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Abstract 

This article deals with the study of creep deformation in 

a thick-walled spherical shell under steady state temperature 

by using transition theory and generalised strain measure. 

Mathematical modelling is based on stress-strain relation 

and equilibrium equation. Analytical solutions are presented 

in a thick-walled spherical shell made of saturated clay, steel 

and rubber materials. The shell made of rubber material 

requires higher pressure to yield in comparison to the shell 

made of saturated clay/steel material without thermal effects. 

Ključne reči 

• izotropna struktura 

• pritisak 

• temperatura 

• tečenje 

• ljuska 

Izvod 

U ovom radu se proučava deformacija puzanja u debelo-

zidnoj sfernoj ljusci sa stacionarnom temperaturom, prime-

nom teorije prelaznih napona i generalisanih mera deforma-

cija. Matematičko modeliranje se bazira na relaciji napon-

deformacija i na jednačini ravnoteže. Analitička rešenja su 

predstavljena kod debelozidne sferne ljuske izrađene od zasi-

ćenog zemljišta, čelika i gume. Za ljusku izrađenu od gume 

je potreban veći pritisak za pojavu tečenja, u poređenju sa 

ljuskom od zasićenog zemljišta/čelika bez termičkih uticaja. 

INTRODUCTION 

Analysis of spherical shell structures in aerospace, chem-

ical, civil, and mechanical industries such as in high-speed 

centrifugal separators, gas turbines for high-power aircraft 

engines, certain rotor systems, spinning satellite, and struc-

tures, are important for safety purpose and long life of shell 

structures. To increase the life of spherical shells, it is there-

fore very important for engineers to study the safety analysis 

in spherical shells under various environments. The spher-

ical shell made of isotropic materials is presented in most 

standard textbooks /1-6/ with evaluated solutions for stresses 

and displacements in a thick spherical shell subjected to 

various load conditions. Seth /7/ has analysed stress distri-

bution in shells/tubes under pressure by using the transition 

theory. 

In this paper, we investigate the creep deformation in a 

thick-walled isotropic spherical shell under steady-state tem-

perature and uniform pressure by using the concept of gen-

eralised strain measures and asymptotic solution through the 

principal stresses-difference. Results are presented graph-

ically and are discussed. 

GOVERNING EQUATION 

We consider a spherical shell having internal and external 

radii a and b, respectively, subjected to internal pressure pi 

and a steady state temperature 0 applied at the internal 

surface of the shell. 

Basic governing equation 

Due to the spherical symmetry of the structure, the com-

ponents of displacements in spherical co-ordinates (r, , z) 

are given by /8/:  

 u = r(1 – ),  v = 0,  w = dz, (1) 

where:  is position function, depending on r = (x2 + y2 + z2) 

only. The generalised strain measures are given by /8, 9/: 

 21
ˆ1 (1 2 )M n

ii ii
n

  = − −  ,   (i = 1, 2, 3), (2) 

where: n = -2, -1, 0, 1, 2 give Green, Cauchy, Hencky, 

Swainger, and Almansi measures, respectively; and 
A

iie  be 

Almansi finite strain components. From Eq.(2), the general-

ised components of strain are obtained as: 
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rr r
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   = − +  ,  

1
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  = − =  ,  

 0r z zr   = = = , (3) 

where: n is measure; rr,  and zz are strain components; 

and  = d/dr. 

Stress-strain relation: for thermal elastic isotropic material, 

the stress-strain relationships are presented /1, 4/ as: 

 2ij ij kk ij ij     = + −  ,  ( , , 1,2,3)i j k = . (4) 

Further,  has to satisfy: 

 2 0  = . (5) 

The temperature satisfying Laplace Eq.(5) with boundary 

condition: 

 0 =    at  r = a,  0 =   at  r = b, (6) 
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where: 0 is constant, and given by: 

 0 1
( )
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 = − −  

. (7) 

Using Eq.(3) into Eq.(4), we get: 
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Equation of equilibrium: the equations of motion are all 

satisfied except: 
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Asymptotic solution at transition points: using Eqs.(6)-(8) 

into Eq.(9), we get nonlinear differential equation in  as: 
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where: r = T. 

Critical or transition points: transition points of  in Eq.(10) 

are T → 0 and T → . 

Boundary condition: the boundary conditions are 

 rr = pi  at  r = a  and  rr = 0  at  r = b. (11) 

PROBLEM SOLUTION 

For finding the creep stress distribution, the transition 

function  is taken through the principal stresses’ difference 

/7-25/ at the transition point T → –1 as: 

  2
1 ( 1) (1 )n n n

rr T
n




     = − = − + − − 
. (12) 

Taking the logarithmic differentiation of Eq.(12) with 

respect to  and using Eq.(10), and after that by taking the 

asymptotic value at T → –1, we get: 
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Integrating Eq.(13) with respect to r, we get: 

 2 (3 2 )
1expC n CAr f− − = , (14) 

where: A is a constant of integration and 

0
1 22 n

C dr
f
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=  . The asymptotic value of  as T → –1 is 

D/r; D being a constant, therefore, Eq.(14) becomes: 

 2 (3 2 ) (3 2 )
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Using Eq.(15) into Eq.(9), and integrating, we get: 

 2 1 (3 2 ) (3 2 )
12 expC n C n C
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Using boundary conditions Eq.(11) into Eq.(16), we get: 
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Now substituting the value of constants A and B into 

Eqs.(15)-(16), we get: 
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where: 
1

0
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( 1)
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Initial yielding: it has been seen that rr –  are maximum 

at r = a, therefore yielding will take place at the internal 

surface of the shell and Eq.(17) becomes: 

 
3 2 ( 1) 1

2

3 2 ( 1) 1
2

exp

2 exp

n C n
i

rr b n C nr a
a

p a f
Y

r f dr
 

− + − −

− + − −=
− = 



, (18) 

where: 
1
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Equations (17)-(18) for incompressible material (i.e., 

C → 0) become: 
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where: 
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Neglecting thermal condition: taking 0 = 0 into Eq.(19), 

we get: 
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Equation (20) for incompressible material reduces to: 
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Equations (20)-(21) are same as obtained by Gupta et al., 

/25/. 

NUMERICAL ILLUSTRATION AND DISCUSSION 

To investigate the effect of yielding pressure versus thick-

ness ratios for the spherical shell made of incompressible/ 

compressible (say rubber  = 0.5; saturated clay  = 0.42; 

and steel  = 0.27) by /1/. For mild steel, the following values 

have been taken /17/:  = 7.510–6 per °F; E = 3107 lb/in2; 

 = 0.5, 0.42, 0.27; Y = 3104 lb/in2; 0 = 0 °F, 40 °F, 80 °F; 

n = 3, 5; and a = 0.5 (inner radius); b = 1 (outer radius); r  

(a, b), respectively. 
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Figure 1 is portrayed in order to demonstrate the behav-

iour of yielding pressure Y/pi versus thickness ratios at differ-

ent temperature and measure n = 3, n = 5, respectively. In the 

absence of thermal effect, it has been observed that yielding 

of thinner shells as well as thicker shell occurs at the same 

pressure. 

With the introduction of thermal effect, the thinner shell 

yields at higher pressure in comparison to the thicker shell. 

This yielding pressure goes on increasing with increasing 

measure n = 3, 5, and temperature  = 40 °F, 80 °F, respec-

tively. Moreover, shell made of incompressible material (say 

rubber,  = 0.5) needs superior pressure to yield, in compar-

ison to shell made of compressible materials (say saturated 

clay,  = 0.42; steel  = 0.27). 

0 = 0 °F   0 = 40 °F  0 = 80 °F 

(a)

 

 

b)

  
Figure 1. Yielding ratios Y/pi vs. thickness ratios b/a at different temperatures and measures: (a) n = 3; (b) n = 5. 

CONCLUSIONS 

The main findings are given as follows: 

‑ the shell made of rubber material requires higher pressure 

to yield in comparison to the shell made of compressible 

material without thermal effects, 

‑ the result is same as given by Gupta et al. /25/. 
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