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Aopbstract 

The problem is investigated on the propagation of Love 

type waves in a geometrical configuration composed of an 

inhomogeneous viscoelastic layer lying over an elastic sub-

strate. The viscoelastic layer and an isotropic substrate are 

imperfectly attached to each other. An analysis is done in 

two cases, first, when the top surface of viscoelastic layer is 

stress-free, and second, when it is clamped. The dispersion 

and damping relations for both stress-free and clamped 

cases are separately determined through the use of effective 

boundary conditions. A special case is also derived when 

the viscoelastic layer is perfectly attached to the substrate 

under both conditions. An analytical approach is performed, 

and results are drawn graphically to explore the impacts of 

various parameters such as heterogeneity, internal friction, 

thickness of the layer and imperfectness parameter in both 

cases on phase and damping velocities of Love waves. 

Ključne reči 

• Love talasi 

• viskoelastični materijali 

• izotropna sredina 

• nesavršen interfejs 

• uklješteni sloj 

Izvod 

Problem se tretira istraživanjem prostiranja Love talasa 

u geometrijskog konfiguraciji sačinjenoj iz nehomogenog 

viskoelastičnog sloja koji leži iznad elastičnog supstrata. 

Viskoelastičan sloj i izotropni supstrat su nesavršeno pove-

zani. Analiza je urađena za dva slučaja. U prvom je gornji 

viskoelastični sloj bez napona, a u drugom je vezan (uklješ-

ten). Relacije koje opisuju disperziju i prigušenje za oba 

slučaja, bez napona i sa uklještenjem, se određuju nezavisno, 

putem uticajnih graničnih uslova. Razmotren je i specijalan 

slučaj, kada je viskoelastičan sloj idealno vezan sa supstra-

tom, za oba navedena slučaja. Analitičkim pristupom se 

dobijaju rezultati koji su predstavljeni grafički, čime se poka-

zuje uticaj raznih parametara, na pr. heterogenosti, unu-

trašnjeg trenja, debljine sloja i parametra nesavršenosti veze 

na fazne i brzine prigušenja Love talasa, kod oba spomenu-

ta slučaja. 

INTRODUCTION 

Theoretical examination of seismic waves is an essential 

instrument for investigating the complex interior of the Earth 

with accuracy, comprehending earthquakes, and devising 

efficient strategies to alleviate their impacts. During earth-

quakes and explosions, many types of waves are detected, 

and Love waves are one of them. Love waves are surface 

waves characterised by horizontal particle motion solely 

along the surface of the medium and normal to the direction 

of wave propagation. These waves travel through a stratified 

configuration, consisting of a layer having finite thickness 

succeeded by a substrate. For the origination of these waves, 

the surface layer needs to be slower than the substrate. 

Numerous researchers have delved into these types of waves 

analysing diverse geometric configurations, employing a 

range of parameters, and utilising distinct mechanical theo-

ries /1-7/. The displacement attributes of Love waves are 

readily understandable as they propagate with a single dis-

placement component, rendering them highly suitable for 

applications as guided waves in non-destructive evaluation 

methodologies, structural health monitoring, and signal pro-

cessing equipment. Love type waves are utilised in SAW 

devices as SH/Love waves sensors, contributing to non-de-

structive evaluation techniques for material characterisation. 

Additionally, these waves serve as SH/Love wave biosen-

sors to detect diseases within the human body, /8-12/. 

The interior of the Earth exhibits inhomogeneity due to 

many factors. These factors must be considered in mathe-

matical formulations when conducting theoretical investiga-

tions on wave propagation within an Earth-like infinite geo-

metrical configuration. The heterogeneity of the medium can 

be incorporated into mathematical models by introducing a 

depth-dependent heterogeneity parameter utilising various 

mathematical functions like linear, quadratic, exponential, 

trigonometric functions, and more. Several researchers have 

investigated the influence of material heterogeneity on the 

behaviour of different wave types propagating in varied geo-

metric setups through the application of diverse mechanical 

theories, /13-17/. 
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The study of seismic waves in layered media is crucial 

for understanding seismic behaviour in complex environ-

ments. Investigating the mechanical behaviour of viscoelastic 

media is particularly important because the asthenosphere, 

a transition zone between the low-density crust and higher-

density mantle, is viscous. Most dynamic Earth processes 

responsible for earthquakes occur in this zone, leading to 

various physical phenomena. The Earth, composed of silicate 

and iron-alloy materials, responds nearly elastically to small-

magnitude transient forces but behave viscously under long-

duration forces across the range of pressures and tempera-

tures within the planet. Subsurface materials like coal tar, 

salt, and sediments can be modelled as viscoelastic materi-

als which are considered in the broader context of their phys-

ical properties. Materials used in structural and engineering 

applications may exhibit viscoelastic behaviour, significantly 

impacting their performance. In some cases, viscoelasticity 

is intentionally utilised in the design process to achieve spe-

cific objectives. Many researchers have studied the types of 

wave propagation in different variations in the density and 

rigidity of the viscoelastic medium, /18-22/. 

Various layers inside the Earth are not perfectly bonded, 

and these imperfections can affect wave propagation. Addi-

tionally, the Earth's crust comprises layers of different mate-

rials that are not in perfect contact. Imperfections at the 

interface between two materials can arise from faulty manu-

facturing processes, accumulated damage, and thermal mis-

match. In a perfect contact condition, stress and displacement 

components are continuous across the interface. However, 

in the case of an imperfect interface, while stress components 

remain continuous, the displacement components are discon-

tinuous, with the displacement jump being proportional to 

the stress vector. Numerous authors have incorporated the 

concept of imperfections at interfacial surfaces in various 

models for wave propagation problems, /23-27/. 

Kaplunov et al. /28/ investigated the propagation of Love 

waves in a layered structure with a clamped surface. Accord-

ing to their findings, Love waves can exist in a clamped 

layered structure if the shear wave velocity of the half-

space exceeds the velocity of layer. While Love waves have 

been extensively analysed by numerous researchers in a 

stress-free layered structure, the literature pertaining to Love 

waves in a clamped layered structure appears to be limited 

based on the findings of previous researchers. Some re-

searchers investigated the propagation of waves by using 

the conditions of clamped surface, /29, 30/. 

Love wave propagation is extensively studied in various 

layered structures with different material compositions and 

boundary conditions. The present problem studies propaga-

tion of Love waves in two scenarios, one when the top sur-

face of layer is stress-free and the other, in which upper 

surface of layer is clamped. Under the effective boundary 

conditions dispersion and damping equations are obtained. 

This problem explores the impact of various parameters 

like heterogeneity, internal friction, thickness of the layer 

and imperfectness parameter on phase and damping veloci-

ties of Love waves in both stress-free and clamped conditions 

at the top surface of the layer. 

FORMULATION OF THE PROBLEM 

For this study, a viscoelastic layer of finite and uniform 

thickness (H) is imperfectly attached to an elastic substrate as 

depicted in Fig. 1. The origin of co-ordinate system (x,y,z) 

is considered at the joining interface of two media. It is 

assumed that the wave is propagating along the direction of 

x-axis and z-axis is positive going downwards into the sub-

strate. The displacement components for the layer are (u1, 

v1, w1) and for the elastic substrate as (u2, v2, w2). The field 

variables are assumed to be not dependent upon y-axis, that 

is /y  0. The Love waves will propagate with only single 

non-zero displacement component, so as per the geometry 

of the problem, it is assumed u1 = w1 = 0, u2 = w2 = 0, v1 = 

v1(x,z,t) and v2(x,z,t). 

 
Figure 1. Geometry of the problem. 

SOLUTION OF THE PROBLEM 

Heterogeneous viscoelastic layer 

The equation of motion for the heterogeneous viscoelastic 

layer can be written as, /31/, 

 
1

2
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xy yz v

tx z

 






 
+ = 

  
, (1) 

where: 1 is the density of material. 

The constitutive relation for viscoelastic medium is 

 
1 1 , 1 1 , ,( )ij ij k k i j j i

t
v v v

t
     

   
= + + + +



  

   
, (2) 

where: 1 and 1 are Lame’s constants; 1 and 1 are inter-

nal friction parameters; ij are stress components; ij is Kron-

ecker’s delta; and vi are the displacement components for 

viscoelastic layer; i, j, k = 1, 2, 3. 

Due to the presence of heterogeneity in the viscoelastic 

layer, 1, 1, and 1 are taken as the function of depth only 

and are given by 

 
1 0(1 sin )z  = − , 

 
1 0(1 sin )z  = − , (3)  

 
1 0(1 sin )z  = − , 

where: 0, 0, 0 are the constant values of 1, 1, and 1. 

Here,  is an arbitrary constant having dimensions of inverse 

length. 

The non-vanishing stress components 

1 1
1 1 1 1 and xy yx yz zy

v v

t x t z
       

     
= + = = + =   

      
.  (4) 

Using Eq.(3) and Eq.(4) in Eq.(1), we get 
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1 1 1
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+ + + =    

        
. (5) 

After assuming the solution for Eq.(5) as v1 = g(z)e–i(t–kx), 

where k is wave number,  = kc is angular frequency and c 

is phase velocity, we get the following differential equation 

 
22

21 1

2
1 1

( )
( ) 0

d g dg
k g z

dzdz

  

 

 
 + + − = 
 

, (6) 

where: 1 = 1 – i1; and ( 1 ) = d 1 /dz = 1/z – i(1/z). 

Taking g(z) = Y1(z)/ 1 , Eq.(6) reduces to 

22 2 2
21 1 1 1

12 2 2
1 11

1 1
0

24( )

d Y d d
k Y

dzdz dz

   

 

  
 + − + − = 

   

, (7) 

Solving Eq.(7) further, gives 

 
2

21
12

0
d Y

m Y
dz

− = , (8) 

where: m2 = k2 – (a2/4) – (02/ 1 ); and 1 = 0 – i0. 

The solution of the above differential equation Eq.(8) 

becomes 

 1 1
1 1 1( )

t z t z
Y z A e B e

−
= + . (9) 

Therefore, the displacement component of the upper 

viscoelastic layer becomes 
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and we get the stress component as 

  10
1 1cos 2 (1 sin )
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t z
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   1 ( )
1 1cos 2 (1 sin )

t z i t kxz t z e B e    − − −− − , (11) 

where: t1 is given in Appendix 1. 

Isotropic elastic substrate 

The equation of motion for homogeneous isotropic elastic 

medium are given as 
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The stress - strain relationship for an isotropic medium is 

 
2 22ij ij ije   =  + , (13) 

where: ij are stress components; 2 and 2 are Lame’s con-

stants; 2 is density of material; eij = [(ui /xj)+ (uj /xi)]/2 

are strain components;  = e11 + e22 + e33 is volumetric strain; 

and ij is Kronecker’s delta; i, j = 1, 2, 3. 

Using mentioned conditions for the propagation of Love 

waves, the non-vanishing stress components are 

 2 2
2 2  and  xy yx yz zy

v v

x z
     

 
= = = =

 
. (14) 

The only non-vanishing equation of motion from Eq.(12) 

is given as 

 
2 2 2

2 2 2

2 2 2 2
2

1v v v

x z t

  
+ =

  
, (15) 

where: 2
2 = 2/2. 

Assume the solution of Eq.(15) as v2(x,z,t) = h(z)e–i(t–kx), 

where k is wave number,  = kc is angular frequency, and c 

is phase velocity, we get the following differential equation 

 
2

2 2

2
( ) 0

d h
P k h z

dz
− = . (16) 

The solution of differential equation in Eq.(16) becomes 

 
2 2( ) kPz kPzh z A e B e−= + . (17) 

As z → , h(z) must vanish, so to make this happen, we 

take A2 = 0, hence, the solution given in Eq.(17) becomes 

h(z) = B2e–kPz. 

Hence, the displacement component for an isotropic elas-

tic substrate is 

 ( )
2 2( , , ) kPz i t kxv x z t B e e − − −= , (18) 

where: P = (1 – c2/2
2), and we get the stress component as 

 ( )
2 2 ( )kPz i t kx

yz B e kP e   − − −= − . (19) 

BOUNDARY CONDITIONS 

Stress-free boundary conditions 

i. The stress component vanishes at the upper surface of 

layer, that is yz = 0 at z = –H. 

ii. Layer and substrate are not perfectly attached, so the 

difference in displacement components is proportional to 

stress tensor, that is yz = G(v2 – v1) at z = 0, where G 

defines the degree of imperfectness. 

iii.  Stress components are continuous at the joining interface, 

so, yz = yz at z = 0. 

By implementing the above-mentioned boundary condi-

tions, we obtain following equations 

1
0 1 1[ cos 2 (1 sin )]

t H
H t H e A    −

+ + +  

 1
1 10 [ cos 2 (1 sin )] 0

t H
H t H e B    −

+ − + = , (20) 
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   + −
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 (21) 

1 0 1 0
1 1 2 2

( 2 ) ( 2 )
( ) 0

2 2

t t
A B kP B

   


   + −
+ + =   

   
. (22) 

For the non-trivial solution of Eqs.(20)-(22), determinant 

of the arbitrary coefficients must vanish. After solving the 

determinant, the following equation is obtained for the prop-

agation of Love waves in the considered geometry, under 

stress-free conditions at top surface of layer, when this layer 

and the substrate are imperfectly attached, 
1 1 1 1

1 2 2 3 4 2[ tan( ) tan( )]
m H m H m H m H

W e W e m H W e W e m H
   − −  + − + + 

 1 1 1
2 1 2 4[ tan( )

m H m H m H
i W e W e m H W e

  − − + − − − 

 1
3 2tan( )] 0

m H
W e m H

 − = . (23) 

From the real part of Eq.(23), the dispersion relation is 

 
1 1

1 1

3 1
2

4 2

tan( )
m H m H

m H m H
W

e e

e

W W
m H

W e

 −

 −

−
 =

+
, (24)  

and from imaginary part of Eq.(23), the damping relation is 

given as 

 
1 1

1 1

4 2
2

3 1

tan( )
m H m H

m H m H
W

e e

e
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e
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+
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Case 1: If G → , interface between viscoelastic layer and 

an isotropic elastic substrate becomes perfect in nature, then 

the following cases are concluded. 

Sub case 1: The dispersion relation given in Eq.(24) reduces to 

 
1 1

1 1

3 1
2

4 2

tan( )
m H m H

m H m H

W W
m H

eW

e

W

e

e

 −

 −

 −
 =

 +
. (26)  

The Eq.(26) shows dispersion relation for propagation of 

Love waves under stress-free conditions when layer and half-

space are perfectly attached. 

Sub case 2: The damping relation given in Eq.(25), reduces to 

 
1 1

1 1

4 2
2

3 1

tan( )
m H m H

m H m H

eW W

W

e

e
m H

W e

 −

 −

 − +
 =

 +
, (27)  

where: W1, W2, W3, W4, W1, W2, W3, and W4 are given in 

Appendix 2. 

The Eq.(27) shows damping relation for propagation of 

Love waves under stress-free conditions when layer and half-

space are perfectly attached. 

Clamped boundary conditions 

i. The displacement component must vanish at the upper 

surface of layer, that is v1(x,z,t) = 0 at z = –H. 

ii. Layer and substrate are not perfectly attached, so the dif-

ference in displacement components is proportional to 

stress tensor, that is yz = G(v2 – v1) at z = 0, where G 

defines the degree of imperfectness. 

iii.  Stress components are continuous at the joining interface, 

so yz = yz at z = 0. 

By implementing the above-mentioned boundary condi-

tions, we obtain following equations 

 
1 1

1 1
0 0

0
t H t H

e e
A B

 

− −

+ = , (28) 
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2 0GB− = , (29) 
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1 1 2 2

( 2 ) ( 2 )
( ) 0
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t t
A B kP B

   


   + −
   + + =
   

. (30) 

For the non-trivial solution of Eqs.(28)-(30), determinant 

of arbitrary coefficients must vanish. After solving the deter-

minant, the following equation is obtained for the propaga-

tion of Love waves in the considered geometry, under 

clamped conditions at top surface of layer, when layer and 

substrate are imperfectly attached, 

1 1 1
1 2 2 3[ tan( )

m H m H m H
X e X e m H X e

  − − + − +  

 1 1 1
4 2 2 1 2tan( )] [ tan( )

m H m H m H
X e m H i X e X e m H

  − − + + − −  

 1 1
4 3 2tan( )] 0

m H m H
X e X e m H

  − − = . (31)  

From real part of Eq.(31), the dispersion relation is given as 
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2

4 2
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X

e e
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X X
m H

X e
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+
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and from imaginary part of Eq.(31), the damping relation is 

given as 

 
1 1

1 1

4 2
2

3 1

tan( )
m H m H

m H m H
X

e e

e

X

e

X
m H

X

 −

 −

−
 = −

+
. (33) 

Case 2: If G → , the interface between heterogeneous 

viscoelastic layer and an isotropic elastic substrate becomes 

perfect in nature, then the following cases are concluded. 

Sub case 1: The dispersion relation given in Eq.(32) reduces to 

 
1 1

1 1

3 1
2

4 2

tan( )
m H m H

m H m H

X X
m H

eX

e

X

e

e

 −

 −

 −
 =

 +
. (34) 

The Eq.(34) shows dispersion relation for propagation of 

Love waves under clamped conditions when layer and half-

space are perfectly attached. 

Sub case 2: The damping relation given in Eq.(33), reduces to 

 
1 1

1 1

4 2
2

3 1

tan( )
m H m H

m H m H

eX X

X

e

e
m H

X e

 −

 −

 −
 = −

 +
, (35) 

where: X1, X2, X3, X4, X1, X2, X3, and X4 are given in 

Appendix 3. 

The Eq.(35) shows damping relation for propagation of 

Love waves under clamped conditions when layer and half-

space are perfectly attached. 

NUMERICAL RESULTS AND DISCUSSION 

The material constants taken for graphical illustrations 

are mentioned in Table 1. 

Table 1. Material parameters. 

Visco-

elastic 

layer, /32/ 
 = 1.9871010 N/m2 1 = 4705 kg/m3  = 106 s–1 

Elastic 

substrate 
 = 7.101010 N/m2 2 = 3321 kg/m3 – 

Table 2. Values of various parameters. 

Parameters   H G 

Figs. 2(a), (b) & 3(a), (b) – 0.04 0.4 30.5109 

Figs. 4(a), (b) & 5(a), (b) 0.1 – 0.4 30.5109 

Figs. 6(a), (b) & 7(a), (b) 0.1 0.04 – 30.5109 

Figs. 8(a), (b) & 9(a), (b) 0.1 0.04 0.4 – 

Figures are plotted to represent the influence of hetero-

geneity parameter H, internal friction parameter 1 /1, thick-

ness of layer H, and imperfectness parameter G, on the phase 

and damping velocities of Love waves, propagating in a 

viscoelastic layer which is imperfectly attached to an elastic 

substrate. In Figs. 2(a, b), 4(a, b), 6(a, b), and 8(a, b), results 

are plotted under stress-free conditions at the top surface of 

layer, and Figs. 3(a, b), 5(a, b), 7(a, b), and 9(a, b) are plot-

ted under clamped conditions at top surface of the layer. Fig-

ures 2-7(a, b) are plotted when the viscoelastic layer is imper-

fectly attached to an isotropic elastic substrate. In the given 

figures, dimensionless phase-, or damping velocity c/1 is 

considered along y-axis, and dimensionless wave number 

kH is along x-axis. 

Impacts of heterogeneity parameter H 

Figures 2(a, b) and 3(a, b) illustrate the changes in phase- 

or damping velocities caused by the impact of inhomogeneity 

parameter H. The impact of heterogeneity parameter is 

exhibited through the consideration of three distinct values 

for inhomogeneity parameter as 0.18, 0.88, and 1.58. The 

values assigned to the remaining parameters are given in 

Table 2. It is evident that as the inhomogeneity parameter 

increases, there is a proportional rise in phase and damping 
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velocities. In all the figures this trend indicates that the inho-

mogeneity parameter promotes phase and damping velocities 

within the medium for both stress-free and clamped condi-

tions. 

 
Figure 2a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of heterogeneity parameter H 

under stress-free condition. 

 
Figure 2b. Profiles of damping velocity c/1 of Love waves 

against wave number kH depicting impact of heterogeneity 

parameter H under stress-free condition. 

 
Figure 3a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of heterogeneity parameter H 

under clamped condition. 

 
Figure 3b. Profiles of damping velocity c/1 of Love waves 

against wave number kH depicting impact of heterogeneity 

parameter H under clamped condition. 

 
Figure 4a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of internal friction parameter 

1 /1 under stress-free condition. 

 
Figure 4b. Profiles of damping velocity c/1 of Love waves 

against wave number kH depicting impact of internal friction 

parameter 1 /1 under stress-free condition 

The impacts of internal friction parameter 1 /1 

The influence of the internal friction parameter 1 /1 of 

the viscoelastic layer on the propagation of Love waves is 

demonstrated by using three different values of the parame-
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ter as 6105, 10105, and 18105 in Figs. 4(a, b) and 5(a, b). 

The values assigned to the remaining parameters are given in 

Table 2. Examination of all figures reveals that an increase 

in internal friction parameter of the viscoelastic layer leads 

to a reduction in the phase- and damping velocities of Love 

waves under both stress-free and clamped conditions. 

 
Figure 5a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of internal friction parameter 

1 /1 under clamped condition. 

 
Figure 5b. Profiles of damping velocity c/1 of Love waves 

against wave number kH depicting impact of internal friction 

parameter 1 /1 under clamped condition. 

Impacts of thickness of the layer H 

Figures 6(a, b) and 7(a, b) elucidate the influence of the 

thickness of layer H on the phase and damping velocities of 

Love waves. The values assigned to the remaining parame-

ters are given in Table 2. For all figures, three distinct values 

of the thickness parameter are selected as 0.1 m, 0.2 m, and 

0.3 m. Analysis of Figs. 6(a, b) and 7(a, b) reveal that the 

phase and damping velocities of Love waves decrease as 

the value of thickness parameter increases. It is observed that 

the results are the same under both stress-free and clamped 

conditions. 

 
Figure 6a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of thickness of layer H under 

stress-free condition. 

 
Figure 6b. Profiles of damping velocity c/1 of Love waves against 

wave number kH depicting impact of thickness of layer H under 

stress-free condition. 

 
Figure 7a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of thickness of layer H under 

clamped condition. 
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Figure 7b. Profiles of damping velocity c/1 of Love waves against 

wave number kH depicting impact of thickness of layer H under 

clamped condition. 

Impacts of imperfectness parameter G 

To determine the impact of imperfectness parameter G on 

propagation of Love waves, Figs. 8(a, b) and 9(a, b) are illus-

trated by using four values of G = 130.5109, 1030.5109, 

2030.5109, and G → . The values assigned to remain-

ing parameters are given in Table 2. When G → , it repre-

sents the heterogeneous viscoelastic layer and isotropic elas-

tic substrate are perfectly attached to each other. Since the 

degree of imperfectness and the parameter G are inversely 

proportional, the trends indicate that as the degree of imper-

fectness decreases (i.e., G increases) at the interface, the 

phase and damping velocities increase. It can be also 

observed in all figures that the velocities are meeting at a 

particular point, and then again showing the same trend. 

From all figures, it can be examined that the phase and 

damping velocities are maximum when the two media are 

in perfect contact (G → ). 

 
Figure 8a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of imperfectness parameter G 

under stress-free condition. 

 
Figure 8b. Profiles of damping velocity c/1 of Love waves against 

wave number kH depicting impact of imperfectness parameter G 

under stress-free condition. 

 
Figure 9a. Profiles of phase velocity c/1 of Love waves against 

wave number kH depicting impact of imperfectness parameter G 

under clamped condition. 

 
Figure 9b. Profiles of damping velocity c/1 of Love waves against 

wave number kH depicting impact of imperfectness parameter G 

under clamped condition. 

CONCLUSIONS 

A systematic investigation is conducted to analyse the 

dispersion and damping behaviour of Love waves in a 

heterogeneous viscoelastic layer that is imperfectly bonded 
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to an isotropic elastic substrate under two distinct sets of 

boundary conditions. One scenario assumes the upper surface 

of the layer to be stress-free, while the other assumes the 

free surface of the layer to be clamped. It has been observed 

that the primary mode of Love waves lacks clarity; however, 

higher modes exhibit clear characteristics. Consequently, all 

graphical representations in this scenario are based on the 

first mode (n = 1) of Love waves. The study determines the 

effects of heterogeneity, internal friction, thickness of the 

layer and imperfectness parameter on the propagation of 

Love waves. The following major conclusions are derived 

from the results obtained. 

i. The effects of the heterogeneity parameter of the visco-

elastic layer on phase- and damping velocities of Love 

waves are illustrated. It is observed that the heterogene-

ity parameter favours phase and damping velocities. The 

velocities increase as the value of heterogeneity parame-

ter increases. Similar results are found regardless of the 

stress-free and clamped boundary conditions. 

ii. The impacts of internal friction parameter of viscoelastic 

layer are quite interesting. The phase and damping veloc-

ities of Love waves decrease with an increase in the 

internal friction parameter, regardless of the stress-free 

and clamped boundary conditions. 

iii.  Effects of layer thickness on phase and damping veloci-

ties of Love waves are also demonstrated. It is noticed 

that phase and damping velocities decrease as the thick-

ness of the layer increases. 

iv.  The impacts of imperfectness parameter G on the phase 

and damping velocities of Love waves are also observed. 

As the value of imperfectness parameter G increases, the 

interface becomes more perfect, meaning the bonding 

between the two media strengthens, resulting in an 

increase in phase and damping velocities. The velocities 

reach a maximum when the layer and half-space are per-

fectly bonded G → . 

The problem covers two major aspects, first the study of 

Love waves, when top surface of layer is clamped, secondly 

the role of imperfectness that measures the bonding nature 

between layer and substrate on the propagation of Love 

waves. The findings of this paper can be useful for various 

areas involving applications of Love waves. 
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