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Abstract 

The objective of this paper is to present the study of stress 

distribution in a rectangular plate made of isotropic material 

by using transition theory. The analysis also includes the 

neutral surface separating the tension and compression 

region. It has been observed that circumferential stresses 

are maximal at the neutral surface of the rectangular plate 

made of incompressible material as compared to the rectan-

gular plate when it is made of compressible material. Numer-

ical results are shown graphically. 

Ključne reči 

• izotropni materijal 

• ploča 

• napon 

• zatezanje 

• pritisak 

Izvod 

Cilj ovog rada je u predstavljanju istraživanja raspodele 

napona u pravougaonoj ploči od izotropnog materijala, pri-

menom teorije prelaznih napona. U analizi se takođe uzima 

u obzir neutralna površina, koja razdvaja oblasti zatezanja 

i pritiska. Primećuje se da su obimski naponi maksimalni 

na neutralnoj površini pravougaone ploče izvedene od nestiš-

ljivog materijala u poređenju sa pravougaonom pločom, 

kada je ona izvedena od stišljivog materijala. Numerički 

rezultati su prikazani grafički u vidu dijagrama.  

INTRODUCTION 

The problems of elastic-plastic bending of rectangular 

plates have been studied by numerous researchers. The wide-

spread use of plate structures in many fields of technology 

such as mechanics, civil engineering, aerospace, and marine 

is due to their intrinsic properties. Wojtaszak /1/ computed 

the maximal deflection, moments, and shear for a rectangular 

loaded plate with flanged edge. Gupta /2/ studied the prob-

lem of elastic-plastic transition in the flexion of rectangular 

sheets using the theory of transition. Matsuda et al. /3/ ana-

lysed the problem of elastoplastic bending of a rectangular 

plate using numerical integration and incremental variable 

elasticity. Jain et al. /4/ discussed the problem of elastic plas-

tic bending of rectangular plates using Ilyushin's theory. 

Thakur et al. /5/ discussed the problem of the distribution of 

thermal constraints in a rectangular rubber/copper plate and 

glass materials using transition theory. In this paper, we 

discuss the stress distribution in a rectangular plate made of 

compressible/incompressible material by using Seth's tran-

sition theory. 

GOVERNING EQUATION 

We consider a rectangular plate referred to as an x-y-z 

system of rectangular coordinates and determine the position 

of the origin 0 of the x-y-z system at the corner of the mid-

dle plane of the plate. Let the rectangular plate be bent in 

the shape of a right circular cylinder and having two edges 

as generator, and the bending moment M per unit length is 

applied perpendicular to the plane. The displacement com-

ponents are taken as: u = x – f(r); v = y – A ; w = z; where 

A and  are constants; f(r) is a function of r, and r is a func-

tion of x and y, respectively. The generalised strain compo-

nents are given (Seth /6/): 
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where: f  = df/dr; and err, e, ezz be strain components. The 

stress-strain relation is given by Seth /6, 7/: 
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The equation of equilibrium is: 
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Inserting Eq.(2) into Eq.(3), we get: 
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where: rf  = fp. The transition points from Eq.(4) are p → 0 

and p → . Over the plane ends, the resultant force normal 

to the plane z = const. must vanish, i.e., 

 0
b

zz
a

rT dr = , 

whereas on the straight edge  = z, we have 

 0
b

a

T dr =   and   
b

a

M rT dr=− , (5) 

where: M is the bending moment. 

PROBLEM SOLUTION 

Elastic to plastic state (see /5-21/), let the transition func-

tion  be defined as: 
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Taking logarithmic differentiation from Eq.(6) and using 

Eq.(4), we get: 
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The transition point p →  (corresponds to the tension 

region) and p → 0 (corresponds to compression region), we 

obtain the transition values of  from Eq.(7) and after inte-

gration with respect to r as: 

1
cA r −=  for p →   and  /(1 )

2
c cA r −=  for p → 0. (8) 

From Eq.(8) and Eq.(6), we get stress for the region of 

tension/compression as: 
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The second equation of Eq.(1) shows that r = A is the 

unstretched longitudinal fibre. Let us assume that Trr
* be the 

radial stress of Trr of neutral axis at r = A. Eq.(9) and Eq. 

(10) become: 
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It follows from the results for simple shear under the con-

dition of finite deformation /7/ that in the transition  → k, 

the latter being the yield limit in shear. Substituting Trr = 0 

at r = a and r = b into Eq.(11) and Eq.(12), respectively, and 

taking  → k (neglecting higher order terms), /7/, we get: 
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Neutral surface: the radial stresses Trr must be continuous 

across the neutral axis at r = A. Eq.(13) becomes: 

 (1 ) (2 ) 1 (2 )c c cA a b− − −=     0  c  1. (14) 

Tension region: substituting Eq.(13) into Eq.(11) and into 

Eq.(12), we get the radial stresses for the regions of tension 

and compression as: 
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Compression region: substituting Eq.(15) into Eq.(3), we get 

the circumferential stress in the regions of tension and com-

pression as: 
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From Eq.(7), we have: 
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Moment of couples: substituting Eq.(14) and Eq.(16) into 

boundary condition Eq.(5), the moment of couple per unit 

width at the ends is given: 
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Equations (15)-(16) and Eq.(18) are the same as in Thakur 

et al. /5/, with neglecting the thermal condition. 

RESULT AND DISCUSSION 

For calculating the stress distribution in region of tension, 

neutral, and compression, based on the above analysis, the 

following values have been taken: C = 0.00 (incompressible 

material); 0.45; and 0.65 (compressible material), in respect. 

 
Figure 1. Graph of neutral axis A vs. compressibility c. 

Curves are drawn between compressibility (C = 0; 0.45; 

0.65) and the neutral axis (A) (see Fig. 1). It is observed that 
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with increasing compressibility of materials, the value of 

the neutral axis may also be increased and the value of the 

neutral axis on the surface of tension must concentrate on 

compression. 

In Fig. 2, curves are drawn between stress versus radii 

ratio (r/a). It is observed that the circumferential stress is 

maximal at the neutral surface of the rectangular plate made 

of incompressible material, as compared to the rectangular 

plate made of compressible material (i.e., C = 0.45 and 0.65). 

Rectangular plate made of incompressible material is more 

comfortable than that of the compressible material. 

 
Figure 2. Stress vs. radii ratio. 

CONCLUSIONS 

The main findings are given as follows: 

• rectangular plate made of incompressible material is more 

comfortable than that of compressible material, 

• the result is the same as given by Thakur et al. /5/. 
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