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Abstract 

The current study estimates the time period of frequency 

(four modes) of parallelogram shaped plate having circular 

density and thickness in one and two dimensions, in respect, 

along with exponential profile in Young's modulus for two 

different edge conditions. The two different edge conditions 

of the plate are CCSS and CSSS. The Rayleigh-Ritz method 

is implemented to solve the frequency equation for the system 

mentioned above. The major conclusion made from the study 

is that we can optimise the time period for the system by 

choosing the circular profile in density and thickness for 

such plates. To validate our findings, we compare our results 

with previously published data and show in tabular form. 

Ključne reči 

• gustina 

• eksponencijalna 

• proizvodnja legura 

• tribološka analiza 

• površinsko oštećenje 

Izvod 

U radu se procenjuje vremenski period frekvencije (za 

četiri moda) ploče oblika paralelograma sa kružno raspo-

deljenom gustinom i debljinom u jednoj i dve dimenzije, 

respektivno, ujedno i sa eksponencijalnim profilom Jungovog 

modula za dva različita granična uslova ivica. Dva različita 

uslova ivica ploče su CCSS i CSSS. Primenjen je Rejlej-

Ricov metod za rešavanje frekventnog izraza za gore spome-

nuti sistem. Glavni zaključak koji se izvodi u radu je da se 

za ovakve ploče može optimizovati vremenski period sistema 

izborom kružnog profila po gustini i debljini. Kako bismo 

verifikovali naše rezultate, upoređujemo ih sa objavljenim 

podacima i predstavljamo ih u tabelarnom obliku. 

INTRODUCTION 

The study of vibration is universal due to its applications 

in applied science and engineering. Research on vibration 

of elastic plates with different plate parameters and bound-

ary conditions has been done previously, but few have been 

done on nonuniform and nonhomogeneous parallelogram 

plates. Researchers are interested in finding out the vibra-

tion frequencies and other factors on such plates. This 

research focuses on the analysis of modes of frequency of 

nonhomogeneous plates with non-uniform thickness and 

Young's modulus. This analysis is important for under-

standing system performance/behaviour as engineering struc-

tures are made up of these plates. It is necessary to under-

stand the characteristics of plate parameters efficiently in 

order to do such analysis. 

Vibrational behaviour of a skew plate having variable 

thickness under temperature profile at clamped edges is 

described in /1/ using Rayleigh Ritz method and obtained 

the natural frequencies for the plates. Vibrational analysis 

of tapered functionally graded parallelogram plates are com-

puted in /2/ and provided innovative results and effects of 

parameter on the frequency of the plates. A novel numerical 

approach is implemented in /3/ to study the vibrational 

behaviour of composite structures in quasi-static nonlinear 

equilibrium states and a hybrid quasi three-dimensional 

theory for stresses, deflections, and vibrational analysis of 

bi-functionally graded sandwich plates resting on Pasternak's 

elastic foundations is established in /4/. Peng et al. /5/ 

proposed geometric nonlinear analysis of arbitrary polygonal 

and circular stiffened plates by using meshless Galerkin 

method based on the first-order shear deformation theory 

and a series of points were used to discretize the flat plate 

and stiffeners to achieve the meshless model of stiffened 

plates. Bera et al. /6/ investigated the transverse vibrations 

of square/rectangular (isotropic and orthotropic) plates using 

the Navier method to obtain vibrational frequencies and 

mode shapes for the plates, as well as the best suitable plate 

thickness range for CLPT and HSDT models for improved 

bucking load calculation accuracy. Lee and Lim /7/ calcu-

lated the vibrational behaviour of square (isotropic and ortho-

tropic) plates with square cutouts subjected to in-plane forces 

and all frequency parameters were obtained by Rayleigh-

Ritz method. Impact of temperature on square plates was 

observed by Kumar et al. /8/ for clamped and simply 

supported. Authors calculated the modes of frequency by 

using Rayleigh-Ritz technique and reduce the frequency of 

the plate with different plate parameters. In this series, Kaur 

/9/ also worked on effect of temperature for clamped trian-

gular plate by employing Rayleigh-Ritz technique to solve 

mailto:dba.amitsharma@gmail.com
mailto:praveen_2117@rediffmail.com


Time period of tapered parallelogram shaped plate with  Vremenski period ploče oblika suženog paralelograma sa  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 24, br.3 (2024), str. 393–397 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 24, No.3 (2024), pp. 393–397 

 

394 

the frequency equation (first two modes) for the system with 

respect to different values of temperature, thickness and 

aspect ratios. In 2017, Sharma /10/ dealt with vibrational 

frequencies of square plate for various geometrical and 

thermal conditions and demonstrated the impact of tapering 

along with bilinear temperature. Liu et al. /11/ introduced a 

novel semi-analytical dynamic model and a new nonlinear 

mechanical bolted joint model to analyse the vibrational 

behaviours of mistuning bolted composite plates and 

revealed the cause of the mistuning bolted structure's 

nonlinear phenomena. Vibrational behaviours of cylindrical 

functionally graded porous (FGP) panels and shells are 

examined in /12/. FSDT and Hamilton's principle are used 

to determine the weak form for free vibration of FGP shells. 

In order to tackle the issue, the isogeometric analysis (IGA) 

approach is used, and NURBS is used to create a geometric 

model and define the displacement fields. 

The main aim of the study is to show the impact of thick-

ness and density of circular profile in two and one dimen-

sion respectively along with exponential Young’s modulus 

at CCSS and CSSS boundary conditions on time period of 

parallelogram shaped plate. For validating the key results 

achieved in this study, authors did comparisons with already 

cited results in literature in terms of frequency modes of the 

studied plate. 

ANALYSIS 

Consider a nonhomogeneous parallelogram plate with skew 

angle  and skew coordinates  = x – ytan,  = ysec. 

 
Figure1. Parallelogram plate with skew angle . 

 
Figure 2. Parallelogram-shaped plate with thickness of circular 

(two-dimensional) profile. 

The relation for kinetic Ts and strain energy Vs is expressed as mentioned in /13/, 
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Here, l, , , , and  represent thickness, density, Poisson's ratio, natural frequency, deflection function, respectively, and 

D1 = El3/12(1 –  2) is known as flexural rigidity. 

Rayleigh-Ritz method imposes that maximal value of strain energy must be equal to maximal value of kinetic energy, 
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Substituting Eqs. (1) and (2) in Eq.(3), 
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Now introducing two-dimensional circular thickness (refer Fig. 2), one-dimensional circular density is taken expressed as 

in /14/, and one-dimensional exponential variation in Young's modulus is taken as 
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where: l0, E0, and 0 are the thickness, Young's modulus, and density at origin; 1, 2 are tapering parameters; and m1, m are 

nonhomogeneity parameters. 



Time period of tapered parallelogram shaped plate with  Vremenski period ploče oblika suženog paralelograma sa  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 24, br.3 (2024), str. 393–397 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 24, No.3 (2024), pp. 393–397 

 

395 

Using Eq.(5), Eq.(4) becomes 
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The two-term deflection function is taken as in /16/, 
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In Eq.(7) the values of variables p, q, r, and s depend on 

boundary conditions. The variables will have values 0, 1, 2 

if the edge conditions were free, simply supported, and 

clamped, respectively. The arbitrary constants i, i = 0, 1, 

2, …, N signify the number of frequency modes. 

For minimising the functional mentioned in Eq.(6), the 

following constraints need to be satisfied: 
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i

I
i n
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On solving Eq.(8), we obtain the desired frequency equa-

tion as: 

 2 0P Q− = , (9) 

where: P = [pij]n+1, Q = [qij]n+1, are square matrices; and i, 

j = 0, 2, 2, …, n. 

Equation (10) mentioned below is used for computing 

the time period for frequency  obtained from Eq.(9), 

 2
K




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NUMERICAL WORK AND DISCUSSION 

Here, authors report the obtained results for the paral-

lelogram plate (for first four modes) with the configuration: 

two-dimensional circular thickness, one-dimensional circular 

density and one-dimensional exponential Young’s modulus 

variations. The parameters which we are kept fixed in this 

study are aspect ratio a/b = 1.5 (refer to Fig. 2), skew angle 

 = 30° and Poisson's ratio  = 0.345. 

Table 1 describes the obtained time period K at CCSS 

and CSSS edge conditions corresponding to nonhomogeneity 

parameter m1. In this table, the time period is evaluated for 

two different set values of tapering parameters 1, 2, and 

nonhomogeneity parameter m (due to variation in density ), 

i.e., Set I: 1 = 2 = m = –0.3; Set II: 1 = 2 = m = 0.3: 

– the nonhomogeneity parameter m1 is varied from –0.3 to 

0.3. The below conclusions are made from Table 1. 

– The time period decreases with the increasing value of 

nonhomogeneity parameter m1 for the above mentioned 

edge conditions. 

– The time period obtained at CCSS is less as compared to 

the CSSS edge condition, but the decremental rate of time 

period achieved at CSSS is less (1.56 %) as compared to 

the CCSS edge condition. 

Also here, the time period decreases at the above men-

tioned edge conditions, when we move from Set I to Set II. 

Table 2 demonstrates the time period K at CCSS and 

CSSS boundary conditions for nonhomogeneity parameter 

m. In this table, the nonhomogeneity parameter m1 and two 

distinct sets of tapering parameters 1, 2 are examined over 

the time period. 

Set III: 1 = 2 = m1 = –0.3; Set IV: 1 = 2 = m1 = 0.3. 

The nonhomogeneity parameter m ranges from –0.3 to 0.3. 

The facts observed in Table 2 are as follows: 

– the time period also decreases with increasing value of 

nonhomogeneity parameter m for the above mentioned 

edge conditions. But the decremental rate in time period 

presented in Table 2 is less as compared to the time period 

presented in Table 1. This aspect is due to choosing circu-

lar variation in density parameter; 

– the time period achieved at CCSS is also less (as like in 

Table 1) as compared to CSSS boundary condition, but 

the decremental rate in time period achieved at CSSS is 

high (2.29 %) as compared to CCSS edge condition; 

– as like in Table 1, here also, the time period decreases at 

the above mentioned edge conditions, when we move from 

Set III to Set IV. 

Table 3 demonstrates the parallelogram time period K at 

CCSS and CSSS edge conditions for nonhomogeneity 

parameter m. In this table, the nonhomogeneity parameter 

m1 and two distinct sets of tapering parameters (1, 2) are 

examined over the time period. 

Set V: m = m1 = –0.3; Set VI: m = m1 = 0.3. The tapering 

parameters (1, 2) range from –0.3 to 0.3. From Table 3, 

one can conclude that: 

– the time period K also decreases with increasing value of 

tapering parameters for above mentioned edge conditions; 

– as like in Tables 1 and 2, here also, the time period 

achieved at CCSS is also less (as like in Tables 1, 2) as 

compared to CSSS boundary condition, but decremental 

rate in time period achieved at CSSS was high (2.29 %) 

as compared to the CCSS edge condition; 

– as in Tables 1, 2, here also, the time period decreases at 

the above mentioned edge conditions, when we move 

from Set V to Set VI. 
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Table 1. Time period of skew plate at CCSS and CSSS edge conditions corresponding to nonhomogeneity m1. 

CCSS 

m1 Set I:  =  = m = –0.3 Set II:  =  = m = 0.3 

 K1 K2 K3 K4 K1 K2 K3 K4 

-0.3 0.120272 0.031067 0.012741 0.002884 0.108780 0.028781 0.011556 0.002474 

-0.1 0.112700 0.029357 0.012043 0.002715 0.101775 0.027180 0.010913 0.002326 

0.1 0.105546 0.027730 0.011379 0.002555 0.095170 0.025659 0.010301 0.002187 

0.3 0.098790 0.026183 0.010746 0.002403 0.088948 0.024213 0.0097192 0.002055 

CSSS 

-0.3 0.176367 0.034101 0.013548 0.003326 0.159848 0.031905 0.012615 0.002993 

-0.1 0.165504 0.032202 0.012788 0.003129 0.149601 0.030106 0.011897 0.002812 

0.1 0.155183 0.030397 0.012065 0.002942 0.139901 0.028397 0.011215 0.002640 

0.3 0.145391 0.028682 0.011378 0.002764 0.130733 0.026774 0.010567 0.002477 

Table 2. Time period of skew plate at CCSS and CSSS edge conditions corresponding to nonhomogeneity m. 

CCSS 

m Set III:  =  = m1 = –0.3 Set IV:  =  = m1 = 0.3 

 K1 K2 K3 K4 K1 K2 K3 K4 

-0.3 0.120272 0.031067 0.012741 0.002884 0.095346 0.026175 0.010644 0.002314 

-0.1 0.117702 0.030323 0.012397 0.002784 0.093261 0.025542 0.010347 0.002231 

0.1 0.115075 0.029555 0.012039 0.002678 0.091129 0.024889 0.010040 0.002145 

0.3 0.112389 0.028762 0.011666 0.002567 0.088948 0.024213 0.009719 0.002055 

CSSS 

-0.3 0.176367 0.034101 0.013548 0.003326 0.140468 0.029059 0.011591 0.002804 

-0.1 0.172512 0.033255 0.013177 0.003207 0.137298 0.028323 0.011264 0.002700 

0.1 0.168570 0.032381 0.012791 0.003081 0.134055 0.027563 0.010923 0.002592 

0.3 0.164535 0.031477 0.012388 0.002950 0.130733 0.026774 0.010567 0.002477 

Table 3. Time period of skew plate at CCSS and CSSS edge conditions corresponding to tapering parameters 1, 2. 

CCSS 

 =  Set V: m1 = m = –0.3 Set VI: m1 = m = 0.3 

 K1 K2 K3 K4 K1 K2 K3 K4 

-0.3 0.120272 0.031067 0.012741 0.002884 0.092342 0.024243 0.009836 0.002138 

-0.1 0.118913 0.031086 0.012705 0.002841 0.091067 0.024233 0.009791 0.002103 

0.1 0.117714 0.031102 0.012676 0.002810 0.089944 0.024223 0.009752 0.002076 

0.3 0.116647 0.031115 0.012651 0.002785 0.088948 0.024213 0.009719 0.0020551 

CSSS  
-0.3 0.176367 0.034101 0.013548 0.003326 0.135666 0.026481 0.010400 0.002451 

-0.1 0.174770 0.034307 0.013657 0.003352 0.133897 0.026595 0.010465 0.002463 

0.1 0.173247 0.034483 0.013751 0.003371 0.132256 0.026692 0.010520 0.002471 

0.3 0.171803 0.034634 0.013832 0.003387 0.130733 0.026774 0.010567 0.002477 
 
COMPARISON OF RESULTS 

In this section, authors did a comparison of vibrational 

frequency modes (for first four modes) achieved in current 

research and achieved in /15/ with respect to m for fixed 

value of tapering parameters 1, 2, Young's modulus m1, 

and angle of skewness  (i.e., 1 = 2 = m1 = 0.0 and  = 

30°). In Fig. 3, authors compare nonhomogeneity in which 

the present study deals with circular nonhomogeneity and 

/15/ deals with exponential nonhomogeneity. 

From Fig. 3, we conclude that: 

– frequency modes obtained in current research increase, 

while modes of frequency obtained in /15/ decrease, when 

nonhomogeneity parameter varies from 0.0 to 0.9; 

– rates of change of frequencies obtained in present study 

are slower as compared to frequencies obtained in /15/. 

CONCLUSIONS 

In this study, authors show the impact of two-dimen-

sional circular variation in thickness, one-dimensional circu-

lar variation in density and Young’s modulus on time period 

K and frequency modes  and of parallelogram-shaped plate 

at CCSS and CSSS edge conditions. From the comparison 

of results and numerical results discussions, authors conclude 

the following facts: 

– circular variation in density provides the less time period 

of modes of vibration (present study) in comparison to 

exponential variation in density /15/ at CCCC edge con-

dition (refer to Fig. 3); 

– variation in both nonhomogeneity parameters m, m1 results 

in decreased time period at CCSS and CSSS edge condi-

tions (refer to Tables 1 and 2); 

– circular variation in density provides less variation in time 

period as compared to exponential variation in Young’s 

modulus; 

– variation in parameters 1, 2 results in decreased time 

period at CCSS and CSSS edge conditions (refer to Table 

3). 
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Figure 3. Comparison of frequency modes achieved in current re-

search and achieved in /15/ corresponding to nonhomogeneity m. 
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