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Abstract 

This article deals with the study of non-homogeneity on 

the stresses and temperature distribution in a thick-walled 

circular cylinder by using generalised strain measure. Math-

ematical modelling is based on stress-strain relation, non-

linear differential equation and equilibrium equation. The 

effects of temperature and pressure are considered for the 

non-homogeneous thick-walled circular cylinder. The behav-

iour of stress distribution, pressure, and temperature are 

investigated. From the obtained results, it is noticed that 

hoop stress is maximal at outer surface for non-homogene-

ous circular cylinder and non-homogeneity increases the tan-

gential stress at outer surface significantly. The thermal 

effects reduce the tangential stress at the external surface of 

a non-homogeneous circular cylinder extensively. Results are 

discussed numerically and graphically. 

Ključne reči 

• napon 

• pritisak 

• temperatura 

• cilindar 

• tečenje 

Izvod 

U ovom radu izučavamo nehomogenost i njen uticaj na 

raspodelu napona i temperature kod debelozidog kružnog 

cilindra, primenom generalisane mere deformacija. Mate-

matičko modeliranje se zasniva na relaciji napon-deforma-

cija, nelinearnoj diferencijalnoj jednačini i na jednačini 

ravnoteže. Razmatraju se uticaji temperature i pritiska kod 

nehomogenog debelozidog kružnog cilindra. Istražuje se 

ponašanje raspodele napona, pritiska i temperature. Prema 

dobijenim rezultatima, primećuje se da je obimski napon 

maksimalan na spoljnjoj površini za nehomogeni kružni 

cilindar, a sa uvećanjem nehomogenosti dolazi do značaj-

nog porasta tangencijalnog napona na spoljnjoj površini. 

Toplotni uticaji u velikoj meri smanjuju tangencijalni napon 

na spoljnjoj površini nehomogenog kružnog cilindra. 

Rezultati su opisani i diskutovani numerički i grafički. 

INTRODUCTION 

The growing industrial demand for axisymmetric and 

spherical components or their elements has drawn the atten-

tion of designers and scientists to this particular field of 

activity. The progressive scarcity of materials worldwide, 

combined with their therefore higher costs, makes it increas-

ingly unattractive to limit design to the usual elastic regime 

alone. The thick-walled cylinders subjected to temperatures 

and uniform pressures find several applications, e.g., in 

nuclear power plants, chemical industries, pressure vessels 

intended for storage of industrial gases or as the means for 

transportation of high pressurised fluids. Gao /1/ and Bonn 

et al. /2/ have investigated the elastic-plastic deformations 

in a thick-walled cylindrical tube under uniform pressure. 

The solution is based on finite strains, Hencky deformation 

theory and von Mises yield criterion. Orçan /3/ carried out 

stress and deformation in an elastic-perfectly plastic cylin-

drical rod with uniform internal heat generation by using 

Tresca's yield condition and associated flow rule. An analyt-

ical solution for stresses by considering the Bauschinger 

effect and Tresca yield criterion in thick-walled cylindrical 

vessel made of elastic linear-hardening material was given 

by Darijani et al. /4/. An elastic-plastic analytical model of 

thick-walled circular cylinder subjected to uniform pressure 

by using generalised strain measure and transition theory 

was given by Thakur /5/. Kamal et al. /6/ investigated stress 

and strain in thick-walled cylinders subjected to thermal 

gradient by using finite element method. The objective of 

this article is to investigate the effect of non-homogeneity 

on the stresses and temperature in a thick-walled circular 

cylinder by using the concept of generalised strain measure. 

Results have been presented graphically and are discussed. 

MATHEMATICAL MODEL AND BASIC GOVERNING 

EQUATION 

Let us consider a thick-walled cylinder with internal 

radius ri and external radius r0. The internal wall is subjected 

to temperature 0 and pressure pint (see Fig. 1). Let the non-

homogeneity as the compressibility of the cylinder material 

be given by: 

 
0

kc c r−= , (1) 
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where: r  [ri, r0]; c0, and k (< 0) are constants. The dis-

placement components in cylindrical polar co-ordinate are 

given by /7/: 

 u = r(1 – );  v = 0;   w = dz , (2) 

where:  is function of r = (x2 + y2) only; and d is a con-

stant. 

 

Figure 1. Geometry of thick-walled circular cylinder. 

The generalised components of strain are given /7, 8/: 

 
1

[1 ( ) ]n
r r

n
  = − + ,  

1
[1 ]n

n
 = − , 

 
1

[1 (1 ) ]n
z d

n
 = − − ,  0r z zr   = = = , (3) 

where:   = d/dr. 

Stress-strain relation: the stress-strain relation for thermal 

elastic isotropic material is given by /9/: 

2
[1 ( ) ] [3 ( ) (1 ) ]n n n n

r r r d
n n

 
       = − + + − − + − − − , 

2
[1 ] [3 ( ) (1 ) ]n n n nr d

n n


 
     = − + − − + − − −  , 

2
[1 (1 ) ] [3 ( ) (1 ) ]n n n n

z d r d
n n

 
    = − − + − − + − − −  ,  

 0r z zr   = = = . (4) 

Equation of equilibrium:  
( )

0rr

dr r

  −
+ = . (5) 

Transition points: using Eq.(4) and Eq.(1) into Eq.(5), we 

get nonlinear differential equation in term of  as: 
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 [1 ( 1) ]
2 (1 )

n
n

n n

rc
c T

d






+ − + + 

− + − 

, (6) 

where: c = 2/( + 2); and r  = T. The transition points 

in Eq.(6) are T →  and T → –1. 

Boundary conditions: 

 r = –pint   and    = 0   at   r = ri ,  and 

 r = 0   and    = 0   at   r = r0 , (7) 

where: 0 is constant given by: 0 0
0

0

ln( / )

log( / )i

r r

r r


 = . The 

resultant force transmitted by the wall in axial direction is 

equal to l = ri
2pint, i.e.: 

 
0

22

i

r

z i int
r

r dr r p  = . (8) 

PROBLEM SOLUTION 

At the transition point T → , the transition function is 

taken through the principal stress as given by /5, 7-26/. Let 

transition function   be defined as: 

2
(3 2 ) [ (1 )n

r k c T c c
n cn

 
   = − +  −  − − +  

 
2

( 1) ] (3 2 ) 1nT c
c




 
+ + +  − − 

 
. (9) 

Taking the logarithmic differentiation of Eq.(9) with 

respect to r and using Eq.(6) and taking the asymptotic value 

T → , we get: 

 
(ln )d c

dr r


= − . (10) 

Integrating Eq.(10) with respect to r, we get: 

 exp ( )A F r = , (11) 

where: ( )
c

F r dr
r

= − . (12) 

Equations (9) and (11), become: 

 exp ( ) [3 (1 ) ] (3 2 )n
r A F r d c

n


 = + − − −  − . (13) 

Using Eq.(7) into Eq.(14), we get: 

 0

0

[3 2 ( )]

exp ( ) exp ( )

i int

i

c r p
A

F r F r

  − −
=

−
, 

and 
0[3 (1 ) ] exp ( )nd A F r

n


− − = . (14) 

Substituting Eq.(14) into Eq.(13) and Eq.(3), we get: 

 
0exp[ ( ) exp ( )] (3 2 )r A F r F r c = − −  − , (15) 

and 0 0

0

exp ( ) [3 2 ( )] 2

exp ( ) exp ( )

int i
z

i

F r p c r

F r F r n






−  − 
= − 

− 

. (16) 

Substituting Eq.(15) into Eq.(5), we get: 

0
0

0

[(1 )exp ( ) exp ( )]
ln( / )i

A c F r F r
r r






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 0 0[(3 2 )[1 ln( / )] 2 ln( / )]c r r rc r r − + − . (17) 

The third equation of Eq.(4) gives: 

0 0

0

ln( / )1 (3 2 )
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z r z

i

r rc c c

c c c r r

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Using Eq.(16) and Eq.(8) into Eq.(18), we get: 
2
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Substituting Eq.(2) into Eqs.(15)-(18), we get the transi-

tional stresses as: 
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where 
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Equations (20)-(21) become: 

 0 0 0 0 0 0 0
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Initial yielding: it has been seen that from Eq.(24), that  –r is maximum at r = (r0
ke2)1/k, c0 = –kr0

ke2, and k < 0. Therefore 

yielding of a non-homogeneous cylinder takes place at r = (r0
ke2)1/k = r1 (say), depending upon values of c0 = –kr0

ke2 and k, 

Eq.(24) becomes: 
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, (25) 

where: Y is yielding stress; and e (say value = 2.178) be the 

exponential. 

Investigation pressure: from Eq.(25), the pressure required 

for initial yielding is given: 

 2
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1 1

1int
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where: 
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Fully-plastic state: for the full plasticity (i.e., c0 → 0), Eq. 

(25) becomes: 

02 2
00 0 0 0

1
3

log( / )( ) ( )

int

k k k k k k
ii i

p k k
Y

r rr r e r r r e r


− − − −

 
−  −  

− − 

 

and the pressure required for fully-plastic state is given as: 
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Stresses for full plasticity are obtained by taking c0 → 0 

in Eqs.(20)-(22), and we get: 
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The axial force given is as: 
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In Eqs.(28)-(31), by taking k → 0 and 1 → 0, the present 

results reduce to the previously published outcomes done 

by /18/ thus to make sure of the validity of the presented 

solutions. 

NUMERICAL RESULTS AND DISCUSSION 

To evaluate the effects of pressure and temperature on a 

circular cylinder made of non-homogeneous materials and 

non-homogeneity as the compressibility of the material in 

the cylinders given as c = c0r–k, the following numerical 

values are taken as: k = –2, –2.5, –3; 1 = 0 and 0.175, in 

respect. For a thick-walled circular cylinder made of non-

homogeneous material (say k < 0) and the non-homogeneity 

increases radially, yielding will takes place at the radius r, 

where ri < r < r0 and different temperatures (say 1 = 0, 

0.175), depending upon the values of k and c0 (see Table 1). 

From Table 1, it shows that the percentage increase in 

pressure required for the initial yielding state to become 

fully-plastic has been discussed numerically. It can also be 

seen from Table 1, that a thick-walled cylinder with radii 

ratio b/a = 4 requires higher percentage values in pressure 

(i.e., P = 106.90 %, 95.28 %, 89.68 %), to become fully 
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plastic as compared to the thick-walled cylinder with radii 

ratio b/a = 8 (i.e., P = 89.68 %, 86.14 %, 84.90 %), respec-

tively. Further increasing the dimensionless temperature (i.e., 

1 = 0.175), the percentage ratio (i.e., P %) also increases, 

for the initial yielding state to become a fully plastic state, 

in respect. Further, the value of percentage ratio increases 

with increasing temperature and decreases with increasing 

radii ratio b/a (say b/a = 6, 8), and vice versa. Moreover, 

the non-homogeneous thick-walled cylinder having larger 

radii ratio requires lower percentage values in pressure to 

become fully plastic in comparison to a smaller radii ratio. 

Table 1. Percentage in pressure. 

Radii ratio  

(b/a) 

constant 

k < 0 

Temperature 

Θ1 

Compressibility 

c0 

Initial yielding surface 

r 

Pressure Percentage in pressure for initial yielding 

to fully plastic state P (%) Pi Pf 

 

 
 

4 

-2 0 0.92 1.47 0.81 3.46 106.90 

-2.5 0.57 1.79 0.75 2.86 95.28 

-3 0.34 2.05 0.67 2.42 89.68 

-2  

0.175 

0.92 1.47 0.41 2.67 155.01 

-2.5 0.57 1.79 0.38 2.30 143.71 

-3 0.34 2.05 0.35 2.03 139.03 

 
 

 

6 

-2  
0 

 

0.41 2.21 0.95 3.59 94.03 

-2.5 0.21 2.69 0.82 2.92 88.17 

-3 0.10 3.08 0.71 2.45 85.83 

-2  

 

0.175 

0.41 2.21 0.73 3.06 104.24 

-2.5 0.21 2.69 0.66 2.59 98.36 

-3 0.11 3.08 0.58 2.25 95.99 

 
 

 

8 

-2  
0 

0.23 2.94 1.01 3.63 89.68 

-2.5 0.10 3.59 0.84 2.93 86.14 

-3 0.04 4.10 0.72 2.45 84.90 

-2  

0.175 

0.23 2.94 0.88 3.24 91.06 

-2.5 0.10 3.59 0.77 2.72 86.89 

-3 0.04 4.10 0.68 2.36 85.07 

where: P = [(Pf /Pi) – 1]100 is the percentage (%) increase in pressure for initial yielding state to become fully plastic state and dimen-

sionless temperature 1 = 0.00, 0.0175. 

     

 

Figure 2. Graph between dimensionless pressures versus radii ratio with/without thermal 

effect: a) initial yielding sate; b) fully-plastic state with/without thermal effect. 

In Fig. 2, curves are drawn be-

tween dimensionless pressure re-

quired for initial yielding/fully-plas-

tic state versus radii ratio b/a = 4, 

6, 8, and having temperature 1 = 

0 and 0.175, respectively. 

A thick-walled circular cylinder 

made of non-homogeneous material 

with constant k = –2 requires higher 

dimensionless pressure to yield at 

the internal surface as compared to 

the thick-walled cylinder with con-

stant k = –2.5, –3, and the value of 

pressure goes on increasing with the 

increase in radii ratio b/a = 4 and 

6, for the initial/fully-plastic state. 

Further, the non-homogeneity of the 

thick-walled circular cylinder in-

creases gradually with temperature 

(say 1 = 0.175), the value of the 

dimensionless pressure decreases at 

the inner surface of the thick-walled 

cylinder for the initial/fully-plastic 

state. 

Figure 3 is portrayed in order to demonstrate the behav-

iour of dimensionless stress distribution versus radii ratio R = 

r/b in a non-homogeneous cylinder (i.e., c = c0r–k) with 

temperature 1 = 0 and 0.175, respectively. From Fig. 3, it 

is observed that hoop stress is maximum at outer surface for 

non-homogeneous circular cylinder and non-homogeneity 

increases the tangential stress at outer surface significantly. 

With the introduction of thermal effects, the values of the 

hoop stress decrease at the outer surface of the non-homo-

geneous circular cylinder. Moreover, thermal effects reduce 

the tangential stress at the external surface of a non-homo-

geneous circular cylinder extensively. 

In Fig. 4, the geometry of the non-homogeneous circular 

cylinder and applied maximum/minimum radial/hoop stress 

at the inner and outer surface, is shown. 
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Figure 3. Graph between plastic dimensionless stress distribution 

vs. radii ratio R = r/b in a non-homogeneous (i.e., c = c0r–k) 

cylinder with different temperature. 

 
thick cylinder 

       
hoop stress distribution                   radial stress distribution 

Figure 4. Stress distribution in thick-walled circular cylinder.  
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