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Abstract 

The paper deals with the analytical solution of transi-

tional stresses in thin rotating disc composed of piezoelec-

tric material under temperature and internal pressure. The 

stresses are evaluated in the rotating disc by using transi-

tion theory of Seth. The electric displacement relations and 

stresses are computed by using stress strain relations. The 

non-homogeneous differential equation is derived by substi-

tuting the obtained relations into the equilibrium equation. 

The formulated differential equation is solved with specified 

boundary conditions, applied pressure, electric displacement 

and stresses. Obtained results are exhibited graphically, ana-

lysed numerically and it is then concluded that transversely 

isotropic beryl is better than transversely isotropic magne-

sium material and transversely isotropic piezoelectric mate-

rials BaTiO4 and PZT-4. 

Ključne reči 

• termički naponi 

• transverzalno izotropan disk 

• pijezoelektrični 

• unutrašnji pritisak 

Izvod 

U radu je predstavljeno analitičko rešenje prelaznih napo-

na kod tankog rotirajućeg diska sačinjenog od pijezoelektrič-

nog materijala pod uticajem temperature i unutrašnjeg pri-

tiska. Određivanje napona u rotirajućem disku je obavljeno 

primenom teorije prelaznih napona Seta. Relacije električnih 

pomeranja i napona su izvedene preko veza napona i defor-

macija. Nehomogena diferencijalna jednačina je izvedena 

smenom dobijenih relacija u jednačinu ravnoteže. Formirana 

diferencijalna jednačina se rešava uz posebne granične uslo-

ve, dejstvo pritiska, električnih pomeranja i napona. Dobijeni 

rezultati su predstavljeni grafički, analizirani su numerički, 

a zatim se izvodi zaključak da je transverzalno izotropni 

beril bolji materijal od transverzalno izotropnog magneziju-

ma, kao i transverzalno izotropnih pijezoelektričnih materi-

jala BaTiO4 i PZT-4. 
 

INTRODUCTION 

In the present era smart materials are of great importance 

in engineering and scientific research. Smart materials are 

defined as materials having properties which can be changed 

significantly by applications of external stimuli, for intense 

stress, by variation in temperature, moistness, pH, electric 

or magnetic fields. Examples of smart materials are piezo-

electric material, shape memory alloys, shape memory poly-

mer, pH sensitive polymer, magneto caloric material, pyro-

electric material and thermo-piezoelectric material. The inter-

nal generation of an electric current has a result of mechani-

cal force applications known as direct piezoelectric material. 

Material which exhibits piezoelectric effect is known as the 

piezoelectric material. Piezoelectric material is widely used 

in various sensing devices, waves, shock control devices, 

MEMS devices, navigation, medical instruments, household 

kitchen appliances and in smart structures. Most commonly 

piezoelectric materials that we use are quartz, barium 

titanate (BaTiO3), Rochelle salt and polyvinylidene fluoride. 

To ensure that piezoelectric instruments or appliances will 

work in various temperature conditions, it becomes neces-

sary to include the temperature effect while developing the 

mathematical model of the scientific research problem. So 

electrical-thermal-mechanical coupling thermoelastic theo-

ries are developed by various authors. First of all, Mindlin 

/1/ developed the theory of piezoelectric thermoelastic mate-

rials. Later Mindlin /2/ derived the equation for thermal 

piezoelectric crystals under the effect of high frequency 

vibrations. Chandrasekharaiah /3/ considered the finite speed 

of thermal vibrations and extended the theory presented by 

Mindlin. Tauchert /4/ applied the thermoelastic theory of 

piezoelectric materials to composite plates. Eringen /5/ intro-

duced electromagnetic effect in micropolar thermoelasticity. 

Eringen /6/ developed micropolar piezoelectricity. This the-

ory can be applied to porous electric materials and various 

synthetic materials also. There is great use of this theory in 

intelligent structural systems, piezoelectric composite struc-

tural appliances, loudspeakers and ultrasonic transducers. 

Iesan /7/ presented the linear theory of piezoelectricity for 

microstretch piezoelectric materials and proved uniqueness 

and reciprocity theorems. Marin /8/ derived the expression 

for the solutions of elasticity problems concerned with dipo-

lar porous materials. Migorski and Ochal /9/ discussed the 

dynamical bilateral problem for viscoelastic piezo thermo-

elastic medium with the adhesion effect. Sharma /10/ studied 

plane harmonic waves in an anisotropic piezo-electric ther-

https://doi.org/10.69644/ivk-2024-02-0172
mailto:vikashgahlawat25@gmail.com
mailto:despathania@yahoo.com


Evaluation of thermal stresses in transversely isotropic … Određivanje termičkih napona u transverzalno izotropnom … 

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 24, br.2 (2024), str. 172–177 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 24, No.2 (2024), pp. 172–177 

 

173 

moelastic solid. Othman and Ahmed /11/ discussed the rota-

tional effect on the piezo thermoelastic medium under four 

different theories of thermoelasticity. Kumar and Sharma 

/12/ established the variational principle, uniqueness and 

reciprocity theorems in porous magneto piezo thermoelastic 

medium. Sharma and Radaković /13/ found an exact solution 

of elastic-plastic stresses in a thin rotating disc composed of 

piezoelectric material. 

In this research, we have considered the piezo-electric 

effect and isotropic properties for the thermoelastic material. 

The dynamical problem is then solved by using analytical 

technique. The temperature distribution and stress compo-

nents have been solved numerically. Resulting quantities 

are depicted graphically to explore the effect of piezoelec-

tric parameter and internal pressure. In this paper, thermal 

stresses are computed in a rotating disc composed of trans-

versely isotropic piezoelectric material under internal pres-

sure by keeping in mind the concept of transition theory. 

MATHEMATICAL FORMULATION 

We consider a thin rotating disc having a and b as internal 

and external radii, respectively, and  as angular velocity of 

the disc. A thin disc is assumed as we are discussing the 

state of plane stress, i.e., Tzz = 0. Displacements coordinates 

in polar form are given as: 

 u = r(1 – F); v = 0 and w = dz       (1) 

where: F is function of r = (x2 + y2); and d is a constant. 

Components of strain are as follows: 

 
1

[1 ( ) ]n
rre r

n
 = − + ,   

1
[1 ]ne

n
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1

[1 (1 ) ]n
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n
= − − . (1) 

Now, the stress-strain relations for this problem are 

 
11 11 66 13 11 1( 2 )rr rr zz rt c e c c e c e e E  = + − + − − , 
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 0zz zr r zt t t t = = = = , (2) 

where: trr is radial stress; t is circumferential stress; 1 = 

1c11 + 22c12; 2 = 1c12 + 22(c22 +c33); 1 is coefficient 

of linear thermal expansion across the axis of symmetry; 2 

is the quantity orthogonal to axis of symmetry;  is the tem-

perature given by 0log(r/b)/log(a/b), and 0 is constant. 

The equation of equilibrium is given by 
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Putting the value of ( )rr
d
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 and t in Eq.(5), we have 
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where: r = P. 

So, the equations are 
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The transition points of the above equation are given by 

P →  and P → −1 and the boundary conditions are 

    at      and   0   at   rr rrt p r a t r b=− = = = . (12) 

Transition from elastic to plastic state: according to the 

transition theory /10-26/, a material in the elastic state 

changes to plastic at critical points P → . For calculating 

the stresses, the transition function is taken as 
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where: B is constant. 

Taking the logarithmic differentiation of Eq.(13), we get 
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Taking P →  in Eq.(14) and integrating, we obtain 
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From Eqs.(3) and (15), the expressions for transitional 

stresses are as follows: 
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By using Eqs.(14) and (18), we have 
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Using Eqs.(16) and (17), transitional stresses are 
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From Eq.(18), we have Tresca’s yield criterion as 
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From Eq.(19) it is evaluated that trr – t  yields maximal 

value at r = a, resulting as initial yielding stress, 
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and the pressure required for initial yielding in piezoelectric 

material is given by the expression 
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Also, it has been analysed that at r = b, Eq.(19) yields a 

fully-plastic yielding stress as 
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and pressure necessary for fully-plastic state in piezoelectric 

material is given as 
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Now, the non-dimensional form of all the parameters is 

defined as 
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The non-dimensional form of Eq.(21) becomes 
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and of Eq.(23) as 
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From Eq.(18) the non-dimensional forms of transitional 

stresses are given as 
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When M → 0, then non-dimensional form of Eqs.(27) is 
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NUMERICAL DISCUSSION 

For finding the impact of pressure and temperature on 

transversely isotropic piezoelectric materials (BaTiO4 and 

PZT-4) and transversely isotropic materials (magnesium and 

beryl) the Figs. 1 and 2 are drawn for pressure with differ-

ent radii ratios. It is observed that pressure for initial yield-

ing gradually decreases with increasing value of radii ratio. 

It has a maximum value at the inner surface of the disc. Also, 

the pressure value at inner surface of the disc increases with 

increasing value of temperature and angular velocity. It is 

also observed that pressure is maximal for transversely iso-

tropic piezoelectric material BaTiO4 and minimal for trans-

versely isotropic beryl. 

Figures 3 and 4 are drawn for circumferential stresses 

with radii ratios of different temperature values. It is noticed 

from Fig. 3 that circumferential stresses are tensile in nature 

and these stresses are maximal at internal surface of the disc 
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with angular velocity  = 10 and temperature values 0.1, 

0.3, 0.5, and with increase in angular velocity  = 20 the 

circumferential stresses show remarkable increase. These 

stresses are the highest in case of BaTiO4 and the lowest in 

the case of beryl. 

From Fig. 5 it is observed that fully-plastic stresses are 

tensile and maximal at inner surface of the disc. Also, these 

stresses have the highest value for angular velocity  = 30. 

Figures 6 and 7 are drawn for angular velocity with dif-

ferent radii ratios, different pressure and temperature values. 

It is observed from Fig. 6 that angular velocity enhances 

with increasing ratios of radii and has maximum value at 

the outer surface of the disc and has the highest value for 

transversely isotropic piezoelectric BaTiO4 from Fig. 7. It is 

seen that angular velocity shows remarkable increase with 

the increasing value of pressure. 

Pi for BaTiO3 Pi for PZT 4

Pi for Mg Pi for Be  

R0
 

 R0
 

 R0
 

Figure 1. Pressure for initial yielding and fully-plastic state of trans-

versely isotropic piezoelectric material and transv. Isotr. material 

with ang. velocity 10 and temp. 0.1, 0.3 and 0.5, respectively. 

 R0
 

 R0
 

 R0
 

Figure 2. Pressure for initial yielding and fully-plastic state of trans-

versely isotropic piezoelectric material and transversely isotropic 

material with angular velocity 20 and temperature 0.1, 0.3, and 

0.5, respectively. 

 

 R
 

 R
 

 R
 

Figure 3. Circumferential stresses for piezoelectric and isotropic mate-

rial steel with angular velocity 10 and temp. 0.1, 0.3, and 0.5, in respect. 
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 R
 

 R
 

 R
 

Figure 4. Circumferential stresses for piezoelectric and isotropic mate-

rial steel with angular velocity 20 and temp. 0.1, 0.3, and 0.5, in respect. 

 

 R
 

Figure 5. Fully-plastic stresses for piezoelectric and isotropic mate-

rial steel with angular velocity 10, 20, and 30, in respect. 

 

 R0
 

 R0
 

 R0
 

Figure 6. Angular velocity in initial yielding and fully-plastic state 

with pressure 10 and temperature 0.1, 0.3, and 0.5, respectively. 

 R0
 

 R0
 

 R0
 

Figure 7. Angular velocity in initial yielding and fully plastic state 

with pressure 20 and temperature 0.1, 0.3, and 0.5, respectively. 

CONCLUSION 

On the basis of all graphs and numerical calculations it is 

concluded that the transversely isotropic material beryl is 

safe for designing of the transversely isotropic piezoelectric 

rotating disc. This is because of the reason that the pressure 

essential for initial yielding is less, also circumferential 

stresses are minimal for beryl in both transitional and fully 
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plastic states. In case of other materials considered in this 

problem, the initial pressure and circumferential stresses in 

elastic and fully-plastic state are high. So, these materials 

are not safe for designing as compared to beryl. 
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