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Abstract 

In this paper, we investigate the onset of convection in a 

Jeffrey nanofluid layer saturated with the porous medium 

using Darcy-Brinkmann model. Normal mode analysis and 

Galerkin type weighted residual method (GWRM) are used to 

analyse conservation equations. Effects of Brownian motion 

and thermophoresis are taken into account in the Jeffrey 

nanofluid model. The Buongiorno model deployed for nano-

particles incorporates the influences of thermophoresis and 

Brownian motion. Three cases of free-free, rigid-rigid and 

rigid-free boundaries are considered. For stationary convec-

tion, the effects of Darcy number, Jeffrey parameter, Lewis 

number, nanoparticle Rayleigh number, porosity and modi-

fied diffusivity ratio for all the above mentioned boundary 

conditions are investigated analytically and graphically. The 

numerical computed values of stationary thermal Rayleigh 

number are presented graphically for three distinct combina-

tions of boundary conditions. The study is of great signifi-

cance in many different areas such as automotive, pharma-

ceutical, geophysics, soil sciences, food processing, ocean-

ography, limnology, etc., and excellent coincidence is found 

regarding the present paper and earlier published work. 

Ključne reči 

• toplotna nestabilnost 

• nanočestice 

• nanofluidi 

• Braunovo kretanje 

Izvod 

U ovom radu istražujemo pojavu konvekcije u sloju 

Jeffrey nanofluida koji je zasićen poroznom sredinom, i to 

primenom Darcy-Brinkman modela. Za analize jednačina 

ravnoteže koriste se analiza u normalnom modu i analiza 

težinskim ostatkom tipa Galerkin (GWRM). Uticaji Braun-

ovog kretanja i termoforeze se razmatraju u modelu Jeffrey 

nanofluida. Uvedeni model Buongiorno za nanočestice sadr-

ži uticaje termoforeze i Braunovog kretanja. Razmotrena su 

tri slučaja slobodno-slobodno, kruto-kruto i kruto-slobodno 

graničnih uslova. Pri stacionarnoj konvekciji istraženi su 

uticaji Darcijevog broja, Jeffrey parametra, Luisovog broja, 

Rejlejevog broja za nanočestice, poroznosti i modifikovanog 

odnosa difuznosti za sve gore navedene granične uslove, i 

to analitički i grafički. Numerički sračunate vrednosti stacio-

narnog termičkog Rejlejevog broja su predstavljene grafički 

za tri kombinacije graničnih uslova. Ova istraživanja su od 

velikog značaja u mnogim oblastima kao što su automobilska 

industrija, farmaceutika, geofizika, nauka o tlu, procesiranje 

hrane, okeanografija, limnologija, itd., a uočava se izvan-

redno poklapanje rezultata sa onima u ranijim objavljenim 

radovima. 

INTRODUCTION 

A liquid that contains suspended submicroscopic solid 

particles, commonly referred to as nanoparticles, is referred 

to as a ‘nanofluid’. The term was first used by Choi /20/. As 

stated by Masuda et al. /15/, the distinguishing characteristic 

of nanofluids is thermal conductivity enhancement. 

According to Buongiorno and Hu /23/, this phenomenon 

raises the prospect of employing nanofluids in sophisticated 

nuclear systems. Buongiorno conducted a thorough analysis 

of convective transport in nanofluids and claims that an 

acceptable explanation for the unexpected rise in thermal 

conductivity and viscosity has not yet been discovered. He 

concentrated on the additional heat transfer improvement 

seen in convective conditions. Buongiorno points out that a 

number of writers have proposed that the dispersion of the 

suspended nanoparticles may be the cause of the enhanced 

convective heat transfer, but he contends that this impact is 

insufficient to account for the observed boost. Buongiorno 

comes to the conclusion that the presence of nanoparticles 

has no effect on turbulence, hence it is unable to account 

for the observed boost. The increase of heat transmission 

has also been attributed to particle rotation, but Buongiorno 

determines that this impact is insufficient to account for the 

result. Buongiorno developed a novel model based on the 

mechanics of the nanoparticle/base-fluid relative velocity 

after ruling out dispersion, turbulence and particle rotation 

as key factors for heat transfer amplification. 

According to Buongiorno, the base fluid velocity and a 

relative velocity (which he refers to as slip velocity) may be 

combined to form the nanoparticle absolute velocity. He 

thought about each of the following seven slide processes in 

turn: gravity settling, fluid drainage, inertia, Brownian diffu-

sion, thermophoresis, and diffusiophoresis. 
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On the basis of the transport equations of Buongiorno 

/22/, the Bénard issue (the commencement of convection in 

a horizontal layer evenly heated from below) for a nanofluid 

was investigated by Tzou /1-2/ and Nield and Kuznetsov /12-

14/. Nield and Kuznetsov investigated the Horton-Rogers-

Lapwood issue, which is the equivalent flow problem in a 

porous medium. According to Kuznetsov and Nield /17-18/ 

the Brinkman model is added to that inquiry to further it. A 

Darcy number thus is added as a new parameter as a result. 

 A few researchers /3-11, 15-16, 21/ studied heat convec-

tion in a viscoelastic nanofluid layer saturating a porous 

medium and found that viscoelastic nanofluid has uses in a 

number of automotive industries and biomedical engineering. 

This study's main objective is to examine the effects of the 

Jeffery parameter and other variables in a porous layer satu-

rated with a viscoelastic nanofluid heated from below, which 

is an extension of the paper studied by Rana and Gautam 

/11/, for free-free boundary conditions. 

MATHEMATICAL MODEL 

Consider a porous layer of material between two planes 

z* = 0 and z* = H. The fluid layer is heated from below and 

working in the upwards direction with a gravity force g = 

(0,0,-g). The temperature and volumetric fraction at the lower 

wall be Th
* and 0

* while at the upper wall it is Tc
* and 1

*, 

respectively. We consider a porous medium with porosity  
and permeability K. 

 

 

 
Figure 1. Physical sketch of the problem. 

GOVERNING EQUATIONS 

The conservation equation of mass, momentum, thermal 

energy and nanoparticles, respectively are: 
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We write  vD
* = (u*,v*,w*). 

Here, f, , and  are the density, viscosity, and volumet-

ric expansion coefficient of the fluid, while p is the density 

of particles. We have introduced effective viscosity  , the 

effective heat capacity (c)m and effective thermal conduc-

tivity of the porous medium km. The coefficients that appear 

in Eqs. (3) and (4) are the Brownian diffusion coefficient 

DB and the thermophoretic diffusion coefficient DT. 

On the boundaries, we assume that the temperature and 

volumetric fraction of nanoparticles are both constant. The 

boundary conditions are therefore, 
* 2 *

* * * * *
1 0* *2

0,  0,  ,  h
w w

w H T T
z z

  
 
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As follows, we present dimensionless variables. We define 
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Equations (1)-(6) take the form 
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BASIC SOLUTIONS 

The time independent fundamental states for nanofluids 

are expressed as 

 0,  ( ),  ( ),  ( )b b bT T z z p p z = = = =v . (15) 

Using Eq.(15) in Eqs. (9), (10), (11) and (12), these equa-

tions reduce to 

 ˆ ˆ ˆ 0z
m z n b z a b z

dp
R e R e R T e

dz
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2
. 0b b bB A B

e e

d T dT dTN N Nd

L dz dz L dzdz

  
+ + = 

 
, (17) 

 
2 2

2 2
0b b

A

d d T
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
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Using boundary conditions Eqs. (13) and (14), the solu-

tion of Eq.(18) is 

 (1 )b A b A AN T N z N =− + − + . (19) 

Substituting the value of b in Eq.(17), we get 

 
2

2
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e
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−
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Neglecting the higher power term, solution of Eq.(20) is 

given by 
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−
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According to Buongiorno, the approximated solution for 

Eqs. (19) and (21), gives 

 1 ,  b bT z z= − = . (22) 

PERTURBATION SOLUTION 

We now superimpose perturbations on the basic solution. 

We write, 

 0 ,  ,  ,  b b bp p p T T T      = + = + = + = +v v . (23) 

Using Eq.(23) in Eqs.(9)-(14) and linearizing the terms 

by neglecting the product of prime quantities, the following 

equations are obtained: 
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The six unknowns u, v, w, p, T , and  can be reduced 

to three by operating on Eq.(25) multiplied by ˆ . .curl curlze  

and also using Eq.(24), we get 
2 2
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2 2
2

2 2H
x y
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 
 are the 

two-dimensional Laplace operators. 

NORMAL MODE ANALYSIS 

The disturbances analyses by normal mode analysis are 

as follows 

 ( , , ) ( ), ( ), ( ) exp( )w T W z z z ilx imy st   =   + + , (31) 

where: s is growth rate; and l and m are the wave numbers 

along x and y directions, respectively. 

Substituting Eq.(31) in Eqs.(25)-(29) and (31), we get 
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2
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2
20,  0,  0,  0W DW D W= − = = =   at  1z= , (36) 

where, 
d

D
dz

=  and a2 = l2 + m2 is the dimensionless wave 

number. 

According to Chandrasekhar /19/, boundary conditions 

should be as follows: 

1) free-free boundaries 

 2 0W D W= == =   at  0,1z = , (37) 

2) rigid-rigid boundaries 

 0W DW= == =   at  0,1z = , (38) 

3) rigid-free boundaries 

 0W DW= == =   at  0z = , (39) 

 2 0W D W= == =   at  1z= . (40) 

The assumed solutions for W, , and , for all boundary 

conditions are taken as follows 

- for free-free boundaries 

0 0 0sin ,  sin ,  sinW W z z z  = = = , (41) 

- for rigid-rigid boundaries 
2 3 4 2 2
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2 3 4 2 2

0 0 0(3 5 2 ),  ( ),  ( )W W z z z z z z z= − + = − = − . (43) 

LINEAR STABILITY ANALYSIS FOR FREE-FREE 

BOUNDARIES 

Substituting Eq.(41) in Eqs.(32)-(34) and integrating each 

term individually within limits z = 0 to z = 1, we get 
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where: J = 2 + a2. 

The eigenvalue to the system of linear Eqs.(44) is given 

as 
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1 1
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 ( )J i + . (45) 

Stationary convection for free-free boundaries 

For stationary convection  = 0 in Eq.(45), we obtain 
2 2 3 2 2 2
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For the case when Da = 0, the critical wave number at 

the onset of instability is obtained by minimising the thermal 

Rayleigh-Darcy number Ra with respect to a. Thus, the crit-

ical wave number must satisfy 
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. 

Equation (46) gives 

 
ca = . (47) 

On the other hand, when Da is large compared with unity, 

the critical wave number at the onset of instability is obtained 

by minimising the thermal Rayleigh-Darcy number Ra with 

respect to a. Thus, the critical wave number must satisfy 
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Equation (46) gives 
2
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LINEAR STABILITY ANALYSIS FOR RIGID-RIGID 

BOUNDARIES 

Substituting Eq.(42) in Eqs.(32)-(34) and integrating each 

term individually within limits z = 0 to z = 1, after applying 

Galerkin first approximation, we get 
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The eigenvalue to the system of linear Eqs.(49) is given as 
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Stationary convection for rigid-rigid boundaries 

For stationary convection  = 0 in Eq.(50), we obtain 

2 4 2

2

28 1
(504 24 ) 12

127

sRa a a Da a
a 

  
= + + + +   

+  
 

 2(10 ) e
A

L
a N Rn



 
 + − + 

 
. (51) 

For the case when Da = 0, the critical wave number at 

the onset of instability is obtained by minimising thermal 

Rayleigh-Darcy number Ra with respect to a. Thus the criti-

cal wave number must satisfy 

 
2

0

ca a

Ra

a =

 
= 

 
. 

Equation (51) gives 3.31ca = . (52) 

On the other hand when Da is large compared with unity, 

the critical wave number at the onset of instability is obtained 

by minimising thermal Rayleigh-Darcy number Ra with 

respect to a. Thus the critical wave number must satisfy 

 
2

0

ca a

Ra

a =

 
= 

 
. 

Equation (51) gives 3.12ca = . (53) 

LINEAR STABILITY ANALYSIS FOR RIGID-FREE 

BOUNDARIES 

Substituting Eq.(43) in Eqs.(32)-(34) and integrating each 

term individually within limits z = 0 to z = 1, after applying 

Galerkin first approximation, we get 

 

2 4 2 2 2

0
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2
02

1
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a s
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L L
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  
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+      
    − + +  =    
      +  

+ + 
  

. (54) 

The eigenvalue to the system of linear Eq.(54) is given by 
2

2 4 2 2 2 2

2
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(10 )1
(4536 432 19 ) 216 19 (10 ) 10 (10 )

27 1

28
10

e e
A

e

sL L a ssDa
Da a a a a s a N a

Pr
Ra

sLa
a

   



   + +  
+ + + + + + + + + − + +     

+      
=

 
+ + 

 

 (55) 
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Stationary Convection for rigid-free boundaries 

For stationary convection  = 0 in Eq.(55), we obtain 

 2 4 2 2

2

28 1
(4536 432 19 ) 216 19 (10 )

1507

e
A

L
Ra a a Da a a N Rn

a  

    
= + + + + + − +    

+    
. (56)  

For the case when Da = 0, the critical wave number at 

the onset of instability is obtained by minimising thermal 

Rayleigh-Darcy number Ra with respect to wave number a. 

Thus, the critical wave number must satisfy 

 
2

0

ca a

Ra

a =

 
= 

 
. 

Equation (56), gives 3.27ca = . (57) 

On the other hand, when Da is large compared with unity, 

the critical wave number at the onset of instability is obtained 

by minimising thermal Rayleigh-Darcy number Ra with 

respect to wave number a. Thus, the critical wave number 

must satisfy 

 
2

0

ca a

Ra

a =

 
= 

 
. 

Equation (56), gives 2.67ca = . (58) 

RESULTS AND DISCUSSION 

In this research paper, we have studied the stationary 

convection in the thermal instability of Jeffrey nanofluid 

layer saturated with a porous medium: Brinkman model. The 

effects of various parameters like: Darcy number, Jeffrey 

parameter, modified diffusivity ratio, Lewis number, porosity 

parameter and concentration Rayleigh number on stationary 

convection are analysed analytically and plotted graphically 

for free-free, rigid-rigid and rigid-free boundaries. 

Figure 2 shows the graph of Ra with respect to wave 

number a for different values of Da = 0.1, 0.2, 0.3. Fixing 

other parameters as:  = 0.2, NA = 5, Le = 1000,  = 0.6, 

Rn = -1, it is clear from Fig. 2 that as Da goes on increasing 

there is increase in Ra. Thus, Da has a stabilising effect on 

stationary convection. Also, we have analysed that Da has a 

more stabilizing effect in the case of rigid-rigid boundaries. 

Thus, Da delays the onset of convection of the system. 

a 

Figure 2. Variation of Rayleigh- with wave number for different 

values of Darcy number. 

Figure 3 shows the graph of Ra with respect to wave 

number a, for different values of  = 0.2, 0.5, 0.8. Fixing 

other parameters as: Da = 0.1, NA = 5, Le = 1000,  = 0.6, 

Rn = -1, it is clear from the figure that Ra goes on decreasing 

with increase in . Thus,  has a destabilizing effect on 

stationary convection, and it is also clear from the figure that it 

has more destabilizing effect in the case of free-free bounda-

ries. Thus,  enhances the onset of convection of the system. 

Figure 4 shows the graph of Ra with respect to wave 

number a for different values of NA = 1, 5, 10. Fixing other 

parameters as Da = 0.1,  = 0.2, Le = 1000,  = 0.6, Rn = -1, 

it is clear from Fig. 4 that Ra goes on increasing with an 

increase in NA. Thus, NA has a stabilizing effect, and it is 

also clear from the figure that it has more stabilizing effect 

in the case of rigid-rigid boundaries. Thus, NA delays the 

onset of convection of the system. 

   a 
Figure 3. Variation of Rayleigh- with wave number for different 

values of Jeffrey parameter. 

  a 
Figure 4.Variation of Rayleigh with wave number for different 

values of modified diffusivity ratio. 

Figure 5 shows the graph of Ra with respect to wave 

number a for different values of Le = 100, 500, 1000. Fixing 

other parameters as: Da = 0.1,  = 0.2, NA = 5,  = 0.6, Rn = 

-1, it is clear from the figure that as Ra goes on increasing 

with increase in Le, thus, it has stabilizing effect on station-

ary convection and Fig. 5 demonstrates that Le has more 
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stabilizing effect in the case of rigid-rigid boundaries. Thus, 

Le delays the onset of convection of the system. 

  a 
Figure 5. Variation of Rayleigh- with wave number for different 

values of Lewis number. 

  a 
Figure 6. Variation of Rayleigh- with wave number for different 

values of porosity parameter. 

  a 
Figure 7. Variation of Rayleigh- with wave number for different 

values of concentration Rayleigh number. 

Figure 6 shows the graph of Ra with respect to wave 

number a for different values of  = 0.2, 0.3, 0.6. Fixing 

other parameters as: Da = 0.1,  = 0.2, NA = 5, Le = 1000, 

Rn = -1, it is clear from the figure that as Ra goes on decreas-

ing within increase in . Thus,  shows a destabilizing effect 

and it is also clear from Fig. 6 that it has more destabilizing 

effect in the case of free-free boundaries. Thus,  enhances 

the onset of convection of the system. 

Figure 7 shows the graph of Ra with respect to wave 

number a for different values of Rn = -0.1, -0.6, -0.5. Fixing 

other parameters as: Da = 0.2,  = 0.2, NA = 5, Le = 1000, 

 = 0.6, it is clear from the figure that as Ra goes on decreas-

ing with increase in Rn. Thus, Rn has a destabilizing effect, 

and it is also clear from Fig. 7 that Rn has more destabilizing 

effect in the case of free-free boundaries. Thus, Rn enhances 

the onset of convection of the system. 

CONCLUSION 

In this article, we use linear stability analysis to make the 

following key conclusion:  

(i) Da, NA, Le have stabilizing influence on the system. 

(ii)  , Rn produce impact on the system in such a way that 

they enhance the onset of convection. 

(iii) In case of rigid-rigid boundaries, the system has greater 

stabilizing impact rather than at free-free/rigid-free bounda-

ries. 

(iv) Parameters as: Da, NA, Le have a more destabilising 

effect on stationary convection in case of free-free bounda-

ries, as compared to rigid-rigid/rigid-free boundaries. 
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