broja, Jeffrey parametra, Rejlejevog broja za nanočestice, 

Luisovog broja, poroznosti, modifikovanog odnosa difuziv-

nosti i Čandrasekarovog broja. 

INTRODUCTION 

A nanofluid is a fluid that contains particles the size of 

nanometers called nanoparticles. The term ‘nanofluid’ was 

initially utilized by Choi /3/. The important feature of the 

nanofluid is the enhancement of heat transmission which 

was reported by Masuda et al. /6/. Convection of nanofluids 

was analysed by Buongiorno /1/ and has generated a lot of 

interest in recent years. Nield and Kuznetsov /10/ found the 

onset of convection in a nanofluid layer. Nano-sized parti-

cles of metal oxides are used in several fields related to 

chemical engineering, medicine, and electronics. The convec-

tion in a layer saturated using two nanofluids was studied by 

Yadav et al. /27/. Non-Newtonian fluids are used in various 

fields of science and engineering like textiles, food pro-

cessing, geophysics, chemical and biological industries. Jef-

frey fluid is a non-Newtonian fluid with high shear viscosity 

and linear viscoelasticity properties. Jeffrey’s fluid model is 

less time derivative rather than convective derivative. The 

onset of stationary convection on Jeffrey nanofluid layer 

saturated with a porous medium was investigated by Sharma 

et al. /14/. Thermal convective instability in a Jeffrey nano-

fluid saturating with a porous medium: rigid-rigid and rigid-

free boundary conditions was studied by Sharma et al. /23/. 

They found a numerical solution to various problems involv-

ing the stability of fluid layers as temperature decreases 

upwards. Nield and Kuznetsov /8-9/ and Nield /5/ have inves-

tigated the thermal instability in a porous layer saturated with 

a nanofluid. Tzou /24/ studied the instability of the nanofluid 

layer through experiments. Sheu /13/ has examined the ther-

mal instability in a layer of porous medium saturated with a 

viscous nanofluid. The beginning of convection of thermal 

instability of a porous medium layer saturating a Jeffrey 

nanofluid was identified by Rana and Gautam /12/. The 

study of flow through porous layers has various applications 

in petroleum reservoirs, Earth’s molten cores, fluid filters, 

heat exchanger, human lungs, etc. Porous media improve 

heat conductivity by increasing the contact area between 

liquid, solid, and nanofluids. The Rayleigh instability of a 

thermal boundary layer flow through a medium that is porous 

was studied by Wooding /26/. A detailed study of convection 

in a porous media was given by Nield and Bejan /7/. Starting 

with the fundamental Darcy model, the investigation into 

porous media progressed to the Darcy-Brinkman model. 

Rana et al. /11/ have investigated the impact of suspended 

particles on thermal convection in Rivlin-Ericksen nanofluid 

layer saturating a Darcy Brinkman model. Sand, soil, sand-

stone are some examples of porous medium. 
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Several decades ago, it had been figured out how the mag-

netic field affects the beginning of convection. The influence 

of magnetic field on the Rayleigh Bénard convection in 

nanofluids has its important role in chemical engineering, 

biochemical engineering, industry, and many physical phe-

nomena concerning geophysics and astrophysics. Magneto 

convection in a nanofluid layer was studied by Gupta et al. 

/25/. Many researchers /15-22/ have involved various types 

of fluid in their research work. Bhatia and Steiner /2/ and 

Chandrasekhar /4/ studied the thermal instability in a visco-

elastic fluid layer in hydromagnetics. Because of its numer-

ous applications in chemistry, physics, engineering science, 

and other fields, studying the magnetic field effects on fluids 

has become an important active area of research in recent 

years. In this paper, we have studied the impact of the mag-

netic field on thermal instability in Jeffrey nanofluid with a 

porous medium. To the best of the authors’ knowledge, no 

research has been published yet on this topic. 

MATHEMATICAL MODEL 

Let us consider a layer of Jeffrey nanofluid contained 

between two planes z* = 0 and z* = H. The layer of fluid is 

heated from below and working upwards direction with a 

gravity force g(0, 0, –g). The temperature and volumetric 

fraction at the lower wall are Th
* and 0

* while at the upper 

wall are Tc
* and 1

*, respectively. We consider a porous 

medium with porosity , permeability K, and hydrostatic 

pressure p. 

 

Figure 1. Physical sketch of the problem. 

GOVERNING EQUATIONS 

The conservation equations of mass, momentum, thermal 

energy and nanoparticles are given by Nield and Kuznetsov 

/9/ under Boussinesq approximation in a porous medium, 

respectively 
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The Maxwell equation is given as 

 
*

* * * * * * *2 *

*
( ) ( )D D

h
h h h

t



+  =  + 


v v , (5) 

 * *. 0h = , (6) 

we write * * * *( , , )D u v w=v . 

Here, f, , , , and h are the density, viscosity, volumetric 

expansion coefficient of the fluid, fluid electrical resistivity, 

and magnetic field, respectively, while p is the density of 

particles. We have introduced effective viscosity  , effec-

tive heat capacity (c)m, km effective thermal conductivity 

of the porous medium, and  is the Jeffrey parameter. The 

coefficients that appear in Eqs. (3) and (4) are the Brownian 

diffusion coefficient DB and thermophoretic diffusion coef-

ficient Dr. On the boundaries, we use the assumption that 

the volumetric fraction and temperature of the nanoparticles 

are both constant. According to Kuznetsov and Nield /5/, 

the boundary conditions are 
* 2 *
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As follows, we present dimensionless variables. We define 
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Equations (1)-(8) take the form 
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   at   z = 1 . (17) 

Here, Pr1 = /m, is the Prandtl number, Pr2 = / is the 

magnetic Prandtl number, aD = K/H2 is the Darcy number, 

Da = K/H2 is the Darcy-Brinkman number, Le = m /DB 

is the Lewis number, Va = Pr/ aD  is the Vadasz number, 

Q = eh0
2K/4 is the Chandrasekhar number, Ra = 

gKH(Th
* – Tc

*)/m is thermal Darcy-Rayleigh number, 

Rm = [p1
* + (1 – 1

*)]gKH/m is basic density Rayleigh 

y 
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number, Rn = (p – )(1
* – 0

*)gKH/m is the concentration 

Rayleigh number, NA = DT(Th
* – Tc

*)/DBTc
*(1

* – 0
*) is the 

modified diffusivity rate, and NB = (c)p(1
* – 0

*)/(c)m is 

the modified particle-density increment, respectively. 

BASIC SOLUTIONS 

The time independent fundamental states for nanofluids 

are expressed as Sheu /13/ and Rana et al. /11/ 

0,  ( ),  ( ),  ( ),  (0,0,1)b b bT T z z p p z h = = = = =v . (18) 

Using Eq.(18) in Eqs.(10)-(13), those equations reduce to 
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Using boundary conditions Eqs. (16) and (17), the solu-

tion of Eq.(21) is 
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Substituting the value of b in Eq.(21), we get 
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Neglecting the higher power term, solution of Eq.(23) is 

given by 
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According to Buongiorno /1/, the approximated solution 

for Eqs. (22) and (24) gives 

 1 ,   b bT z z= − = . (25) 

PERTURBATION SOLUTIONS 

We now superimpose perturbations on the basic solution. 

We write, 

 0 ,   ,   b bp p p T T T  = + = + = +v v , 
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Using Eq.(26) in Eqs.(10)-(17) and linearising the terms 

by ignoring the product of prime quantities, the following 

equations are obtained: 
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The six unknowns u, v, w, p, T  and   can be reduced 

to three by operating on Eq.(28) multiplied by ˆze .curl.curl 

and also using Eq.(27), we get 
2 2

2 4 2 2

2

1

1
a a H n H

a

w w
w D w Q R T R

V t z


 

   
    −  + + =  − 

 + 
 (35) 

where: 
2 2 2

2
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2 2
2

2 2H
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 is the 

two-dimensional Laplace operator. 

NORMAL MODE ANALYSIS 

The disturbances are analysed by normal mode analysis 

are as follows 

  ( , , ) ( ), ( ), ( ) exp( )w T W z z z ilx imy st   =   + + , (36) 

where: s is the growth rate; and l and m are wave numbers 

along x and y directions, respectively. 

Substituting Eq.(36) in Eqs.(28)-(30), (33)-(34), and (35), 

we get 
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2
20,  0,  0,  0W DW D W= − = = =    at   z = 1 , (41) 

where: D = d/dz; and a2 = l2 + m2 is the dimensionless wave 

number. 

According to Chandrasekhar /4/, the boundary conditions 

should be as follows: 

1) free-free boundaries 

 2 0W D W= == =    at   z = 0,1 , (42) 

2) rigid-rigid boundaries 

 0W DW= == =    at   z = 0,1 , (43) 

3) rigid-free boundaries 

 0W DW= == =    at   z = 0 , (44) 

 2 0W D W= == =    at   z  = 1 . (45) 

The assumed solutions for W, , and , for all boundary 

conditions are taken as follows: 

1) for free-free boundaries 

 
0 0 0sin ,  sin ,  sinW W z z z  = = = , (46) 

2) for rigid-rigid boundaries 
2 3 4 2 2

0 0 0( 2 ),  ( ),  ( )W W z z z z z z z= − + = − = − ,   (47) 

3) for rigid-free boundaries 
2 3 4 2 2

0 0 0(3 5 2 ),  ( ),  ( )W W z z z z z z z= − + = − = − .  (48) 

LINEAR STABILITY ANALYSIS FOR FREE-FREE 

BOUNDARIES 

Substituting Eq.(46) in Eqs.(37)-(39) and integrating each 

term individually within limits z = 0 to z = 1, we get 
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where: J = 2 + a2. 

The eigenvalue to the system of linear Eq.(49) is given as 

 

2

2

2

1
( )

1

A
n

e
a a

a

e

N J J s
R a

Ls J
R D J J Q J s

J sVa

L




 



 + 
+  

      
= + + + + −   

+     +    

. (50) 

Stationary convection for free-free boundaries 

For stationary convection s = 0 in Eq.(50), we obtain  
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For the case when Da = 0, the critical wave number is 

obtained by minimising thermal Darcy-Rayleigh number Ra 

with respect to a2, thus the critical wave number must 

satisfy  
2
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. 

Equation (51) gives 
ca = . (52) 

On the other hand when Da is large compared with unity, 

the critical wave number is obtained by minimising thermal 

Rayleigh-Darcy number Ra with respect to a2. Thus, the 

critical wave number must satisfy  
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. 

Equation (51) gives 
2

ca


= , (53) 

which coincides with Kuznetsov and Nield, /5/. 

In order to investigate the effects of the Darcy-Brinkman 

number, Jeffrey parameter, Lewis number, nanoparticle Ray-

leigh number, porosity, modified diffusivity ratio, and Chan-

drasekhar number, we examine the behaviour of 
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 analytically from Eq.(51). According to these ine-

qualities, the following parameters have stabilising effects: 

Darcy Brinkman number, modified diffusivity ratio, Lewis 

number, Chandrasekhar number, and Taylor number, and 

on the other hand, the following parameters have destabilis-

ing effects: porosity, Jeffrey parameter, and nanoparticle 

Rayleigh number. 

LINEAR STABILITY ANALYSIS FOR RIGID-RIGID BOUNDARIES 

Substituting Eq.(47) in Eqs.(37)-(39) and integrating each term individually within limits z = 0 to z = 1, after applying 

Galerkin’s first approximation, we get 

 

2 4 2 2 2

0
2

0

2
02

1
2 (504 24 ) (12 ) 12 9 9

1 0

3 14(10 ) 0 0

03 14(10 ) 14
14 (10 )

a a n
a

A

e e

s
D a a a Q R a R a

V W

a s

N a s
a

L L

 

 

  
+ + + + + + −  

+      
     

− + +  =     
       +  
 + +
  

. (54) 

The eigenvalue to the system of linear Eq.(54) is given as 
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Stationary Convection for rigid-rigid boundaries 

For stationary convection s = 0 in Eq.(55), we obtain 
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For the case when Da = 0, the critical wave number is 

obtained by minimising thermal Darcy-Rayleigh number Ra 

with respect to a2, thus, the critical wave number must satisfy 

 
2

0

c

a

a a

R

a =

 
= 

 
. 

Equation (56) gives 

 3.31ca = . (57) 

This result is identical with Kuznetsov and Nield /5/. 

On the other hand when Da is large compared with unity, 

the critical wave number obtained by minimising thermal 

Darcy-Rayleigh number Ra with respect to a2. Thus the 

critical wave number must satisfy 
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2
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. Equation (56) gives  3.12ca =  . (58) 

This result is identical with Kuznetsov and Nield /5/. 

LINEAR STABILITY ANALYSIS FOR RIGID-FREE BOUNDARIES 

Substituting Eq.(49) in Eqs.(37)-(39) and integrating each term individually within limits z = 0 to z = 1, after applying 

Galerkin’s first approximation, we get 
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The eigenvalue to the system of linear Eq.(59) is given by 
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Stationary convection for rigid-free boundaries 

For stationary convection s = 0 in Eq.(60), we obtain 
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For the case when Da = 0, the critical wave number is 

obtained by minimising thermal Darcy-Rayleigh number Ra 

with respect to wave number a2, thus the critical wave 

number must satisfy 
2

0

c

a

a a

R

a =

 
= 

 
. 

Equation (61) gives 3.27ca = . (62) 

On the other hand when Da is large compared with unity, 

the critical wave number obtained by minimising thermal 

Darcy-Rayleigh number Ra with respect to wave number a2. 

Thus the critical wave number must satisfy 
2

0

ca a

Ra

a =

 
= 

 
. 

Equation (61) gives 2.67ca = . (63) 

This result is similar to the result of Kuznetsov and Nield /5/. 

RESULTS AND DISCUSSION 

In this research paper, we studied the impact of magnetic 

field on thermal instability in a porous medium layer satu-

rated by a Jeffrey nanofluid using Brinkman nanofluid for 

free-free, rigid-rigid, rigid-free boundaries. The impact of 

different parameters like Darcy-Brinkman number, Jeffrey 

parameter, modified diffusivity ratio, Lewis number, porosity 

parameter, concentration Rayleigh number, and Chandra-

sekhar number on stationary convection have been analysed 

analytically and plotted graphically for free-free, rigid-rigid 

and rigid-free boundaries. 

Figure 2 illustrates the graph of Ra with respect to wave 

number a for various values of Da = 0.1, 0.2, 0.3. Fixing 

other parameters as  = 0.2, NA = 5, Le = 1000,  = 0.6, Rn = 

–1, Q = 100, it is obvious from Fig. 2 that as Da goes on 

increasing with the rise in Ra. Thus, Da has a stabilising 

effect on stationary convection. Also, we have analysed that 

Da has a more stabilising effect in rigid-rigid boundaries. 

Thus, Da delays the onset of convection of the system. 

  a 
Figure 2. Variation of Ra with wave number a, for various values 

of Darcy Brinkman number. 

  a 
Figure 3. Variation of Ra with wave number a, for various values 

of Jeffrey parameter. 
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Figure 3 illustrates the graph of Ra with respect to wave 

number a for various values of  = 0.2, 0.5, 0.9. Fixing other 

parameters as Da = 0.1, NA = 5, Le = 1000,  = 0.6, Rn = –1, 

Q = 100, it is obvious from Fig. 3 that Ra goes on decreasing 

with rise in . Thus,  has a destabilising effect on station-

ary convection and it is also clear from the figure that it has 

a more destabilising effect in free-free boundaries. Thus,  

enhances the onset of convection of the system. 

  a 
Figure 4. Variation of Ra with wave number a, for various values 

of modified diffusivity ratio. 

  a 
Figure 5. Variation of Ra with wave number a, for various values 

of Lewis number. 

  a 
Figure 6. Variation of Ra with wave number a, for various values 

of porosity parameter. 

 a 
Figure 7. Variation of Ra with wave number a, for various values 

of concentration Rayleigh number. 

 a 
Figure 8. Variation of Ra with wave number a, for various values 

of Chandershekhar number. 

Figure 4 illustrates the graph of Ra with respect to wave 

number a for various values of NA = 1, 5, 10. Fixing other 

parameters as Da = 0.1,  = 0.2, Le = 1000,  = 0.6, Rn = –1, 

Q = 100, it is obvious from Fig. 4 that Ra goes on increasing 

with rise in the value of NA. Thus, NA has a stabilising effect, 

and it is also obvious from the figure that it has more stabi-

lising effect in rigid-rigid boundaries. Thus, NA delays the 

onset of convection of the system. 

Figure 5 illustrates the graph of Ra with respect to wave 

number a for various values of Le = 100, 500, 1000. Fixing 

other parameters as Da = 0.1,  = 0.2, NA = 5,  = 0.6, Rn = –1, 

Q = 100, it is obvious from the figure that as Ra goes on 

increasing with rise in Le. Thus, it has a stabilising effect on 

stationary convection and Fig. 5 demonstrates that Le has a 

more stabilising effect in rigid-rigid boundaries. Thus, Le 

delays the onset of convection of the system. 

Figure 6 illustrates the graph of Ra with respect to wave 

number a for various values of  = 0.2, 0.3, 0.6. Fixing other 

parameters as Da = 0.1,  = 0.2, NA = 5, Le = 1000, Rn = –1, 

Q = 100, it is obvious from the figure that as Ra goes on 

decreasing with the rise in the values of . Thus,  shows a 

destabilising effect and it is also clear from Fig. 6 that it has 

a more destabilising effect in free-free boundaries. Thus,  
enhances the onset of convection of the system. 

Figure 7 illustrates the graph of Ra with respect to wave 

number a for various values of Rn = –1, –0.6, –0.5. Fixing 

other parameters as Da = 0.2,  = 0.2, NA = 5, Le = 1000,  = 
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0.6, Q = 100, it is obvious from the figure that as Ra goes on 

decreasing with the rise in the value of Rn. Thus, Rn has a 

destabilising effect, and it is also clear from Fig. 7 that Rn 

has a more destabilising effect in free-free boundaries. Thus, 

Rn enhances the onset of convection of the system. 

Figure 8 illustrates the graph of Ra with respect to wave 

number a for various values of Q = 100, 200, 300. Fixing 

other parameters as Da = 0.1,  = 0.2, NA = 5, Le = 1000,  = 

0.6, Rn = –1, it is obvious from the figure that Ra goes on 

increasing with the rise in the value of Q. Thus, Q has a 

stabilising effect, and it is also clear from Fig. 7 that Q has 

a more stabilising effect in rigid-rigid boundaries. Thus, Q 

delays the onset of convection of the system. 

CONCLUSIONS 

In this article, we use linear stability analysis to make the 

following key conclusions: 

(i) Darcy Brinkman number, modified diffusivity ratio, Lewis 

number, and Chandershekhar number, have stabilising influ-

ence on the system. 

(ii) Jeffrey parameter, porosity parameter, and concentration 

Rayleigh number enhance the start of convection on the system. 

(iii) In case of rigid-rigid boundaries, the system has greater 

stabilising impact rather than free-free/rigid-free boundaries. 

(iv) It was also found that parameters like Darcy Brinkman 

number, modified diffusivity ratio, Lewis number, and Chan-

dershekhar number have a more destabilising effect on sta-

tionary convection in the situation of free-free boundaries, 

as compared to rigid-rigid/rigid-free boundaries. 
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