
INTEGRITET I VEK KONSTRUKCIJA 

Vol. 24, br.1 (2024), str. 40–48 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 24, No.1 (2024), pp. 40–48 

 

40 

Pushap Lata Sharma1*, Mohini Kapalta1**, Deepak Bains1, Ashok Kumar1, Veena Sharma1, Pankaj Thakur2*** 

ELECTROHYDRODYNAMICS CONVECTION IN DIELECTRIC OLDROYDIAN NANOFLUID 

LAYER IN POROUS MEDIUM 

ELEKTROHIDRODINAMIČKA KONVEKCIJA U DIELEKTRIČNOM OLDROYDOVSKOM 

NANOFLUIDU SA POROZNOM SREDINOM 

 
Originalni naučni rad / Original scientific paper 

UDK / UDC:  

 

Rad primljen / Paper received: 24.05.2022 

Adresa autora / Author's address: 
1) Department of Mathematics & Statistics, Himachal  

Pradesh University, Summer Hill, Shimla-171005, India 
2) Faculty of Science and Technology, ICFAI University 

Baddi, District Solan, India  email: * pl_maths@yahoo.in , 
** mohinikapalta@gmail.com , *** pankaj_thakur15@yahoo.co.in 

 
Keywords 

• Oldroydian model 

• nanofluid 

• convection 

• electric field 

• porous medium 

Abstract 

The onset of thermal convection in an electrically conduct-

ing rheological nanofluid to include an external vertical AC 

electric field saturated by a homogeneous porous medium 

has been studied using linear stability theory by employing 

an Oldroydian model which incorporates the effects of the 

electric field, Brownian motion, thermophoresis, and rheo-

logical parameters for bottom heavy distribution of nano-

particles. The rheology of the nanofluid is described by the 

Oldroydian model for calculating the shear stresses from 

velocity gradients. Exact solutions of the eigenvalue problem 

for stress-free bounding surface are obtained analytically 

using Galerkin method and the Darcy Rayleigh number for 

onset of both stationary and oscillatory convection, obtained 

for bottom-heavy distribution of nanoparticles. It is found 

that the Deborah number has a stabilizing effect on the 

system, while strain retardation time parameter has a destabi-

lizing effect on the oscillatory convection of the system. The 

effect of the Lewis number tends to stabilize the stationary 

convection and destabilizes oscillatory convection. The con-

centration Rayleigh number has a destabilizing effect on 

stationary convection and a stabilizing effect on the oscilla-

tory convection. Medium porosity has a stabilizing effect on 

oscillatory convection and is destabilizing on stationary 

convection. The effect of Vadasz number on oscillatory con-

vection is destabilizing. AC electric field has a destabilizing 

effect on both the stationary and oscillatory convection. 

Ključne reči 

• Oldroydovski model 

• nanofluid 

• konvekcija 

• električno polje 

• porozna sredina 

Izvod 

U radu se razmatra pojava toplotne konvekcije u elektro-

provodnom reološkom nanofluidu, u prisustvu spoljašnjeg 

vertikalnog naizmeničnog električnog polja, zasićenog homo-

genom poroznom sredinom, i to primenom teorije linearne 

stabilnosti uvrštavanjem Oldroydovskog modela, kojim se 

uvode efekti električnog polja, Braunovog kretanja, termo-

foreze, kao i reoloških parametara za raspodelu nanočestica 

tipa teškog repa. Reologija nanofluida je opisana Oldrojd-

ovskim modelom za proračun napona smicanja preko gradi-

jenta brzine. Tačna rešenja karakterističnih korena za gra-

ničnu površinu bez napona su dobijena analitički korišće-

njem Galerkin metode i Darsi Rejlejevog broja za istovre-

meno stacionarno i oscilatorno strujanje, u slučaju raspodele 

nanočestica tipa teškog repa. Uočava se da Debora broj ima 

destabilizujući uticaj na sistem, dok vremenski parametar 

kašnjenja deformacije ima stabilizujući uticaj na oscilatorno 

strujanje sistema. Uticaj Liusovog broja teži ka stabilizaciji 

stacionarnog strujanja i destabilizaciji oscilatornog struja-

nja. Koncentracioni Rejlejev broj pokazuje destabilizujući 

uticaj na stacionarno strujanje i stabilizujući uticaj na osci-

latorno strujanje. Poroznost sredine ima stabilizujući uticaj 

na oscilatorno strujanje i destabilizujući uticaj na stacio-

narno strujanje. Uticaj Vadazovog broja na oscilatorno stru-

janje je destabilizirajuće. Naizmenično električno polje ima 

destabilizirajući uticaj na stacionarno i na oscilatorno stru-

janje. 

INTRODUCTION 

Nanotechnology has attracted several new investigators 

and inventors because of its indefinite progress in the current 

period. Nanofluids are contrived by suspending nanoparticles 

in the range of 1 to 100 nm, which was first utilised by Choi 

/4/ in traditional heat transfer fluids such as water, bio-fluids, 

polymer solution, oil, and ethylene glycol. Nanofluids are 

used for a wide range of applications in chemical, biologi-

cal, medical, electronics engineering and in many industrial 

sectors due to their enhanced characteristic in thermal con-

ductivity. Jang and Choi /5/ inspected the part of Brownian 

motion in the improved thermal conductivity of nanofluids. 

Buongiorno /1/ communicated a model in which two effects 

- Brownian motion and thermophoresis are combined and 

used by many scholars to study the thermal convection in a 

nanofluid layer by spreading several features in saturated 

porous and non-porous medium. 

Sheu /18/ has calculated the linear stability of convection 

in a viscoelastic nanofluid layer using Oldroydian model. 

Sheu /19/ has considered the thermal instability in a porous 

medium layer saturated with a viscoelastic nanofluid and 
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established that the oscillatory instability is possible in both 

bottom and top-heavy nanoparticle distributions. Sharma et 

al. /16/ have considered overstable convection in a visco-

elastic nanofluid layer using Oldroydian model saturated by 

a Darcy-Brinkman porous medium in the presence of sus-

pended dust particles. They have established that suspended 

dust particles destabilize the system. Presently they stretched 

this work to study the effect of rotation and found a stabiliz-

ing effect of rotation on the physical system. 

Natural convection under AC/DC electric field of electri-

cally improved heat transfer in fluids and likely applied uses 

has been studied by Jones /6/ and Chen et al. /3/. The prob-

lem of convective heat transfer through polarized dielectric 

liquids was analysed by Stiles et al. /21/. It is concluded 

that the convection pattern recognized by the electric field 

is somewhat like to the acquainted Bénard cells in common 

convection. Shivakumara et al. /20/ studied the conse-

quences of velocity and temperature boundaries conditions 

on electro-thermal convection in a rotating dielectric fluid 

and concluded that AC electric field is to boost the heat 

transfer and to speed up the onset of convection. The die-

lectric nanofluid might be used in an electrical device for 

example instrument transformers, distribution transformers, 

regulating transformers, converter transformers, and power 

transformers. 

Sharma et al. /17/ have analysed thermal convection in 

dielectric rheological nanofluid layer with AC electric field. 

By means of Maxwellian model to state the rheology of the 

nanofluid and acknowledge that the effect of the electric 

field and stress relaxation parameter are to destabilize both 

stationary and oscillatory modes for bottom-heavy distribu-

tion of nanoparticles. Sharma et al. /13/ investigated thermo-

solutal convection of an elastic-viscous nanofluid in porous 

medium in the presence of rotation and magnetic field and 

concluded that the magnetic field and Taylor number have 

stabilizing effect for stationary convection, simultaneously 

the solutal Rayleigh- and nanoparticle Rayleigh number, 

thermo-nanofluid Lewis number, and modified diffusivity 

ratio have a destabilizing effect for stationary convection. 

Sharma et al. /15/ studied the problem of Rivlin-Ericksen 

fluid in a Darcy-Brinkman porous medium in the presence 

of suspended particles with variable gravity. Sharma et al. 

/7, 14/ analysed thermosolutal convection in a Jeffrey nano-

fluid with porous medium and the effect of rotation on ther-

mosolutal convection in Jeffrey nanofluid with a porous 

medium. 

This brief review of literature reflects that the studies on 

such topics are lacking, hence, the present problem onset of 

thermal convection in an electrically conducting rheological 

nanofluid to include an external vertical AC electric field 

saturated by a homogeneous porous medium has been 

studied using linear stability theory by employing an 

Oldroydian model which incorporates the effects of electric 

field, Brownian motion, thermophoresis, and rheological 

parameters for bottom heavy distribution of nanoparticles. 

MATHEMATICAL FORMULATION OF PROBLEM 

An infinitely extending electrically conducting horizontal 

layer of an incompressible non-Newtonian Oldroydian nano-

fluid of thickness d heated from below is considered by 

taking vertical gravity force field g(0,0,-g). A Cartesian 

frame of reference is occupied with the origin at the lower 

boundary and the z-axis vertically upwards. The lower and 

upper boundaries are maintained at constant, but different 

temperatures T and volumetric fraction of nanoparticles  

are taken to be T0 and 0 at z = 0 and T1 and 1 at z = d (T0 > 

T1 and 1 > 0). This dielectric nanofluid layer is subjected 

to a uniform vertical AC electric field. The electrical circuit 

is taken at the lower surface against which other potentials 

are measured as the root mean square value of electric field. 

Thermo-physical properties of the nanofluid are constant 

for the analytical formulation but these properties are not 

constant and strongly depend upon volume fraction of the 

nanoparticles. 

 

Figure 1. Physical configuration. 

GOVERNING EQUATIONS 

The basic hydrodynamic equations that govern the phys-

ical problem using Lapwood /8/, Chandrasekhar /2/, Buon-

giorno /1/, Roberts /12/, and Oldroyd /11/ are: 
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where: fe is the electrical origin force which is given by 
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 
ef E E E , 

where: e is the density of charge; K is the electric constant; 

E is the electric field. The term eE is the force due to a 

free charge known as Coulomb force. The term -E2K/2 

depends on the gradient of K, known as dielectrophoretic 

force. Due to the dielectric constant K and electrical conduc-

tivity, the free charge is prevented for a long time, so relax-

ation appears in the presence of the electric field in most 

dielectric fluids at standard power-line frequencies. Thus, 

dielectric loss produced at these frequencies becomes very 

low that it makes no contribution to the temperature field. 

Therefore, the term eE is neglected as compared to the term 

-E2K/2 for most dielectric fluids.  

The modified pressure term is 

 21

2

K
P p

t

 

= −  
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E , (3) 

where: p is hydrodynamical pressure. 

Assuming free charge density to be very small, the rele-

vant Maxwell equations /9/ are 

 .( ) 0K =E ,  0 =E . (4) 

z 
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In view of Eq.(4), E can be expressed as 

 =−E . (5) 

It is also assumed that the dielectric constant K can be 

expressed as (Yadav et al. /22/) 

 
0 1[1 ( )]K K T T= − − , (6) 

where:  > 0, is the coefficient of the dielectric constant, 

assumed to be small, 0 <  T << 1. 

Thus, the modified equations of motion for Oldroydian 

nanofluid saturating a porous medium in the presence of the 

electric field become 
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The equation of continuity for the nanoparticles is 
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where: DB is the Brownian diffusion coefficient; and DT is 

the thermophoresis diffusion coefficient. 

The equation of heat energy of nanofluid saturating a 

porous medium is 
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where: qD, p, , , , f, p, , , k1, 0, km, , (c)f are the 

Darcy velocity, pressure, porosity, relaxation time, nano-

particles volume fraction, density of base fluid, density of 

nanoparticles, coefficient of volume expansion, coefficient 

of viscosity, medium permeability, retardation time, coeffi-

cient of thermal conductivity, root mean square value of 

electric potential, heat capacity of fluid in porous medium, 

and the heat capacity of nanoparticles, respectively. 

Hence, boundary conditions appropriate to the problem are 
2
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where:  = (c)m/(c)f and m = km/(c)f are heat capacity ratio 

and thermal diffusivity of the porous medium, in respect. 

The non-dimensional forms of Eqs.(1) and (5)-(9) are 

(asterisk is removed for convenience): 
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where: non-dimensional parameters are: 1 = m / d 2 is the 

Deborah number; 2 = 0m / d 2 is strain-retardation time 

parameter; Pr = /fm is the Prandtl number; Dr = k1/d 2 is 

Darcy number; Va = Pr /Dr is Vadasz number; Le = m /DB is 

Lewis number; RD = fgdk1(T0 - T1)/m is the Darcy Ray-

leigh number; Rm = [0p + (1 - 0)f]gdk1/m is basic den-

sity Rayleigh number; Rn = (p - f)(1 - 0)gdk1/m is the 

concentration Rayleigh number; NA = DT(T0 – T1)/DBT1 (1 - 

0) is modified diffusivity ratio; NB = (c)p(1 - 0)/(c)f is 

modified particle-density increment; and Re = K 2E0
2(T0 - 

T1)2k1d2/m is AC electric Rayleigh number. 

In terms of non-dimensional form, boundary conditions 
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BASIC STATE SOLUTION 

The basic state is given as 
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When no motion is present, Eqs.(13) and (14) require the 

temperature and the volumetric fraction of nanoparticles to 

satisfy the equations 
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Using the boundary conditions Eq.(17), Eq.(19) can be 

integrated to give 
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Substituting b from Eq.(21) into Eq.(20), we get 
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Equation (22) along with boundary condition Eq.(17) 

gives the solution as 
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As suggested by Buongiorno /1/, for most of the nano-

fluid investigated so far, permissible values of Le range 

from 102 to 103. Then, the terms of second and higher order 

in the expansion of exponential function in Eq.(23) are 

neglected as they are small, and the best approximate initial 

stationary state solutions are given as 
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where: T = (T0 – T1); and E0 = - T/log(1 + T) is the root 

mean square value of the electric field at z = 0. 

PERTURBATION EQUATIONS 

Let the basic state as described by Eq.(24) be slightly 

disturbed by superimposing infinitesimal disturbances to the 

state variables so that 
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where: qD(u,v,w), T, , p, K, E, and  are perturbations 

in the nanofluid velocity, temperature, volumetric fraction, 

pressure, dielectric constant, electric field, and electric poten-

tial, respectively. 

Using these perturbations given by Eq.(25) and the linear 

stability theory (i.e., by neglecting the terms of higher powers 

than the first, and products of perturbations) in Eqs.(11)-

(16), the resulting linearized non-dimensional perturbed equa-

tions are: 
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The boundary conditions Eq.(17) for the infinitesimal 

perturbations become 
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where: 
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 is the two-dimensional Laplacian  

operator on the horizontal plane; and 
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 is the three-dimensional Laplacian operator. 

NORMAL MODE ANALYSIS 

For the system of Eqs.(26)-(29), the analysis can be made 

in terms of two-dimensional periodic waves of assigned 

wave numbers. Thus, we ascribe to the quantities describing 

the dependence on x, y, and t of the form exp(ikxx + ikyy + st), 

where kx and ky are the wave numbers in x- and y-direction, 

respectively, and a2 = kx
2 + ky

2 is the resultant wave number, 

s is growth rate, which in general is a complex constant. 

The above consideration allows to suppose that perturba-

tion quantities w, T, , and  are of the form 

 

exp( )

exp( )

exp( )

exp( )

x y

x y

x y

x y

w W ik x ik y st

T ik x ik y st

ik x ik y st

ik x ik y st



 

 

= + + 


 = + + 


 = + + 
 = + +


. (31) 

Using Eq.(31), the set of partial differential equations 

Eqs.(26)-(29), reduces to ordinary differential equations as: 

2 2 2
2 1 1

1
(1 ) (1 ) ( ) (1 )[ n

a

s s s D a W s a R
V

   


 
+ + + − − + − 

 

 

 2 2( ) ] 0D e eR R a R D  − + + = , (32) 

 2 2 2 21
( ) ( )A

e e

Ns W
D a D a

L L
  

 
+ = − + − , (33) 

2 2 2
( ) ( )B A B

e e

N N N
s W D a D D D

L L
    − = − + − − , (34) 

 2 2( ) 0D D a − − = , (35) 

where: D = d/dz; and a = (kx
2 + ky

2) is the dimensionless 

resultant wave number. 

Boundary conditions Eq.(30) using Eq.(31) become: 

 2 0  at  0  and  1W D W D z z  = = = = = = = . (36)  

Therefore, the trial functions of lowest mode satisfying the 

boundary conditions Eq.(36) are chosen as 

1sinW A z= , 
2 sinA z = , 

3 sinA z = , 
4 cosA z = , (37) 

where: A1, A2, A3, and A4 are constants. 

Substituting the trial functions given by Eq.(37) in Eqs.(32)-(35) and integrating by parts using the condition of orthog-

onality and boundary conditions Eq.(36), the following matrix equation is obtained 

 

2 2 2
2 1 1 1 1

1

2

3

4

1
(1 ) (1 ) (1 )( ) (1 ) (1 )

0

01 0 0

01
0

0

0 0

D e n e
a

A

e e

s s s J a s R R a s R a s R
AV

AJ s

AN J J s

AL L

J

     


 



   
+ + + − + + + − +  

      
    − −      =
    

+     
   

 − − 

, (38) 

where: J = (2 + a2). The non-trivial solution of the above matrix equation 

requires the determinant of the coefficients to vanish, which 

yields the Darcy thermal Rayleigh number, 
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2 22 2 2 2 2 2 2
1

22 2 2 2 2
1

(1 ) ( )( )( )
(1 )

(1 ) ( )

e A
D e n

a ee

Ls s a Na s a a a s
R s R R

V La s a a sL

   


    

  + ++ + + + +
= + + − − +  

+ + + +     

. (39) 

Equation (39) is the dispersion relation accounting for the 

effect of the Vadasz number Va, analogous electric Rayleigh 

number Re, nanofluid Lewis number Le, modified diffusivity 

ratio NA, and concentration Rayleigh number Rn. 

LINEAR STABILITY CONVECTION 

(A) Stationary convection 

For the validity of principle of exchange of stabilities 

(i.e., steady case), we have s = 0 (s = r + i = 0  r =  = 0) 

at marginal stability. 

Putting s = 0 in Eq.(39), we get the Darcy thermal Ray-

leigh number at which marginally stable steady mode exists as 

 
2 2 2 2

2 2 2

( )s e
D e A n

La a
R R N R

a a





+  
= − − + 

+  
, (40) 

which expresses the nanofluid Darcy thermal Rayleigh number 

RD
s for stationary convection as a function of dimensionless 

wave number a, electric Rayleigh number Re, nanofluid 

Lewis number Le, modified diffusivity ratio NA, concentra-

tion Rayleigh number Rn, and medium porosity . It is clear 

from Eq.(40) that RD
s is independent of stress relaxation time 

1, strain retardation time 2 for stationary modes, since 

these vanish with the vanishing of s (growth rate). 

The minimum value of RD
s is obtained by putting 

RD
s/a2 = 0, and which on simplification implies that  

 

3
2 2

4 2

2 2
1 1 ea R

a a

 


   
+ − =   

   
   

. (41) 

Therefore, the critical wave number ac shows a substan-

tial increase when the electric Rayleigh number Re increases 

and is independent of nanoparticles. 

To study the effects of the electric field Re, the nanofluid 

Lewis number Le, the modified diffusivity ratio NA, and the 

concentration Rayleigh number Rn, on stationary convection, 

we examine the behaviour of RD
s/Re, RD

s/Le, RD
s/NA, 

and RD
s/Rn analytically. From Eq.(40) we obtain 

 
2

2 2( )

s
D

e

R a

R a


= −

 +
, (42) 

which is always negative for all wave numbers. Thus, AC 

electric field has a destabilizing effect on the system. 

Equation (40) further yields 

 
s

nD

e

RR

L 


= −


,  

s
D

n
A

R
R

N


= −


. (43) 

It is clear from Eq.(43) for the bottom-heavy particles 

(for negative value of Rn) both negative nanofluid Lewis 

number Le and modified diffusivity ratio NA stabilize the 

system for the value of Rn. 

Equation (40) also depicts that 

 
s

eD
A

n

LR
N

R 

  
= − + 

  
, (44) 

which is always negative for (Le / + NA) > 0, since the value 

of NA is taken in the range of -1 to -25, and Le in the range 

of 100-400. Thus RD
s decreases with increase in Rn imply-

ing thereby the destabilizing effect of Rn on the onset of 

stationary convection. 

(B) Oscillatory convection 

Let us write the growth s as s = r + i, where r and  are 

real. For oscillatory convection, s  0 and r = 0, i.e., s = i  0. 

Putting s = i in Eq.(39), we get 

 
1 2DR i= +  , (45) 

where: 1 and 2 are given by 
2 2 2 2 2 22 2 2 2 2 2 2

1
1 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2

1

(( ) )( )( )
1

(1 ) ( ) ( ) (( ) )

e e e
e n

a e e

a L L a La a
R R

Va a a a L a L

         

         

  + ++ + +
 = − + − − − 

 + + + + + + 

 

 
2 2 2 2 2 2 2 2 2 2 2

2 1

2 2 2 2 2 2 2 2 2
1

( ( ) )( ) (1 ( ))( )

( ) (1 )

e A n

e

a R a N R a a a

a L a

       

    

+ + + − + +
− −

+ + +
, (46) 

and  
2 2 2 2 2 2 2 2 2

1
2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1

( )( ) ( ) ( )(( ) ) 1

(( ) ) ( ) (1 )

e e e A
n n

ae e

L L a L N a a a
R R

Va L a L a

        


        

 − + + + + +
 = − + + + + 

+ + + + +  

 

  
2 2 2 2 2

1 1
2 2 2

1

( )(1 ( ))
1

(1 ) a

a a

Va

    

 

 + − +
 + −
 +  

. (47) 

Equating real and imaginary parts of Eq.(45) we get RD = 1 which, on simplification, gives value of the Darcy thermal 

Rayleigh number for oscillating modes as 
2 2 2 2 2 22 2 2 2 2 2 2

1

2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2
1

(( ) )( )( )
1

(1 ) ( ) ( ) (( ) )

e e e
D e n

a e e

a L L a La a
R R R

Va a a a L a L

         

         

  + ++ + +
= − + − − − 

 + + + + + + 

 

 
2 2 2 2 2 2 2 2 2 2 2

2 1

2 2 2 2 2 2 2 2 2
1

( ( ) )( ) (1 ( ))( )

( ) (1 )

e A n

e

a R a N R a a a

a L a

       

    

+ + + − + +
− −

+ + +

, (48) 

and     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
1 1 1 1 1( )(1 ) ( )( )(1 ) ( )( )e a n e a n A aa L V R a a L V R N a V a               + + − − + + + − + + +  

 2 2 2 4 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 2
2 1( ) ( ) ( )( ) ( ) ( )e e a a e aa L a L V a V a L V a           + + + + + − + + + + + +  

 2 4 2 2 2 2 3 2 2 4 3 2 2 2 3 4 2 2 2
1 2 1 2 1 2( ) ( ) ( ) ( ) 0e a a eL a V a V a L a              + + + + + + + + = . (49) 
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(C) Overstability convection 

Here we consider the possibility of whether instability 

may occur as overstability. Since for overstability, we wish 

to determine the critical Darcy thermal Rayleigh number for 

the onset of instability via a state of pure oscillations, it 

suffices to find the conditions for which Eq.(39) will admit 

of solutions with  real. 

The Eq.(49) on simplification gives a dispersion relation 

(relation between growth rate  and wave number a) of the 

form 

 2 2 2
1 2 3( ) 0a a a + + = , (50) 

where, 
2 2 2 2 2 2 2 2

1 1 1 2( ) ( )e ea L a L a    = + + + , (51) 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2
2 1 1 1( ) ( )( ) ( ) ( )e a n e a n A ea a L V R a a L V R N a a L a            = + − − + + + + + +  

 2 2 2 2 2 2 2 3 2 2 3
2 1 1 2( )( ) ( ) ( )e a e a aL V a L V a V a         + − + + + + + , (52) 

2 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 4 3 2 2 3
3 1( ) ( )( ) ( ) ( ) ( )e a n e a n A a aa a L V R a a L V R N a V a a V a            = + − − + − + + + ++ + +  

 3 2 2 4
2 ( )aV a  + + . (53) 

The expression of Darcy thermal Rayleigh number for overstability is given by 
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  + ++ + +
= − + − − − 
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+ + +

. (54) 

Here, the value of 2 is calculated using Eq.(50). In the absence of electric field, i.e., Re = 0, Eq.(54) reduces to  
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  + + ++ + +
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(1 ( ))( )
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a a
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    

 

− + +
−

+

, (55) 

which is in good agreement with the earlier results given by Sheu /18/. 

Further, when the nanoparticles are not considered, i.e., Rn = 0, NA = 0, Eq.(55) gives 

 
2 2 2 2 2 2 2 2 2 22 2

0 1 2 1

2 2 2 2 2 2 2
1 1

( )( ) (1 ( ))( )
1

(1 ) (1 )
D

a

a a a a
R

Va a a

         

   

 + + + − + +
= − + − 

 + + 

, (56) 

which is again in good agreement with the earlier results given by Robert /12/. 

Further, in the absence of stress relaxation time parameter 

1 and strain retardation time parameter 2, Eq.(56) reduces to 

 
2 2 2 2 2

0

2 2

( )
1D

a

a
R

Va a
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

 +
= − + 

 
 

, (57) 

which is in good agreement with the earlier results given by 

Lapwood /8/. 

NUMERICAL DISCUSSION 

Expressions of thermal Rayleigh number for both station-

ary and oscillatory motions are presented in Eqs.(40) and 

(54), respectively. Equation (50) is quite complicated to find 

the analytical roots and obtain non-dimensional wave num-

bers so as to find critical thermal Rayleigh numbers for over-

stable motions, which only occur for positive values of growth 

rate . Thus, numerical roots of Eq.(50) are obtained using 

software Scientific WorkPlace® for bottom-heavy configura-

tion. The variation of Rayleigh number with respect to wave-

number has been plotted using Eq.(54) for oscillatory case 

and Eq.(40) for stationary case, whereas experimental values 

and fixed permissible values of dimensionless parameters 

are the same as those taken by Buongiorno, Roberts, Yadav 

and Sharma, and many others to investigate the effects of 

stress-relaxation time parameter, strain retardation time, poros-

ity, modified diffusivity ratio, Vadasz number, Lewis number, 

concentration Rayleigh number, heat capacity ratio, and elec-

tric Rayleigh number, i.e., 1 = 0.8, 2 = 0.3,  = 0.6, NA = -5, 

Va = 3, Le = 200, Rn = -0.1,  = 1.5, Re = 100. The stationary 

thermal Rayleigh number is found to be independent of stress 

relaxation time and strain retardation time, since it vanishes 

with the vanishing of s (growth rate). Thus, the viscoelastic 

(Oldroydian) nanofluid behaves like a regular (Newtonian) 

nanofluid. Nield and Kuznetsov /10/ have shown the possi-

bility of oscillatory motions to set in only for the bottom-

heavy nanoparticle distributions. 

 
Figure 2. Variations of oscillatory thermal Rayleigh number for 3 

different values of the Deborah number 1 = 0.5, 0.7, 0.8. 

Figure 2 shows the variation of thermal Rayleigh number 

for oscillatory convection with respect to non-dimensional 

wave number for three different values of Deborah number, 

1 = 0.5, 0.7, 0.8, accounting for the stress relaxation time and 

a 
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for fixed permissible values of  = 0.6, 2 = 0.3, NA = -5, 

Va = 3, Rn = -0.1, Le = 200,  = 1.5, Re = 100. The graph shows 

that the value of thermal Rayleigh number increases with 

increase in stress relaxation time, implying thereby a stabi-

lizing effect of stress relaxation time on the system. 

The effect of the strain-retardation time parameter 2 on 

the Darcy thermal Rayleigh number for the exchange of 

stabilities is displayed in Fig. 3. It is found that with increase 

in strain-retardation time, the oscillatory thermal Rayleigh 

number decreases, implying thereby that the onset of convec-

tion in viscoelastic nanofluid in a porous medium is post-

poned. Thus, the strain-retardation time 2 has a destabilizing 

effect on the system. 

 
Figure 3. Variations of oscillatory thermal Rayleigh number for 3 

different values of retardation parameter 2 = 0.1, 0.3, 0.6. 

In Fig. 4, the effect of Lewis number Le on the neutral 

curves is displayed. It is found from the graphs that with an 

increase in Lewis number, the Darcy thermal Rayleigh number 

increases for stationary convection, whereas the effect on 

oscillatory thermal Rayleigh number is not influenced. 

Hence, the nanofluid thermal Rayleigh number stabilizes 

the physical system for stationary convection. This happens 

also for the Brownian motion of nanoparticles that increases 

with the increase in the Lewis number. 

 
Figure 4. Variations of thermal Rayleigh number for 3 different 

values of Lewis number Le = 200, 300, 400. 

Figure 5 shows the variation of thermal Rayleigh number 

for oscillatory and stationary convection with respect to the 

non-dimensional wave number for three different values of 

concentration Rayleigh number Rn = -0.1, -0.5, -0.9 and for 

fixed permissible values of  = 0.6, 1 = 0.8, 2 = 0.3, NA = -5, 

Va = 3, Le = 200,  = 1.5, Re = 100. It is depicted from the 

graphs that for cases of stationary convection, the Darcy ther-

mal Rayleigh number decreases with increase in concentra-

tion Rayleigh number which causes the destabilizing effect, 

and for the oscillatory convection, Darcy thermal Rayleigh 

number increases with the increase in concentration Rayleigh 

number thereby stabilizing the physical system for bottom-

heavy (Rn is negative) nanoparticles distribution. 

 
Figure 5. Variations of thermal Rayleigh number for 3 different 

values of concentration Rayleigh number Rn = -0.1, -0.5, -0.9. 

In Fig. 6 the variation of thermal Rayleigh number for 

oscillatory and stationary convection with respect to the non-

dimensional wave number for three different values of the 

modified diffusivity ratio NA = -5, -10, -20, and for fixed 

permissible values of  = 0.6, 1 = 0.8, 2 = 0.3, Rn = -0.1, 

Va = 3, Le = 200,  = 1.5, Re = 100. The graphs depict that 

with the increase in modified diffusivity ratio, the thermal 

Rayleigh number increases for stationary convection, while 

there is no significant effect on thermal Rayleigh number 

for the case of over-stability. 

 
Figure 6. Variations of thermal Rayleigh number for 3 different 

values of modified diffusivity ratio NA = -5, -10, -20. 

The effect of medium porosity  on the Darcy thermal 

Rayleigh number is displayed in Fig. 7. It is found that with 

increase in medium porosity, the oscillatory thermal Rayleigh 

number increases thus stabilizing the system, and for station-

ary convection medium porosity has a destabilizing effect on 

the system. 

a 

a 

a 

a 
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Figure 7. Variations of thermal Rayleigh number for 3 different 

values of medium porosity  = 0.4, 0.6, 0.8. 

Figure 8 illustrates the effect of Vadasz number Va on the 

stability curves for the onset of overstability convection. It 

is observed from the graphs that the increase in Vadasz 

number decreases the thermal Rayleigh number, depicting 

thereby a destabilizing effect of Vadasz number on the phys-

ical system. 

 

Figure 8. Variations of thermal Rayleigh number for 3 different 

values of Vadasz number Va = 3, 5, 7. 

 

Figure 9. Variations of thermal Rayleigh number for 3 different 

values of AC electric Rayleigh number Re = 50, 100, 200. 

Figure 9 shows the variation of thermal Rayleigh number 

for oscillatory and stationary convection with respect to the 

non-dimensional wave number for three different values of 

the AC electric Rayleigh number Re = 50, 100, 200. It is 

found from the graphs that with the increase in the AC elec-

tric Rayleigh number, the thermal Rayleigh number decreases 

for stationary convection, whereas the effect on the oscilla-

tory thermal Rayleigh number is not influenced. Hence, the 

thermal Rayleigh number destabilizes the physical system 

for stationary convection. 

CONCLUSIONS 

Onset of thermal convection in an electrically conducting 

rheological nanofluid to include an external vertical AC elec-

tric field saturated by a homogeneous porous medium has 

been studied using linear stability theory by employing an 

Oldroydian model which incorporates the effects of electric 

field, Brownian motion, thermophoresis, and rheological 

parameters for bottom-heavy distribution of nanoparticles. 

Principal conclusions of the present study are given below: 

• Deborah number has a stabilizing effect on the system, 

while strain retardation time parameter has a destabilizing 

effect on the oscillatory convection; 

• the effect of Lewis number (non-dimensional parameter 

accounting for Brownian motion parameter DB) tends to 

stabilize stationary convection and destabilize oscillatory 

convection; 

• the concentration Rayleigh number has a destabilizing effect 

on stationary convection and a stabilizing effect on oscil-

latory convection; 

• medium porosity has a stabilizing effect on oscillatory 

convection and destabilizing on stationary convection; 

• the effect of Vadasz number on oscillatory convection is 

destabilizing; 

• AC electric field has a destabilizing effect on both station-

ary and oscillatory convection. 
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