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Abstract 

This article deals with the study of stress distribution in 

a rectangular bending sheet made of cast iron/bronze mate-

rial by using transition theory. The extension and contraction 

regions are presented by transition points of the differential 

equation in defining the deformed fields. Mathematical 

modelling is based on the stress-strain relation and equilib-

rium equation. Analytical solutions are presented for the 

bending sheet made of cast iron/bronze material. It has 

been observed that circumferential stress is maximal at the 

inner surface for the extension region, whereas reverse 

results are obtained in case of the compression region. 

Ključne reči 

• ploča 

• deformacija 

• izduženje 

• pritisak 

• napon 

Izvod 

U ovom radu proučava se raspodela napona kod pravo-

ugaone savijene ploče, izrađene od livenog gvožđa/bronze, 

primenom teorije prelaznih napona. Oblasti izduženja i skra-

ćenja su predstavljene prelaznim tačkama u diferencijalnoj 

jednačini pri definisanju deformacionih polja. Matematičko 

modeliranje se zasniva na relaciji napon-deformacija i na 

jednačini ravnoteže. Analitička rešenja su predstavljena kod 

savijene ploče izrađene od livenog gvožđa/bronze. Uočava 

se da je cirkularni napon maksimalan na unutrašnjoj povr-

šini u oblasti izduženja, dok je obrnuta situacija u slučaju 

oblasti skraćenja. 

INTRODUCTION 

Creep is the time-dependent deformation below the yield 

strength of the material under constant stress and is known to 

be quite dominant under high temperatures, especially with 

metals. It is a high-temperature slow deformation due to 

repeated stress and their rates are necessary for evaluating 

boiler materials, jet engines, sheets, gas turbines and high-

temperature application. The behaviour of metals helps to 

design systems that are defiant to failure. Shigeru et al. /1/ 

examined perforated sheets with randomly distributed holes 

set up as the plane models of damaged materials under the 

condition of biaxial tension. Liegard et al. /2/ have investi-

gated stress distribution in a sheet metal by using large-scale 

four-point bending test. 

The objective of this research paper is to investigate the 

stress distribution in a bending sheet made of cast iron/ 

bronze material with extension/compression region by using 

the concept of generalised strain measures and asymptotic 

solution through the principal stresses-difference. Results 

are presented graphically and discussed. 

GOVERNING EQUATION 

We consider a rectangular sheet bent into the form of 

circular cylinder. The bending moment of couple M per unit 

length is perpendicular to the plane of the paper. Let the 

unstrained planes (x, y ) after the deformation of the sheet 

remain orthogonal to each other. Displacement components 

are given by, /3/: 

 
1( )u x x x f = − = − , 

2( )v y y y f = − = −  (1) 

where: z = x – iy = F( + i) = F(); and f1, f2, F are func-

tions of , , respectively, which have to be determined. 

The generalised strain components are, /3 -5/, 
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where: F2 = (d/dz)2. 

The stress-strain relations for isotropic material are given 

by, /6/: 

 1 2ij ij ijT I = + , (i, j = 1,2,3). (3)  

Substituting Eq.(2) into Eq.(3), we get: 
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The equations of equilibrium in  and  coordinates are 

given: 
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where: F2 = h2 = d/dz;  A = 1 – F2
n/2f1n and B = 1 – F2

n/2f2n. 
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Equation (5) can be written as 

2( ) 2 ( ) (log ) 0m m m m mA B A A B F  
 

  + + − − = 
 

, 

2( ) 2 ( ) (log ) 0m m m m mA B B B A F  
 

  + + − − = 
 

.  (6) 

Investigation of transition points: Eq.(6) reduced as 

 
2

2

( ) 2
ln 0

( )

m m m

c m m

A B c B

A BF 

  − − 
+ = 

 −  

, (7) 

 
2

2

( ) 2
ln 0

( )

m m m

c m m

A B c A

A BF 

  − − 
− = 

 −  

. (8) 

The transition points, /7-16/, from Eqs. (7) and (8) are 

f1 → 0 in the extension region, and f1 → 0 in compression 

region. 

PROBLEM SOLUTION 

Extension region: integrating Eqs.(7)-(8) with respect to  

and , we get: 

 2
1 2( )

cm mA B K F−  , (9) 

and 2 2
2 2( ) (1 )

cm m m cA B K F B −−  − , (10) 

where: K1() and K2() are function of  and  only. From 

Eqs. (9) and (10), we obtain as: 
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Since Bm = (1 –  nF2
n/2)m and  is a function of  only, 

F2 should be the product of a function of  and a function of 

. Hence, 
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Thus, we get 

 
0( ) exp( )F y K k= , (13) 

which shows that the deformed sheet can take a circular 

form, and hence 

 ( ) exp( )z F  = = . (14) 

Now,   is to be a constant, so that 

 
0 0A B  = + , 

where: A0 and B0 being constants. Also,  = log z, r = exp(), 

 = , F2 = exp(–2) = r–2. 

From Eqs. (9) and (10) we see that 
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where: D0 being a constant. Again, the second stress invari-

ant is proportional to (rr – )2. Now, 
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where: D1 is a constant. Here, we take only one stage of 

creep which corresponds to m = 1 . Thus, we have 
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The equation of equilibrium gives 
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If the outer boundary of the strip r = b is free from pres-

sure, we get 
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Compression region: integrating Eqs.(7)-(8) with respect to 

 and , we get 

 2 2 2
1 22 2( ) ( ) ( 1)

c cm m m cA B L F L F A  −−   − . (19) 

Here, we see that F2 is again to be a product of a func-

tion of  and a function of . Since Am = (1 – f nF2
n/2)m and 

f is a function of  only, the factor (Am – 1)2–c can be 

absorbed in L2(). L1() become a constant H0 and we get 

 
0

m m cA B H r−− = . (20) 

The second stress invariant now becomes 

 
1

c
rr H r      −− = − = , (21) 

where: H1 is a new constant. Also, c → 0, we get 

 
1rr H Y − = = . (22) 

Assuming the inner surface of the sheet r = a to be free 

from traction and using the equilibrium Eq.(5), we get 
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From Eq.(17) we note that when c → 0, n → 0, 

 
2rr D Y − = = − . 
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For the neutral boundary, r = d, we equate Eq.(23) and 

Eq.(24): 
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For n → 0, this is the stationary stage 
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For c → 0 this is always satisfied. 

Couple applied to the end: for the contraction region 
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For the extension region 
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The resultant force over a section is 
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The moment of couple per unit widths on the end is given: 
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NUMERICAL ILLUSTRATION AND DISCUSSION 

To investigate the effect of stress distribution and radii 

ratio R = r/b for the bending sheet made of isotropic materi-

als (say: cast iron  = 0.27; bronze  = 0.34) by /6/, the fol-

lowing numerical values are taken: a = 1 (inner radius), b = 

2 (outer radius), and r  (a, b). 

In Fig. 1, the curves are drawn between stress distributions 

versus radii ratio required for the initial yielding stage/ 

fully-plastic state in the extension/compression region. It is  

observed that the circumferential stress is maximum at the 

inner surface for extension region, whereas reverse results 

are obtained in case of compression region. Furthermore, in 

the neutral axis, sheet made of cast iron requires maximum 

circumferential stress in comparison to the sheet made of 

bronze material for initial/fully-plastic state. Moreover in the 

compression region, stresses must be reduced at the neutral 

axis, but reverse results are obtained in the extension region 

of the sheet made of cast iron/bronze material. 

a)

 

b)

 
Figure 1. Graphical comparisons between stress distributions vs. radii ratio: a) circumferential 

stress; and b) radial stress. 
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