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Abstract 

The study investigates wave propagation in functionally 

graded nonlocal micropolar elastic media under initial 

stress. It is found that there are two waves, namely quasi-P 

and quasi-SV waves. The reflection and refraction coeffi-

cients are calculated numerically in form of matrix. Numer-

ical results are carried out to illustrate the reflection and 

reflection waves against angle of incidence with the help of 

MATLAB® graphical routines for different values of initial 

stress parameter. It is observed that derived equations for 

quasi-P and quasi-SV waves are affected by nonlocal, gradi-

ent and initial stress parameters. 

Ključne reči 

• inicijalni napon 

• nelokalni 

• mikropolarni 

• prostiranje talasa 

• funkcionalni gradijentni 

Izvod 

U radu se proučava prostiranje talasa u funkcionalnoj 

gradijentnoj nelokalnoj mikropolarnoj elastičnoj sredini pod 

dejstvom inicijalnog napona. Pokazuje se da postoje dva 

talasa, zapravo kvazi-P i kvazi-SV talasi. Koeficijenti reflek-

sije i refrakcije se određuju numerički u obliku matrice. 

Numerički rezultati ilustruju refleksiju i refrakciju talasa 

pod upadnim uglom, pomoću grafičkih rutina MATLAB® za 

različite vrednosti parametra inicijalnog napona. Pokazuje 

se da na izvedene jednačine za kvazi-P i kvazi-SV talase 

utiču nelokalni, gradijentni i parametri inicijalnog napona. 

 

INTRODUCTION 

Voigt /1/ introduced the concept of couple stress. The 

nonlinear theory of asymmetric elasticity with couple stresses 

was developed by Cosserat and Cosserat /2/. Later, various 

Cosserat’s type theories were developed by many authors 

like Toupin /3/, Mindlin and Tiersten /4/, Anthoine /5/, 

Lubarda and Markenscoff /6/, and Lubarda /7/, etc. Gourgi-

otis and Georgiadis /8/ presented the technique for studying 

crack problem within couple stress elastic theory. Güven /9/ 

studied the influence of modified couple stress theory on 

nonlocal longitudinal waves. The micropolar theory of elas-

ticity is the extension of classical theory of elasticity inves-

tigated by Eringen /10/. The translational degree of freedom 

with the addition of rotational degree of freedom at the 

typical material point of the body is considered in this micro-

polar theory. He assumed three mutually perpendicular rigid 

directors at the centre of mass of the particles. Wave prop-

agation in couple stress micropolar thermoviscous elastic 

solid half spaces are discussed by Sahrawat et al. /11/. 

Poonam et al. /12/ investigated the void and nonlocal param-

eter had a great effect on fundamental solution in a nonlocal 

couple stress micropolar thermoelastic solid with voids. 

Sahrawat et al. /13/ studied the wave propagation in non-

local couple stress micropolar thermoelastic solid. 

Any medium is said to be functionally graded when any 

property of the medium changes according to a defined 

function and in defined direction. The functionally graded 

isotropic medium plays a significant role in the analysis of 

seismic wave propagation. In this paper, the density and 

inertia of the material changes exponentially along with other 

initial stress parameters. Initial stresses are stresses already 

present in the structure not subjected to the action of external 

forces. Biot /14/ investigated the impact of initial stress on 

the waves. Recently, the problems based on the influence of 

initial stress parameter on the wave propagation with their 

reflection and refraction phenomenon in functionally graded 

isotropic medium is discussed by several authors like Toch-

hawng and Singh /15/, Saha et al. /16/, Goyal and Kumar 

/17/, Poonam et al. /18/, Wang et al. /19/, and Poonam et al. 

/20/. 

In this paper, we study the wave propagation in function-

ally graded nonlocal micropolar elastic media under initial 

stress. We have found that there are two waves, namely 

quasi-P and quasi-SV waves. The reflection and refraction 

coefficients are calculated numerically in form of matrix. 

The numerical results are carried out to illustrate the reflec-

tion and refraction waves against angle of incidence with 

the help of MATLAB® graphical routines for different values 

of initial stress parameter. It is observed that the derived 

equations for quasi-P and quasi-SV waves is affected by 

nonlocal, gradient, and initial stress parameters. 

MATHEMATICAL FORMULATION AND GEOMETRY 

The plane interface coincides with x2x3-plane in the co-

ordinate system 0x1x2x3 and x3 axis taking along the interface 

x2 = 0. We consider two regions H1 and H2 occupying x2  0 

and x2  0, respectively, as shown in Fig. 1. 
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Following Mindlin and Tiersten /4/, and Biot /14/, the 

stress-strain relation including hydrostatic pressure h is given 
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FUNCTIONALLY GRADED COUPLE STRESS THERMO-

ELASTIC MEDIUM hs (s = 1, 2) 

The material constants a (s),  (s),  (s),  s and hs (s = 1, 2) 

of functionally graded media in the exponential form w.r.t. 

depth are submitted as 
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where: a, ,  are constitutive coefficients w.r.t. h1 and h2, 

respectively.  (s), h (s) and s are density, pressure and gradi-

ent parameter, respectively. 

 
Figure1. Geometry of the problem. 

MEDIUMS hs UNDER INITIAL STRESSES 

Let the initial stresses along x2 and x3 axes be I22
(s) and 

I22
(s), respectively for both mediums, with the functionally 

gradient property in the form of exponent, 
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where: I22
(s) and I22

(s) admit I22
(0s) and I22

(0s) at the common 

interface. 

Following Biot /14/ and using Eqs. (5) and (1)-(3), the 

equations of motion are 
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where: I(1) = I33
(1) – I22
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Using Eq.(5), we obtain I(1) = S(1)e1x2 with S(1) = I22
(1) – 

I33
(1). Also, for initial stresses of medium h2 we can use 

subscript ‘2’ in place of ‘1’. 

According to the Helmholtz decomposition theorem on 

vectors, we introduce displacement potentials  and  as 

 ,  0u = +  = . (8) 

Using Eq.(8) in Eqs.(6)-(7), we obtain 
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We assume the solution for wave propagation of the form 

 { , } ( , )exp{ ( . )}a il ct  = −A nr , (11) 

where: let  = cl is frequency; c is phase velocity; and l is 

wave number; a and A are scalar and vector amplitudes; 

coordinate r = xm (m = 2, 3); n is the unit vector. 

Using Eq.(11) in Eq.(9), we obtain 
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Using Eq.(11) in Eq.(10), we obtain 
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The solution of the above equation can be written as 
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Here, the speeds S1 and S2 are corresponding to the qP 

and qSV -wave, respectively. Thus, we find two waves, 

namely, quasi-shear (qSV)-wave and quasi-P(qP) waves. 

Reflection-refraction phenomenon 

Let us consider that waves are incident at the x2 = 0, by 

making an angle 0. The incident waves will generate three 

reflected waves and three refracted waves by making angles 

s and s with speeds Ss and Ss for h1 and h2, respectively, 

where s = 1, 2. 

The values for speeds Ss are same as for Ss, respectively, 

with the primes at the significant places and replacing 1 by 

2. 

Boundary conditions: the boundary conditions for media h1 

and h2 are given by 

 
2 2 3 3 21 21 23 23 22 22,  ,  ,  ,  u u u u m m t t t t    = = = = = . (14) 

For incident qP-waves: 

When qP-wave is incident, then the angles s, s and the 

wave numbers ls, ls (s = 1, 2) are connected by the relations 

 l1sin sin1 = l2sin sin2 = l1sin sin1 = l2sin sin2. 

The values of  and  for medium h1 is given by 

0 1 2 0 3 0exp{ ( sin cos ) }M il x x i t   = − − +  

 
1 1 2 1 3 1exp{ ( sin cos ) }M il x x i t  + − − , (15) 

2 2 2 2 3 2exp{ ( sinsin coscos ) }M il x x i t   = − − . (16) 

The values of  , and  for medium h2 is given by 

1 1 2 1 3 1exp{ ( sinsin coscos ) }M il x x i t        = − − , (17) 

2 2 2 2 3 2exp{ ( sinsin coscos ) }M il x x i t        = − − . (18) 

Using Eq.(14) in Eqs.(15)-(18), we obtain 
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Equations (19)-(23) can be written as 

 [ ][ ] [ ]H Q Z= , (24) 

where: [H] = [hij] is a 54 matrix; [Q] = [Q1, Q2, Q3, Q4] is a 

41 column matrix; Qr = Mr/M0 (r = 1, 2) and Qt = Mt-3/M0 

(t = 4, 5) are amplitude ratios. The non-zero entries of the 

matrices are given in ‘Appendix A’. 

For incident qSV-wave: 

The values of  and  for medium h1 are given by 

1 1 2 1 3 1expexp{ ( sinsin coscos ) }M il x x i t   = + − , (25) 
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2 2 2 2 3 2expexp{ ( sinsin coscos ) }M il x x i t  + + − . (26) 

The values of   and  for medium h2 are given by 

1 1 2 1 3 1expexp{ ( sinsin coscos ) }M il x x i t        = + − , (27) 

2 2 2 2 3 2expexp{ ( sinsin coscos ) }M il x x i t        = + − . (28) 

Using Eq.(14) in Eqs.(25)-(28), we obtain 
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Equations (29)-(33) can be written as 

 [ ][ ] [ ]U V W= , (34) 

where: [U] = [Uij] is a 54 matrix; [V] = [V1, V2, V3, V4] is a   

column matrix; Vr = Mr /M0 (r = 1, 2) and Vt = Mt-3/M0 (t = 

4, 5) are amplitude ratios. The non-zero entries in matrices 

are given in ‘Appendix B’ 

NUMERICAL ANALYSIS 

The influence of initial stress parameter on the reflection 

and refraction coefficients w.r.t. angle of incidence is drawn 

graphically by the usage of MATLAB® software. Numerical 

values for h1 and h2 are taken from Tochhwang et al. /15/. 

For h1, the parameters are given by:  = 3.071·1011 N/m2, 

 = 3.581·1011 N/m2, K = 0.690·102 W/m°,  = 7.04·106 N/m2, 

(1) = 8.836·103 kg/m3, a = 1.650·1011 N/m2. 

For h2, the parameters are given by:  = 1.628·1011 N/m2, 

 = 0.627·1011 N/m2,  = 5.75·1011 N/m2, K = 1.24·102 W/m°, 

(1) = 7.13·103 kg/m3, ā = 0.362·1011 N/m2. 

The gradient parameters are 

 
(1) (2)

0, 4
I I

 
= =  . 

Figures 2-5 and 6-9 illustrate the influence of initial stress 

for qP- and qSV-waves on reflection and refraction coeffi-

cients w.r.t. angle of incidence . Six curves in the figures 

represent the following characteristics of initial stress. 

Curve 1 gives values where h1 does not contain initial stress 

but h2 contains initial stress. 

Curve 2 gives values where compressive initial stress exists 

in h1. 

Curve 3 gives values where tensile initial stress exists in h1. 

Curve 4 gives values where h1 contains initial stress but h2 

does not contain initial stress. 

Curve 5 gives values where compressive initial stress exists 

in h2. 

Curve 6 gives values where tensile initial stress exists in h2. 

 
Figure 2. Q1 vs.  for qP-wave with the influence of initial stress. 

 
Figure 3. Q2 vs.  for qP-wave with the influence of initial stress. 
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Figures 2-4 describe the effect of I(1)/2 and I(2)/2 on the 

reflection and refraction coefficients Qi (i = 1…6) w.r.t. . 

Figure 2 illustrates that the initial stress parameter for 

both mediums has a decreasing influence on Qi for nearly 

0°  0  8° and 86° ≤ 0   90°, but an increasing influence 

for nearly 8°  0  85°. After studying the curves, we 

observe that curves 5 and 6 support more to Qi as compared 

to curves 2 and 3. The influence of curves 2 and 5 on Qi is 

more as compared to curves 3 and 6. Curve 1 supports more 

to Qi than curve 4. 

Figure 3 depicts that the initial stress parameter for both 

mediums has a decreasing influence on Q2 for 0°  0  90°. 

After studying the curves we observe that curves 2 and 3 

support more to Q2 as compared to curves 5 and 6. The 

influence of curves 2 and 5 on Q2 is more as compared to 

curves 3 and 6. Curve 4 supports more to Q2 than compared 

to curve 1. 

 
Figure 4. Q3 vs.  for qP-wave with the influence of initial stress. 

Figure 4 illustrates that the initial stress parameter for 

both mediums has an increasing influence on Q3 for nearly 

0°    8° but decreasing influence for nearly 8°  0  90°. 

After studying, curves 2 and 3 affect more Q3 as compared 

to curves 5 and 6. The influence of curves 2 and 5 on Q3 is 

more compared to curves 3 and 6. Curve 4 supports more to 

Q3 than compared to curve 1. 

 
Figure 5. Q4 vs.  for qP- wave with the influence of initial stress. 

Figure 5 depicts that the initial stress parameter for both 

mediums has a decreasing influence on Q4 for nearly 0°  

0 ≤ 8° and 86°  0  90°, but an increasing influence for 

nearly 8°  0  85°. After studying the curves we observe 

that curves 5 and 6 support more to Q4 as compared to curves 

2 and 3. The influence of curves 2 and 5 on Q4 is more as 

compared to curves 3 and 6. Curve 1 supports more to Q4 

than compared to curve 4. 

Figures 6-9 describe the effect of I(1)/2 and I(2)/2 on the 

reflection and refraction coefficients Vi (i = 1…6) w.r.t. . 

 
Figure 6. V1 vs.  for qSV-wave with the influence of initial stress. 

 
Figure 7. V2 vs.  for qSV-wave with the influence of initial stress. 

 
Figure 8. V3 vs.  for qSV-wave with influence of initial stress. 
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Figure 9. V4 vs.  for qSV-wave with influence of initial stress. 

Figure 6 depicts that the initial stress parameter for both 

mediums has an increasing influence on V1 for nearly 0°  

0  15° and 40°    90° but a decreasing influence for 

nearly 5°    40°. Figure 7 illustrates that initial stress 

parameter for both mediums has an increasing influence on 

V2 for nearly 25°    40° and 65°    90° but a de-

creasing influence for nearly 0°    20° and 40°    

65°. Figure 8 shows that the initial stress parameter for both 

mediums has an increasing influence on V3 for 0°    90°. 

Figure 9 illustrates that the initial stress parameter for both 

mediums has a decreasing influence on V4 for nearly 20°  

  78°. After studying the curves we observe that the Vi (i = 

1…6) are more significant in h1 than h2 under the influence 

of tensile and initial stress. The compressive initial stress of 

h1 and h2 on Vi (i = 1…6) is more as compared to tensile 

initial stress of h1 and h2. When h2 contains initial stress but 

h1 does not contain initial stress supports more to Vi (i = 

1…6) than as compared to the case when h1 contains initial 

stress but h2 does not contain initial stress. 

CONCLUSION 

We have examined the study of wave propagation due to 

incidence of quasi-P and quasi-SV waves at the interface of 

two different functionally graded nonlocal couple stress elas-

tic media under initial stress. Characteristics of plane waves 

in both mediums are considered mathematically and shown 

graphically with angle of incidence to study the effects of 

several parameters. 

We have obtained the following conclusions from the 

given problem: 

‑ the phase speeds, reflection and refraction coefficients for 

the qP and qSV waves are considered; 

‑ when qP-wave is incident, the influence of tensile and 

initial stress in h1 supports more to Q2 and Q3 as compared 

to tensile and compressive initial stress acting in h2. While 

the influence of tensile and initial stress in h2 supports 

more to Q1 and Q4 as compared to tensile and compressive 

initial stress acting in h1. But when qSV-wave is incident, 

the influence of tensile and initial stress in h1 supports 

more to Vi (i = 1…6) as compared to tensile and compres-

sive initial stress acting in h2; 

‑ when qP-wave is incident, the compressive initial stress 

of h1 and h2 on Qi (i = 1…6) is more as compared to tensile 

initial stress of h1 and h2. When qSV-wave is incident, the 

compressive initial stress of h1 and h2 on Vi (i = 1…6) is 

more as compared to tensile initial stress of h1 and h2; 

‑ when qP-wave is incident, the case when h1 contains 

initial stress but h2 does not contain initial stress supports 

more to Q2 and Q3 than as compared to the case when h2 

contains initial stress but h1 does not contain initial stress, 

while the case when h2 contains initial stress but h1 does 

not contain initial stress supports more to Q1 and Q4 than 

as compared to the case when h1 contains initial stress but 

h2 does not contain initial stress. When the qSV-wave is 

incident, the case when h2 contains initial stress but h1 

does not contain initial stress supports more to Vi (i = 

1…6) than as compared to the case when h1 contains initial 

stress but h2 does not contain initial stress. 

The current study for wave propagation is significant for 

geophysics, seismologists and metallurgy and is also bene-

ficial in sound system, signal processing, and wireless com-

munication. 
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where:  s21 = s2/s1; sr1 = sr/s1 (r = 1, 2); S11 = s11; S41 = s21; D1 = 

[( + h) + 22].  

Z1 = 1, Z2 = –1, Z3 = sin sin20(sin sin0 + cos cos0), Z4 = sin sin0. 
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where: s12 = s1/s2; sr2 = sr/s2 (r = 1, 2); S42 = s12; D2 = 2 cos cos 

0 sin sin0. 

1 2 3 0 0 01, 1, sinsin2 (sinsin coscos )W W W   = = − = + , 

4 0 5 0sinsin , coscosW W = − = . 
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