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Abstract 

The presented theoretical paper describes a study of 

longitudinal fracture behaviour of beam structures whose 

configuration changes with time. In particular, fracture in 

beams whose thickness grows with time is considered. The 

beam upper surface grows upwards at a constant rate. The 

configuration of the beam lower surface remains unchanged 

with time. The beams under consideration exhibit continuous 

material inhomogeneity along their thickness. Therefore, the 

material properties involved in the present analysis are con-

tinuous functions of the z-coordinate. The time-dependent 

mechanical behaviour of beams loaded in bending is treated 

by a nonlinear viscoelastic model. The stress-strain-time 

relationship of the model is derived by analysing the mechan-

ical response of the model components (springs and dash-

pots) under strains increasing with time. The longitudinal 

fracture in the beams of growing thickness is characterised 

by the strain energy release rate. For this purpose, a solution 

of the strain energy release rate that takes into account the 

beam thickness growth with time is derived analytically. The 

J integral is used for checking of the results obtained. The 

effect of parameter values controlling the thickness growth 

on longitudinal fracture is assessed. 

Ključne reči 

• podužni lom 

• nehomogeni materijal 

• rastuća debljina 

• struktura nosača 

Izvod 

U predstavljenom teorijskom radu se opisuje istraživanje 

podužni lom konstrukcije nosača čija se konfiguracija menja 

u toku vremena. Zapravo, razmatra se lom u nosačima čija 

se debljina povećava sa vremenom. Gornja površina nosača 

se razvija u smeru na gore konstantnom brzinom. Konfigu-

racija donje površine nosača ostaje nepromenjena u toku 

vremena. Razmatrani nosači pokazuju kontinualnu neho-

mogenost materijala u pravcu debljine. Stoga su osobine 

materijala u ovoj analizi oblika neprekidnih funkcija koor-

dinate z. Vremenski zavisno mehaničko ponašanje nosača 

opterećenih na savijanje se razmatra primenom nelinearnog 

viskoelastičnog modela. Naponsko-deformacijsko-vremenska 

povezanost modela se izvodi analizom mehaničkog odziva 

komponenata modela (opruga i prigušivača) koji se defor-

mišu u toku vremena. Podužni lom u nosačima sa rastućom 

debljinom karakteriše brzina oslobađanja deformacione 

energije. Za tu svrhu se analitički izvodi rešenje za brzinu 

oslobađanja deformacione energije, koje uzima u obzir raz-

voj debljine nosača sa vremenom. Koristi se J integral za 

proveru dobijenih rezultata. Data je procena uticaja veličine 

parametara koji upravljaju rastom debljine nosača na 

podužni lom. 

INTRODUCTION 

Engineering materials with smooth inhomogeneity have a 

wide range of applications, and nowadays their use is quickly 

increasing in various spheres of engineering /1-5/. Continu-

ous change of properties of these materials along one or 

more coordinates can be tailored to meet special needs such 

as, for example, specific distribution of strength and stiff-

ness in a structural member /6-8/. In this way, the perfor-

mance of continuously inhomogeneous (functionally graded) 

materials can be considerably improved which results in a 

constant increase of the use of these materials in a great 

number of applications in aerospace, aeronautics, nuclear 

reactors, biomedicine, microelectronics and other important 

sectors of up-to-date engineering, /9-13/. 

Structural members made of continuously inhomogene-

ous engineering materials fail very often as a result of longi-

tudinal fracture. The mainspring for this is that some con-

tinuously inhomogeneous (functionally graded) materials 

can be built-up layer-by-layer which results in a low tensile 

strength transversally to the layers, /14/. Therefore, the func-

tioning of continuously inhomogeneous structures depends 

considerably on their longitudinal fracture behaviour. 

This paper gives a longitudinal fracture analysis of a 

continuously inhomogeneous nonlinear viscoelastic beam 

structure whose thickness grows with time in contrast to 

previous publications which consider beams with time-inde-

pendent dimensions /15-17/. The interest towards longitudi-

nal fracture in beam configurations with growing thickness 

is provoked by the rapid development of additive-manufac-

turing technologies (these technologies include adding of 

thin layers). However, beams manufactured by layer-based 

approach collapse often as a result of longitudinal fracture 

(this is the primary motive for the present study). In this 
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paper, the strain energy release rate for the longitudinal 

crack is determined through energy balance analysis with 

considering the growth of the beam thickness. A check-up 

of the strain energy release rate is performed with the help 

of the J-integral method. 

LONGITUDINAL FRACTURE ANALYSIS 

The beam structure in Fig. 1 is continuously inhomoge-

neous along the thickness. A longitudinal crack of length, a, 

is situated in the beam (Fig. 1). The thicknesses of the lower 

and upper crack arms are h1 and h2.  

 
Figure 1. Inhomogeneous viscoelastic beam with longitudinal crack. 

The thickness of the beam increases with time so that the 

upper surface of the beam grows upwards. As a result of 

this, the thickness of the upper crack arm grows with time, 

t, while the thickness of the lower crack arm does not change. 

The growth of the upper crack arm thickness is expressed 

as (Fig. 1) 

 
2 2 2n th h h= + , (1) 

where: h2t = vh2 t. Here, vh2 is the rate. The thickness of the 

beam, h, is written as (Fig. 1) 

 
21 2n hh h h v t= + + . (2) 

A rotation, L, is applied at the free end of the lower crack 

arm (Fig. 1). The variation of L with time is expressed as 

L = vL t, where vL is the rate. 

The beam under consideration has nonlinear viscoelastic 

behaviour treated by the mechanical model shown in Fig. 2. 

The model is under strain, , that varies with time accord-

ing to the following dependence: 

 v t = , (3) 

where: v is strain rate. The springs with moduli of elasticity, 

E1 and E2, and the dashpots with coefficients of viscosity, 

1 and 2, have linear behaviour (Fig. 2). Nonlinear behav-

iour is modelled by the nonlinear dashpot, (nld), situated as 

shown in Fig. 2. 

 
Figure 2. Nonlinear viscoelastic model. 

The following constitutive law is used for describing the 

dependence between the stress, nld, and strain rate,  , in 

the nonlinear dashpot /18, 19/: 

 
2 21 ( )

nld
D

g





=

+

, (4) 

where: D and g are parameters which take into account the 

nonlinearity. By using of Eq.(3) and Eq.(4), one obtains 

 
2 21

nld

Dv

g v





 =

+

. (5) 

The strain, E2, in the linear-elastic spring with modulus 

of elasticity, E2, is found from the following differential 

equation (Fig. 2): 

 
2 2 21 2 3E E E     + + = , (6) 

where: 2 1 1
1

2 1 2

E E E


  
= + + , (7) 

 1 2
2

1 2

E E


 
= , (8)  

 1
3

2

v E


= . (9) 

Equation (6) is worked-out by considering the depend-

ences between the stresses in linear-elastic springs and dash-

pots of the model (Fig. 1). In Eq.(6), 
2E and 

2E  are the 

first and the second derivative of 
2E  with respect to time. 

The solution of Eq.(6) is obtained as 

 1 2

2

2 1

1 2 1 2

( )
t t

E

R R
t e e R

  


   
= − +

− −
, (10) 

where: 3

1

R



= , (11) 

 
1 10.5  =− + , (12) 

 
2 10.5  =− − , (13) 

 2 0.5
1 20.5( 4 )  = − . (14) 

By substituting Eq.(10) in the Hook’s law, one derives 

the following expression for the stress in the spring with 

modulus of elasticity, E2: 

 1 2

2

2 1
2

1 2 1 2

( )
t t

E

R R
t E e e R

  


   

 
= − + − − 

. (15) 

By combining the dependence, 
2 22 E  = , and Eq.(15), 

the stress in the dashpot with coefficients of viscosity, 2, is 

obtained as 

 1 2

2

1 2 1 2
2

1 2 1 2

( )
t tR R

t e e
 


   

 
   

 
= − − − 

. (16) 

The stress, , in the model (Fig. 2) is found as 

 
2 2E nld   = + + . (17) 

From Eqs. (5), (14), (15), and (16), it follows that 

1 2 12 1 1 2
2 2

1 2 1 2 1 2

t t tR R R
E e e R e

     
 

     

  
= − + + −  − − −  

 

 21 2

2 21 2 1

t DvR
e

g v

 



 

 


− +−  +

. (18) 

Equation (18) is used as constitutive law for treating the 

mechanical behaviour of the beam in Fig. 1. The distribu-

tions of E1, E2, 1, 2, D and g along the beam thickness are 

presented in the form of exponential functions: 
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=  (24), 

 
1

2 2

h h
z−    (25), 

where: z1 is the vertical centric axis of the beam cross-

section; E1up, E2up, 1up, 2up, Dup, and gup are the values of 

E1, E2, 1, 2, D and g at the upper surface of the beam; i 

(i = 1, 2, …, 6) are parameters governing the distributions. 

The curvatures and the coordinates of the neutral axis of 

the lower crack arm (upper crack arm is free of stresses) 

and the un-cracked part of the beam, a  x1  l, used when 

obtaining the strain energy release rate for the crack, are 

determined from the equations of equilibrium 

 1

1

2
22

0
h

h
b dz
−

=  (26), 1

1

2
32

0
h

unch
b dz
−

=  (27), 

 1 1

1 1

2 2
2 32 2

h h
unch h

b dz b dz 
− −

=  , (28) 

 
1 2( )L a l a  = + − , (29) 

where: b is beam width; unc is stress in the un-cracked part 

of the beam; z2 and z3 are vertical centric axes of the cross-

sections of lower crack arm and un-cracked part of beam; l 

is beam length; 1 and 2 are curvatures of the lower crack 

arm and un-cracked part of beam. It should be specified that 

h is a function of time (refer to Eq.(2)). 

The strain energy release rate, G, for the crack in Fig. 1 

is written as 

 
1L LM U

G
b a b a

 
= −

 
, (30) 

where: ML and U are the bending moment at the free end of 

the lower crack arm and strain energy in the beam, respec-

tively. Equation (30) is found by analysing the energy bal-

ance. The quantities, ML and U, are determined as 

 1

1

2
2 22

h
L h

M b z dz
−

=  , (31) 

 1 1

1 1

2 2
2 301 022 2

( )
h h

h h
U ab u dz l a b u dz

− −
= + −  , (32) 

where: u01 and u02 are strain energy densities in the lower 

crack arm and un-cracked part of the beam, respectively. 

The method of the J-integral is applied for check-up of 

the strain energy release rate /20/. The J-integral is expressed 

as 

1 11 1
1

01 cos
B BB x y B

B

u v
J u p p ds

x x


   
= − + +  

   
  

 
2 22 2

2

02 cos
B BB x y B

B

u v
u p p ds

x x


   
+ − +  

   
 , (33) 

where: B1 and B2 are parts of the integration contour, B, 

shown in Fig. 1. 

MatLab® is used to perform integration in Eq.(33). The 

J-integral values match the strain energy release rates. This 

fact is a confirmation for the correctness of the strain energy 

release rate. 

NUMERICAL RESULTS 

Numerical results are presented in this section. 

The data used to obtain numerical results are as follows: 

b = 0.025 m, h1 = 0.010 m, h2n = 0.005 m, l = 0.600 m, vh2 = 

210–7 m/sec, and vL = 310–9 rad/sec. Numerical results are 

presented in the form of graphics in the next six figures. 

The normalised strain energy release rate, GN = G/(E1upb), 

is plotted in Fig. 3 for parameter 1, variable at three values 

of parameter 3. 

  
Figure 3. Plots of normalised strain energy release rate - 1 (curve 

1 at 3 = 0.5, curve 2 at 3 = 1.0, and curve 3 at 3 = 2.0). 

Figure 3 shows that increase of 1 causes a gradual 

reduction of strain energy release rate. Inspection of Fig. 3 

indicates that variation of 3 in the same interval as 1, i.e., 

0.5  3  2.0, results in a relatively modest variation of the 

strain energy release rate. 

Plots of the normalised strain energy release rate – vh2 in 

Fig. 4 show that strain energy release rate reduces when vh2 

grows. It is seen also in Fig. 4 that the dependence of the 

strain energy release rate on parameter 4, has the same char-

acter, i.e., growth of 4 causes reduction of the strain energy 

release rate. 

 
Figure 4. Plots of normalised strain energy release rate - vh2 (curve 

1 at 4 = 0.5, curve 2 at 4 = 1.0, and curve 3 at 4 = 2.0). 

In Fig. 5, the normalised strain energy release rate is plot-

ted as a function of 5 at three values of vL.  

The reduction of strain energy release rate induced by 

growth of 5 is relatively modest (Fig. 5). The graphics in 

Fig. 5 indicate also that increase of vL results in a sizable 

growth of the strain energy release rate.  
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Figure 5. Plot of normalised strain energy release rate - 5 (curve 1 

at vL = 110–9 rad/sec, curve 2 at vL = 210–9 rad/sec, and curve 

3 at vL = 310–9 rad/sec). 

The variation of the normalised strain energy release rate 

with increase of 2 and h2n /h1 ratio is illustrated by graphs 

plotted in Fig. 6. It can be seen in Fig. 6 that the effect of 

both 2 and h2n /h1 is characterised by quick reduction of the 

strain energy release rate. 

 
Figure 6. Plots of normalised strain energy release rate - 2 (curve 1 

at h2n /h1 = 0.3, curve 2 at h2n /h1 = 0.5, and curve 3 at h2n /h1 = 0.7). 

Data for the influence of E2up /E1up and 2up /1up ratios on 

normalised strain energy release rate are shown in Fig. 7. 

One can observe in Fig. 7 that E2up /E1up ratio has a stronger 

influence on strain energy release rate than that of 2up /1up. 

 
Figure 7. Plots of normalised strain energy release rate - E2up/E1up 

(curve 1 at 2up /1up = 0.5, curve 2 at 2up /1up = 1.0, and curve 3 

at 2up /1up = 1.5). 

Changes in normalised strain energy release rate induced 

by 6 and h1 /b ratio are also analysed. The results of this 

analysis are shown in Fig. 8. As one can see, increase of 6 

results in growth of the strain energy release rate (Fig. 8). 

Rise of h1 /b ratio, however, generates reduction of strain 

energy release rate. 

 
Figure 8. Plots of normalised strain energy release rate - 6 (curve 

1 at h1 /b = 0.4, curve 2 at h1 /b = 0.5, and curve 3 at h1 /b = 0.6). 

CONCLUSIONS 

A longitudinal fracture analysis of an inhomogeneous 

viscoelastic beam structure whose thickness grows with time 

is carried-out. It is assumed that the upper surface of the 

beam grows upwards so that the thickness of the upper crack 

arm increases with time while the thickness of the lower 

crack arm does not change. The mechanical behaviour of 

the beam under increasing with time angle of rotation of the 

free end of the lower crack arm is described by a nonlinear 

viscoelastic model. The constitutive law used for treating the 

beam is obtained for the case when the model is under strain 

that increases with time. The strain energy release rate deter-

mined through the energy balance analysis is checked by 

method of the J-integral. Based upon the results obtained in 

this paper, the following conclusions can be drawn. 

‑ The reduction of the strain energy release rate caused by 

increase of 3 and 5 is relatively modest in comparison 

with that caused by increase of 1. 

‑ The strain energy release rate reduces gradually when 

parameters vh2 and 4, grow. 

‑ Increase of vL results in a sizeable growth of strain energy 

release rate. 

‑ Rise of h2n /h1, E2up /E1up, 2up /1up, and h1 /b ratios induces 

reduction of strain energy release rate. 

‑ Growth of 6 causes increase of strain energy release rate. 
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