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Abstract 

The effect of a revolving Jeffrey nanofluid in a porous 

medium exposed to a magnetic field is examined in this paper. 

Three distinct boundary conditions are used to examine the 

system: free-free, rigid-rigid, and rigid-free. The study exam-

ines how the magnetic field impacts the behaviour of the 

spinning nanofluid inside the porous media using analytical 

methods and mathematical models. The results broaden our 

understanding of the connection between rotation, the mag-

netic field and the special rheological properties of the Jef-

frey nanofluid in porous media. The impacts of the Rayleigh 

number, Lewis number, modified diffusivity ratio, Jeffrey 

parameter, Chandrashekar number, Taylor number, and 

porosity of the nanoparticles are investigated through the 

application of both mathematical and graphical approaches. 

Ključne reči 

• konvekcija 

• nanofluid 

• Jeffrey model 

• Rejlejev broj 

• porozna sredina 

Izvod 

U ovom radu se proučava uticaj na rotirajući Jeffrey nano-

fluid u poroznoj sredini, koji je izložen magnetnom polju. 

Primenjena su tri specifična granična uslova za istraživanje 

sistema: slobodno-slobodno, kruto-kruto, i kruto-slobodno. 

Primenom analitičkih metoda i matematičkih modela, izuča-

va se uticaj magnetnog polja na ponašanje rotirajućeg nano-

fluida unutar porozne sredine. Dobijeni rezultati proširuju 

naše razumevanje povezanosti rotacije, magnetnog polja i 

posebnih reoloških osobina Jeffrey nanofluida u poroznoj 

sredini. Istražuju se uticaji Rejlejevog broja, Luisovog broja, 

modifikovanog odnosa difuzivnosti, Jeffrey parametra, Čan-

drašekarovog broja, Tejlorovog broja, i poroznost nanočes-

tica, uz primenu matematičkog i grafičkog pristupa. 

 

INTRODUCTION 

Non-Newtonian fluids are employed in many different 

contexts, from everyday goods to manufacturing processes. 

Understanding their rheological behaviour is crucial in a vari-

ety of industries, including food processing, medicines, cos-

metics, petroleum engineering and materials research. In 

many situations, scientists and engineers utilize rheological 

models to predict and describe the behaviour of non-New-

tonian fluids. The Jeffrey fluid model is one type of non-

Newtonian fluid model that enhances the conventional New-

tonian model with elasticity effects. The elasticity of the 

fluid and a material parameter that symbolizes the shear rate 

determine the shear stress in a Jeffrey fluid. Spinning Jeffrey 

nanofluids are employed in a wider view of technological 

and commercial applications, where control over fluid behav-

iour, heat transfer and magnetic fields are essential. 

There are various applications for magnetic materials, 

including heat exchangers, cooling systems, materials pro-

cessing, magnetic drug targeting, biomedical applications, 

magnetorheological devices, cooling systems, and electro-

kinetic devices. These applications highlight the versatility 

of rotating Jeffrey nanofluids in a range of disciplines where 

their unique thermal and rheological properties, along with 

the influence of magnetic fields, can be applied for specific 

goals. Research in this area is expanding as engineers and 

scientists explore novel applications of nanofluids to enable 

advancements in technology. 

Newtonian fluids include engine oil, soap solutions, 

sauces, foam, paints, lubricants and biological fluids like 

blood and synovial fluid. The modelling of non-Newtonian 

fluids has produced a number of constitutive relations due 

to the importance of non-Newtonian fluids in contemporary 

technology and industry. The Jeffrey non-Newtonian fluid 

model is one of these constitutive relations. A linear model 

called the Jeffrey fluid model substitutes time derivatives 

for convective derivatives. Jeffrey /5/ investigated the stabil-

ity of a fluid layer that had been heated from below. He came 

up with a numerical solution to a few issues with the stability 

of a layer in a compressible fluid as temperature rises. Chan-

drasekhar /3/ has provided a thorough literature assessment 

on thermal instability in a Newtonian fluid. The Jeffrey fluid 

model has been researched by numerous researchers /1, 4, 6, 

12-23/ and as a result, it is today regarded as the best fluid 
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model to represent the behaviour of physiological and indus-

trial fluids. 

The convective flow in a porous material was researched 

by Lapwood /8/. The Rayleigh's instability of a thermal 

boundary layer in a flow through a porous media was ex-

plored by Wooding /27/. They discovered that the layer is 

stable under certain conditions, including a critical positive 

Rayleigh number for the system and a limited wave number 

for the critical neutral disturbance. Nield and Bejan /11/ 

worked on the problem of thermal convection in a porous 

medium. 

The Buongiorno /2/ model-based investigation of hydro-

dynamic thermal convection issues in porous and non-porous 

media saturated by a nanofluid layer has attracted the atten-

tion of numerous researchers over the past ten years /1, 4, 6, 

12-23, 26, 28/. Nanofluid is used in a wide range of indus-

tries, including the car industry, energy conservation and 

nuclear reactors, etc. Nanoparticle suspensions are widely 

used in medical applications, such as cancer treatment. 

Numerous engineering applications, including geothermal 

energy recovery, crude oil extraction, groundwater pollution 

and thermal energy storage. Different authors /1, 4, 6, 9-10, 

12-23, 26-28/ investigated the natural convection of a nano-

fluid using Buongiorno's model and they found that nano-

fluids are effective coolants because of their improved ther-

mal conductivities. 

Many researchers /1, 4, 6, 9-24, 26, 28/ have researched 

thermal convection in a viscoelastic nanofluid layer saturat-

ing a porous media and discovered that viscoelastic nano-

fluids have applications in a variety of automotive sectors 

and biomedical engineering. Understanding the effects of 

rotation and magnetic field is essential for studying thermal 

instability in a fluid layer heated from below. Numerous 

industries, such as fluid machinery, geophysics, mechanical 

engineering, and the petroleum industry, can benefit from 

this information. Researchers have investigated the effects 

of rotation and magnetoconvection on thermal instability 

using a variety of nano viscoelastic fluids. They have found 

that stationary convection is encouraged by rotation. Consid-

ering the many applications previously addressed, the main 

objective of this work is to examine the effects of rotation 

and magnetic field on the onset of thermal instability in 

Jeffrey nanofluid in a porous medium. To the best of the 

writer's knowledge, no inquiry has been carried out regard-

ing this. 

 

Figure 1: Physical Configuration 

MATHEMATICAL FORMULATION 

Here we consider a rotating horizontal layer of Jeffrey 

nanofluid of thickness d, in the presence of magnetic field 

h = h(0, 0, 1) between planes z = 0 and z = d (as shown in 

Fig. 1). The fluid layer is heated from the bottom and work-

ing to top with gravity g = g(0, 0, –g). The temperature T 

and volumetric fraction  of the nanoparticle, at the upper 

boundary T1 and 1, and at lower boundary T0 and 0 in 

respect, with T0 > T1 and 0 > 1. 

GOVERNING EQUATIONS 

The governing equations of Jeffrey nanofluid under the 

influence of magnetic field and rotation in a porous medium, 

as formulated by Buongiorno /2/ and Chandrasekhar /3/, are 
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The Maxwell equations are given below: 
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 0h = . (6) 

Here, 3 = 1/2, f, p, (c)f, and  represent Jeffrey 

parameters (3, a fraction of the stress relaxation-time param-

eter 1 and strain relaxation parameter 2), density of fluid, 

fluid pressure, heat capacity of fluid, and resistivity of the 

fluid, respectively. 

Equations (1)-(6) reduce in nondimensional form to: 
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Here, we have used the nondimensional variables: 
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where: Prandtl number is Pr1 = /fm; Taylor number is Ta = 

(2d 2/)2; Darcy number is Da = k1/d 2; Vadasz number is 

x 

y 
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Va = Pr /Da; Rayleigh number is Ra = f gdk(T0 – T1)/f m; 

nanoparticle Rayleigh number Rn = (p – f)(1 – 0)gk1d/m; 

modified particle density increment is NB = (c)p(1 – 0)/ 

(c)f ; Lewis number is Le = m /DB; modified diffusivity 

ratio NA = DT(T0 –T1)/DBT1(1 – 0); 2 = (/x2) + (/y2) + 

(/z2) is a Laplacian operator; basic density Rayleigh num-

ber  Rm = (p0 + f (1 – 0))gk1d; H
2 = (2/x2) + (2/y2) 

is a horizontal Laplacian operator; magnetic Prandtl number 

Pr2 = /; and Chandrasekhar number Q = eH2d 2/4. 

The initial boundary conditions are: 

 w = 0,  T = T0,   = 0  at  z = 0 

and w = 0,  T = T1,   = 1  at  z = d (13) 

BASIC STATE SOLUTIONS 

Following Nield and Kuznetsov /9-10/, Sheu /24-25/, 

Sharma et al. /15-23/, the basic state of nanofluid is assumed 

and does not depend on time and is described as: 

 qD(u,v,w) = 0    u = v = w = 0, 

 p = pb(z),  T = Tb(z),   = b(z). (14) 

The basic variable is represented by subscript b. 

Therefore, when the basic state defined in Eq.(14) is sub-

stituted into Eqs.(8)-(10), these equations reduce to: 
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Using boundary conditions Eq.(14) in Eq.(17), we get 
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Eradicating the higher degree term, we get 
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The solution of differential Eq.(15) with boundary condi-

tion Eq.(13) is 
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According to Buongiorno /2/ hypothesis, the approxima-

tion solution for Eqs.(19) and (20) are given as 

 1    and   b bT z z= − = . (21) 

These results are similar with the result obtained by Buon-

giorno /2/, Nield and Kuznetsov /9-10/, Sheu /24-25/, and 

Sharma et al. /15-23/. 

PERTURBATION SOLUTIONS 

We introduce a small perturbation on the basic state and 

investigate the stability of the system: 
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Using Eq.(22) in Eqs.(7)-(12), linearizing the resulting 

equations by neglecting nonlinear terms, the following non-

dimensional perturbed equations are 
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and the boundary conditions are 

 w* = T * = * = 0   at   z = 0   z = 1. (29) 

Operating Eq.(24) with êz.curl.curl, we get 
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NORMAL MODE ANALYSIS 

The disturbances are analysed by normal mode analysis 

as follows: 
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where:  is the growth rate; lx and ly are wave numbers 

along x and y, respectively. 

Using Eq.(31) in Eq.(30), Eqs. (25) and (26), we get 
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Here, D = d/dz, a2 = l2 + m2, and boundary conditions in 

normal mode are: 

W = 0,    = 0,    = 0,   D2W = 0   at   z = 0, 

W = 0,    = 0,    = 0,   D2W = 0   at   z = 1. (35) 

LINEAR STABILITY ANALYSIS FOR FREE-FREE 

BOUNDARIES 

We suppose the solution to W, , and  are of the form 

W = W0(1 – z)2z2,    = 0z(1 – z),    = 0z(1 – z). (36) 

Putting Eq.(36) into Eqs.(32)-(34), integrating each equa-

tion from z = 0 to z = 1 and performing some integrations 

by parts, we obtain the following matrix equation: 
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Non-trivial solution of Eq.(37) is 
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NON-OSCILLATORY CONVECTION (FREE-FREE) 

For the case of steady state we put  = 0 in Eq.(39), we 

get 
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Equation (40) represents the dispersion relation for the 

effect of the Jeffrey parameter, Lewis number, nanoparticle’s 

Rayleigh number, modified diffusivity ratio, medium poros-

ity, magnetic field, and Taylor number. 

Now we find the critical wave number by minimizing Ra 

with respect to a2, thus the critical wave number must satisfy 
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In Eq.(41), neglect the parameter of magnetic field and 

Taylor number, then the critical wave number is ac = . 

This result is validated with the original result of Nield et 

al. /7, 9-11/. 

RIGID-RIGID BOUNDARIES 

We confine our analysis to the one-term Galerkin approxi-

mation. Appropriate trial functions satisfying the boundary 

conditions are now 

 W = 0,    = 0,    = 0,   DW = 0   at   z = 0 , 

 W = 0,    = 0,    = 0,   DW = 0   at   z = 1 . (42) 

LINEAR STABILITY ANALYSIS FOR RIGID-RIGID BOUNDARIES 

We suppose the solution to W, , and  is of the form:     W = W0(1 – z)2z2,    = 0z(1 – z),    = 0z(1 – z). (43) 

Substituting solution Eq.(43) into Eqs.(32)-(34), integrating the equations from z = 0 to z = 1, we obtain the following 
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Non-trivial solution of Eq.(44) is 
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NON-OSCILLATORY CONVECTION (RIGID-RIGID) 

For the case of steady-state, we put  = 0 in Eq.(33) and 

obtain 

a A n
Le

R N R
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. (47) 

Equation (47) represents the dispersion relation with dif-

ferent parameters as Jeffrey parameter, Lewis number, nano-

particle’s Rayleigh number, modified diffusivity ratio, medi-

um porosity, magnetic field, and Taylor number. 

The critical wave number at the onset of instability is 

obtained by minimising Ra with respect to a2, thus the crit-

ical wave number must satisfy, 
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. (48) 

In Eq.(48), neglecting the parameter of magnetic field and 

Taylor number, the critical wave number is 

 ac = 3.31 . (49) 

This result is validated with the original result of Nield et 

al. /7, 9-11/. 

RIGID-FREE BOUNDARIES 

We confine our analysis to the one-term Galerkin approxi-

mation. Appropriate trial functions satisfying the boundary 

conditions are now 

 W = 0,    = 0,    = 0,   DW = 0   at   z = 0 , 

 W = 0,    = 0,    = 0,   DW = 0   at   z = 1 . (50) 

LINEAR STABILITY ANALYSIS FOR RIGID-FREE 

BOUNDARIES 

We suppose the solution to W, , and  is of the form 

W = W0z2(1 – z)(3 – 2z),  = 0z(1 – z),  = 0z(1 – z). (51) 

Substituting solution Eq.(51) into Eqs.(32)-(34), and by 

integrating each equation from z = 0 to z = 1, we obtain the 

following matrix equation: 
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. (52) 

Non-trivial solution of Eq.(52) is 
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. (54) 

NON-OSCILLATORY CONVECTION (RIGID-FREE) 

For the case of steady-state, we put  = 0 in Eq.(55) and obtain 
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Equation (56) represents the dispersion relation with 

different parameters like Jeffrey parameter, Lewis number, 

nanoparticle’s Rayleigh number, modified diffusivity ratio, 

medium porosity, magnetic field, and Taylor number. 

The critical wave number is at the onset of instability, is 

obtained by minimizing Ra with respect to a2, thus the criti-

cal wave number must satisfy 
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. (56) 

Equation (56) neglects the parameter of magnetic field 

and Taylor number, then the critical wave number is 

 ac = 3.27 . (57) 

This result is validated with the original result of Nield et 

al. /7, 9-11/. 
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RESULTS AND DISCUSSIONS 

In this paper we have analysed the effects of Jeffrey param-

eter, Lewis number, nanoparticle’s Rayleigh number, modi-

fied diffusivity ratio, magnetic field, Talyor number and 

medium porosity on the onset of stationary convection by 

considering Jeffrey nanofluids in the presence of free-free, 

rigid-rigid and rigid-free boundary conditions. We have ana-

lysed the effects analytically and presented them graphically. 

Figure 2 shows the graph of Ras w.r.t. wave number a for 

different values of 3 = 0.3, 0.5, 0.9 and by fixing other param-

eters NA = 10, Le = 1000,  = 0.6, Rn = –1, Ta = 300, Q = 100. 

It is clear from Fig. 2 that with increase in the value of 3, 

Ras goes on increasing and hence shows the stabilising effect 

on stationary convection. It is also clear from Fig. 2 that 

rigid-rigid boundary condition has a more stabilising impact 

on stationary convection as compared to rigid-free boundary 

conditions. Thus, 3 delays the onset of convection. 

  a 
Figure 2. Ras vs. a for distinct values of 3. 

  a 
Figure 3. Ras vs. a for distinct values of . 

Figure 3 shows the graph of Ras w.r.t. wave number a 

for different values of  = 0.3, 0.6, 0.9 and by fixing the 

other parameters as NA = 10, Le = 1000, Rn = –1, 3 = 0.5, 

Ta = 300, Q = 100. It is clear from Fig. 3 that within increase 

in the value of , Ras goes on decreasing and hence shows 

the destabilising effect on stationary convection. It is also 

clear from Fig. 3 that rigid-rigid boundary condition has a 

more destabilising impact on stationary convection as com-

pared to rigid-free boundary conditions. Thus,  also en-

hances the onset of convection. 

Figure 4 shows the graph of Ras w.r.t. wave number a 

for different values of Le = 500, 1000, 1500 and by fixing 

the other parameters as NA = 10,  = 0.6, Rn = –1, 3 = 0.5, 

Ta = 300, Q = 100. It is clear from Fig. 4 that with increase 

in the value of Le, Ras goes on increasing and hence shows 

the stabilising effect on stationary convection. It is also clear 

from Fig. 4 that rigid-free boundary condition has a more 

stabilising impact on stationary convection as compared to 

rigid-rigid boundary conditions. Thus, Le delays the onset 

of convection. 

  a 
Figure 4. Ras vs. a for distinct values of Le. 

Figure 5 shows the graph of Ras w.r.t. wave number a 

for different value of NA = 1, 5, 10 and by fixing the other 

parameters as 3 = 0.5, Le = 1000,  = 0.6, Rn = –1, Ta = 

300, and Q = 100. It is clear from Fig. 5 that within increase 

in the value of NA, Ras goes on increasing and hence shows 

the stabilising effect on stationary convection. It is also clear 

from Fig. 5 that rigid-rigid boundary condition has more 

stabilising impact on stationary convection as compared to 

rigid-free boundary conditions. Thus, NA delays the onset of 

convection. 

  a 
Figure 5. Ras vs. a for distinct values of NA. 

Figure 6 shows the graph of Ras w.r.t. wave number a 

for different values of Rn = –1, –0.5, –0.1, and by fixing the 

other parameters as 3 = 0.5, NA = 10, Le = 1000,  = 0.6, 

Ta = 300, and Q = 100. It is clear from Fig. 6 that within 
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increase in the values of Rn, Ras goes on decreasing and 

hence shows the destabilising effect on stationary convection. 

It is also clear from Fig. 6 that rigid-rigid boundary condition 

has more destabilising impact on stationary convection as 

compared to rigid-free boundary conditions. Thus, Rn accel-

erates the onset of convection. 

  a 
Figure 6. Ras vs. a for distinct values of Rn. 

Figure 7 shows the graph of Ras w.r.t. wave number a 

for different values of Q = 50, 100, 150, and by fixing the 

other parameters as NA = 10,  = 0.6, Rn = –1, 3 = 0.5, Ta = 

300, and Le = 1000. It is clear from Fig. 7 that with increase 

in the value of Q, Ras goes on increasing and hence shows 

the stabilising effect on stationary convection. It is also clear 

from Fig. 7 that rigid-rigid boundary condition has a more 

stabilising impact on stationary convection as compared to 

rigid-free boundary conditions. Thus, Q delays the onset of 

convection. 

  a 
Figure 7. Ras vs. a for distinct values of Q. 

Figure 8 shows the graph of Ras w.r.t. wave number a 

for different values of Ta = 200, 300, 400, and by fixing the 

other parameters as NA = 10,  = 0.6, Rn = –1, 3 = 0.5, Ta = 

300, and Q = 100. It is clear from Fig. 8 that within increase 

in the values of Ta, Ras goes on increasing and hence shows 

the stabilising effect on stationary convection. It is also clear 

from Fig. 8 that rigid-rigid boundary condition has a more 

stabilising impact on stationary convection as compared to 

rigid-free boundary conditions. Thus, Ta delays the onset of 

convection. 

  a 
Figure 8. Ras vs. a for different values of Ta.  

CONCLUSIONS 

In this paper, we have analysed the stationary convection 

in the effect of magnetic field and rotation on thermal insta-

bility of Jeffrey nanofluid in a porous medium: free-free, 

rigid-rigid, and rigid-free boundary conditions. For this anal-

ysis we have utilised the GWR method. 

We have drawn the following conclusions. 

Nanoparticle’s Rayleigh number Rn and medium porosity 

 have destabilising effects on stationary convection. 

Magnetic field Q, Taylor number Ta, Jeffrey parameter 

3, Lewis number Le, and modified diffusivity ratio NA, all 

have stabilising impact on stationary convection. 

It is found that in case of rigid-rigid boundary condition, 

the system remains more stable rather than in the case of 

rigid-free boundary condition. 
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