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Abstract 

In this paper the thermosolutal instability of Jeffrey nano-

fluid in a porous medium is considered. The Navier-Stokes 

equations of motion of the fluid are modified under the 

impact of the Jeffrey parameter and nanoparticles. From the 

linear stability analysis, based upon normal modes analysis 

method, the dispersion relation accounting for the effect of 

various parameters is derived. The effects of Jeffrey param-

eter , solutal Rayleigh number RS, medium porosity , nano-

particle Rayleigh number RN, thermo-nanofluid Lewis number 

Ln, thermosolutal Lewis number Le, modified diffusivity ratio 

NA, Dufour parameter NCT, and Soret parameter NTC, are 

analysed analytically and presented graphically. 

Ključne reči 

• Jeffrey nanofluid 

• nanofluid 

• termorastvorljiva neravnoteža 

• porozna sredina 

Izvod 

U radu se razmatra neravnotežna termorastvorljivost 

Jeffrey nanofluida u poroznoj sredini. Modifikovane su Navi-

je-Stoksove jednačine kretanja fluida uticajem parametra 

Jeffrey-ja i nanočestica. Analizom linearne stabilnosti, a na 

bazi metode analize u normalnom modu, izvedena je relaci-

ja disperzije, kojom se uzimaju u obzir spomenuti parame-

tri. Uticaji parametara: Jeffrey , Rejlejev broj rastvora RS, 

poroznost sredine , Rejlejev broj nanočestica RN, termički 

Luisov broj nanofluida Ln, Luisov broj nanorastvorljivosti Le, 

modifikovan odnos difuznosti NA, Dufur parametar NCT, kao 

i Soret parametar NTC, su analizirani analitički i predstav-

ljeni su grafički. 

INTRODUCTION 

The natural environment is filled with many components. 

Thermosolutal instability problems associated with various 

kinds of fluids have been extensively considered. Veronis 

/16/ deliberated the problem of thermosolutal convection in 

a layer of fluid heated and saluted from below. These types 

of problems have many uses to diverse regions such as food 

processing, geophysics, astrophysics, limnology, oil reser-

voir modelling and engineering. The nanotechnology has 

fascinated several investigators and inventors by reason of 

its indefinite progress in the present period. A nanofluid is 

the suspension of nanoparticles in a base fluid, which was 

first utilised by Choi /4/. Nanoparticles used in a nanofluid 

usually have diameters below 100 nm. Due to their small 

size, nanoparticles fluidize easily inside the base fluid and 

as a consequence, the blockage of channels and erosion in 

channel walls are no longer a problem. Nanoparticle materi-

als include oxides (Al2O3, CuO), metal carbides (SiC), 

nitrides (AlN, SiN), metals (Al, Cu), etc. As mentioned in 

literature, base fluids include water, ethylene, tri-ethylene-

glycols, coolants, oils, lubricants, bio fluids and polymer 

solutions. Buongiorno /1/ analysed the convective transport 

in nanofluids and concluded that the absolute velocity of 

the nanoparticles is expressed as the sum of the base fluid 

velocity and a relative velocity. By applying this model, 

many have researched the criteria for the onset of thermal 

instability. The study of nanofluid in a porous medium has 

attracted numerous scientists, because of their uses in steam 

engine industries, fuel cells, medical, domestic refrigerators, 

heat exchangers, nuclear reactors, converters, and biomedical 

appliances. Several researchers have revealed that a certain 

type of nanofluid can be used to eliminate and terminate 

cancer cells without hurting the common tissues. Thermal 

convection and thermosolutal convection of nanofluids in a 

porous medium has been considered by numerous scientists. 

Sheu /13/ investigated the oscillatory instability of a nano-

fluid-saturated porous medium by regarding the nanofluid 

as a viscoelastic fluid. Rana et al. /11/ have examined the 

problem on the onset of thermosolutal instability in a layer 

of an elastico-viscous nanofluid in porous medium. Chand 

and Rana /3/ worked on the problem of thermal instability 

analysis of an elastico-viscous nanofluid layer. Pundir et al. 

/10/ analysed the effect of rotation on the thermosolutal 

convection in a visco-elastic nanofluid in the presence of a 

porous medium. Sharma et al. /12/ worked on the thermo-

solutal convection problem of an elastico-viscous nanofluid 

in a porous medium in the presence of rotation and magnetic 

field and derived that the magnetic field and the Taylor 

number have a stabilising effect for stationary convection, 

consecutively the solutal Rayleigh number, nanoparticle 
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Rayleigh number, thermonanofluid Lewis number, and the 

modified diffusivity ratio, have a destabilizing effect for 

stationary convection. The Jeffrey fluid is a non-Newtonian 

fluid, which shows linear viscoelastic feature, shear thinning 

characteristics, produces stress and high shear viscosity. The 

Jeffrey model is the simplest and common among the non-

Newtonian fluids which have the time derivative rather than 

convective derivative. It has obtained universal consideration 

because of its significance in processing industries such as 

metal and polymer sheet, etc. Most of the investigations over 

Jeffrey fluid are related to stretching sheet and convective 

flow over a segment. Jeffrey /6/ functioned on the stability 

of a layer of physiological fluid heated from below. Hayat 

et al. /5/ analysed heat transfer in convective flow of Jeffrey 

nanofluid by vertical stretchable cylinder. Keeping in mind 

the many applications listed above, the main purpose in this 

paper is to investigate the thermosolutal convection in the 

Jeffrey nanofluid with porous medium which is heated from 

below. This transitory review of literature reveals that this 

type of problem was not there, hence, the present problem 

on thermosolutal convection in the Jeffrey nanofluid with 

porous medium has been investigated. 

MATHEMATICAL MODEL 

Here we consider a horizontal layer with thickness d in 

the presence of Jeffrey nanofluid situated between plates 

z = 0 and z = d (as shown in Fig. 1). The fluid layer is 

heated from below and working in upwards direction with a 

gravity force g = (0,0,-g). Temperature T, concentration C 

and volumetric fraction  of nanoparticle, at upper and lower 

boundaries are taken to be T1 and T0, C1 and C0, 1 and 0, 

respectively, with T0 > T1, C0 > C1, and 0 > 1. 

 

Figure 1. Physical configuration. 

GOVERNING EQUATIONS 

The governing equations for Jeffrey nanofluid in porous 

medium as given by Chandrasekhar /2/, Kuznetsov and Nield 

/7-9/, Pundir et al. /10/, Rana et al. /11/, and Sharma et al. 

/12/, are 

 . 0 =q , (1) 
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1
( . )

(1 )
p
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  

 
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q q g q , (2) 

where: , , p, , g, k1,  = 1/2, and q(u,v,w) denote respec-

tively the density, viscosity, pressure, medium porosity, 

acceleration due to gravity, coefficient of thermal conduc-

tivity, Jeffrey parameter (the ratio of stress relaxation-time 

parameter 1 to strain retardation-time parameter 2) and 

Darcy velocity vector. 

Nanofluid density can be written as in Buongiorno /1/, 

 (1 )p f   = + − , (3) 

where:  is the volume fraction of nanoparticles; p is the 

density of nanoparticles; and f is the density of base fluid. 

Following Tzou /15, 16/, and Kuznetsov and Nield /7-9/, 

we approximate the density of the nanofluid by that of the 

base fluid, that is, we consider  = f. 

Now, introducing the Boussinesq approximation for the 

base fluid, the specific weight, g in Eq.(2) becomes 

 0 0(1 ) (1 ( ) ( ))p T cT T C C      + − − − − −  g g , (4) 

where: T is coefficient of thermal expansion; and c is anal-

ogous to solute concentration. 

If one introduces a buoyancy force, the equation of motion 

for Jeffrey nanofluid by using Boussinesq approximation and 

Darcy model for porous medium, Kuznetsov and Nield /7-

9/, is given by 

 0 00 (1 ) (1 ( ) ( ))p T cp T T C C    = − + + − − − − − −   g  
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For nanoparticles, the continuity equation given by Buon-

giorno /1/ is 
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where: DB and DT are the Brownian diffusion coefficient and 

thermophoresis diffusion coefficient, respectively. 

For the nanofluid, the equation of thermal energy is given 

by 
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, (7) 

where: DTC is Dufour diffusivity; km is thermal conductivity; 

(c)P is the heat capacity of nanoparticles; and (c)m is heat 

capacity of the fluid in porous medium. So, 

 2 21
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q , (8) 

where: DSM and DCT are the solute diffusivity of porous 

medium and Soret type diffusivity. 

The boundary conditions are given by 

 0w = , 0T T= , 0 = , 0C C= ,  at  0z =  (9) 

 0w = , 1T T= , 1 = , 1C C= ,  at  z d= . (10) 

We establish nondimensional variables as: * * *( , , )x y z =  
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( )
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f

c

c





=  are thermal diffusivity 

of the fluid and the thermal capacity ratio, respectively. 

Dropping the star (*) in intended for simplification. 

Equation (1) and Eqs.(5), (6), (7), (8) reduce in non-

dimensional form 

 . 0 =q , (11) 
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where dimensionless parameters are: the thermosolutal Lewis 
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e
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The dimensionless Boundary Conditions are 

 0w = , 1T = , 0 = , 1C = ,  at  0z =  (16) 

 0w = , 0T = , 1 = , 0C = ,  at  1z = . (17) 

BASIC STATES AND ITS SOLUTIONS 

Following Kuznetsov and Nield /7-9/, Sharma et al. /12/, 

and Sheu /13/, the basic state of nanofluid is assumed and 

does not depend on time and describes as: 

 q(u,v,w) = 0    u = v = w = 0 

 p = pb(z),  C = Cb(z),  T = Tb(z),   = b(z) . (18) 

The basic variable is represented by subscript b. There-

fore, when the basic state defined in Eq.(18) is substituted 

into Eqs.(11)-(15), these equations reduce to 
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Using boundary conditions, Eqs.(16) and (17), the solu-

tion of Eq.(20) is given by 

 ( ) (1 ) (1 )b b A Az T N N z = − + − . (23) 

Using boundary conditions, Eqs.(16) and (17), the solu-

tion of Eq.(22) is given by 

 ( ) (1 ) (1 ) 1b b TC e CT eC z T N L N L z= − − + + . (24) 

Substituting the values of b(z) and Cb(z), respectively, 

from Eq.(23) and Eq.(24) in Eq.(21), we get 
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−
+ = . (25) 

The solution of differential Eq.(25) with boundary condi-

tions in Eqs.(16) and (17) is 
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. (26) 

According to Buongiorno /1/, for most nanofluids inves-

tigated so far Ln /(1 – 0) is large, of order 105–106 and since 

the nanoparticle fraction decrement (1 – 0) is not smaller 

than 10-3 which means Ln is large. Typical values of exponents 

in Eq.(26) are small. 

By expanding the exponential function into the power 

series and retaining up to the first order and negligible other 

higher order terms  (i.e., e–x = 1 – x + 
2

2!

x
 – 

3

3!

x
 + …  1 – x 

and so, to a good approximation for the solution. 

 1bT z= − ,  1bC z= − ,  and  
b z = , (27) 

these results are identical with the results obtained by Kuz-

netsov and Nield /7-9/, Sharma et al. /12/, and Sheu /13/. 

PERTURBATION SOLUTIONS 

We introduce small perturbations on the basic state for 

investigating the stability of the system and write 

 ( , , ) 0 ( , , )q u v w q u v w= + , (1 )T z T = − + , (1 )C z C= − + , 

 z = + , 
bp p p= + . (28) 

Using Eq.(28) in Eqs.(11) to (15), linearizing the result-

ing equations by ignoring nonlinear terms that are a product 

of prime quantities and dropping the primes () for conven-

ience, the following equations are obtained 
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
, (33) 

and boundary conditions are 

 w = 0,  T = 0,   = 0,  C = 0,  at  z = 0  and  z = 1. (34) 

Note that the parameter RM is not involved in Eqs.(29) to 

(33), it is just a measure of the basic static pressure gradient. 
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Operating the Eq.(30) with ˆ. .k curl curl , we get (i.e., 

making use of the result curl.curl = grad.div – 2) 

2 2 2 21 1
0

1

S
N H D H H

a e

R
w R R T C

V t L


 

 
+  +  −  +  = 

 + 

, (35) 

where: 
2 2 2

2
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2

2 2H
x y

 
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 
 is the 

two-dimensional Laplace operator on the horizontal plane. 

NORMAL MODE ANALYSIS 

Disturbances by normal mode analysis are as follows: 

[ , , , ] [ ( ), ( ), ( ), ( )]exp( )x yW T C W z z z z ik x ik y nt   = + +  (36) 

where: n is growth rate; and kx and ky are the wave numbers 

along x and y directions, respectively. 

Using Eq.(36) in Eqs.(31), (32), (33), and (35), we get 
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where: D = d/dz; and a2 = kx
2 + ky

2 is the dimensionless wave 

number. 

We have applied stress-free conditions for a free surface. 

Now the disappearing of shear stresses tangent to the surface 

and the continuity equation gives the boundary conditions 

for free-free boundary, as 

 W = D2W =  =  =  = 0  at  z = 0  and  z = 1. (41) 

LINEAR STABILITY ANALYSIS AND DISPERSION 

RELATION 

The eigen functions fi(z) corresponding to the eigenvalue 

problem, Eqs.(37)-(40), are fi = sin(z). 

Considering solutions W, , ,   of the form 

 W = W0sin(z),   = 0sin(z),   = 0sin(z), 

 and   = 0sin(z), (42) 

which satisfies boundary conditions Eq.(41). Substituting 

solution Eq.(42) into Eqs.(37)-(40) and integrating each equa-

tion from z = 0 to z = 1, we obtain the following matrix 

equations 
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where: J2 = 2 + a2 is the total wave number. 

The non-trivial solution of the above matrix requires that 
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 4 ( )e CT n TC AL N J L N N − +


. (43) 

THE STATIONARY CONVECTION 

For stationary convection n = 0 in Eq.(43), we obtain 
2 2 2 2

2

1 ( ) ( )
[1 ]

( ) 1
D e CT TC

e CT

a a
R L N N

L N a

  

 

  + +
= − + 

− +   

 

[ 1] [( ) ( )]S TC N n A e CT n TC AR N R L N L N L N N + − − + − + . (44) 

The thermal Darcy-Rayleigh number revealed from Eq. 

(44) is a function of a, , , NTC, NCT, Le, Ln, NA, RS, RN. 

In the non-appearance of the Dufour (NTC) and Soret 

(NCT) parameters, Eq.(44) reduces to 

 
2 2 2

2

1 ( )

1

s n
D N A

R La
R R N

a



  

+  
= − − + 

+  
. (45) 

The critical wave number obtained by minimizing RD with 

respect to a2, i.e., satisfying RD /a2 = 0, is 

 2 2
ca = . (46) 

Now, the critical thermal Darcy-Rayleigh number for 

steady onset is 
21 4

( ) [1 ] [ 1]
( ) (1 )

D c e CT TC S TC
e CT

R L N N R N
L N




 


= − + − −

− +

 

 [( ) ( )]N n A e CT n TC AR L N L N L N N− + − + . (47) 

Special cases: 

In the absence of Jeffrey, Dufour, and Soret parameters 

(i.e.,  = NTC = NCT = 0) then, Eq.(44) becomes 

 
2 2 2

2

( ) S n
D N A

R La
R R N

a



 

+  
= − − + 

 
, (48) 

which is identical with the result derived by Kuznetsov and 

Nield, /7/. 

In the absence of Jeffrey parameter and nanoparticles 

(i.e.,  = 0, RN = Ln = NA = 0) then, Eq.(48) becomes 

 
2 2 2

2

( ) S
D

Ra
R

a





+
= − , (49) 

and the corresponding critical thermal Darcy-Rayleigh 

number for steady onset in the absence of the stable solute 

gradient parameter RS, is 

 24 n
D N A

L
R R N



 
= − + 

 
, (50) 

which is identical with the results derived by Sheu /13/ and 

Chand and Rana /3/. 

RESULTS AND DISCUSSION 

The critical thermal Darcy-Rayleigh number on the onset 

of stationary convection is given by Eq.(47) and depends on 
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Jeffrey parameter and takes a different value compared to 

the one obtained for ordinary Newtonian fluid. 

The critical wave number ac, defined by Eq.(46) at the 

onset of stationary convection coincides with those reported 

by Tzou /14, 15/, Kuznetsov and Nield /7/, and Chand and 

Rana /3/. Note that this critical value does not depend on any 

thermophysical property of the nanofluid. Consequently, the 

interweaving behaviours of Brownian motion and thermo-

phoresis of nanoparticles does not change the cell size at 

the onset of steady instability and the critical cell size ac is 

identical to the well-known result for Bénard instability with 

a regular fluid, Chandrasekhar /2/. 

It is noted that the absence of the Dufour and Soret param-

eters NTC and NCT and nanoparticles, one recovers the well-

known result that the critical thermal Darcy-Rayleigh number 

is equal to 4 2 as obtained by Sheu /13/. Thus, the combined 

effect of Brownian motion and thermophoresis of nanopar-

ticles on the critical Rayleigh number is reflected in the third 

term in Eq.(47). For the case of bottom-heavy distribution 

of nanoparticles (1 < 0 and p > ), which corresponds to 

negative values of RN, the value of the critical Rayleigh 

number for the nanofluid is larger than that for an ordinary 

fluid, that is, convection sets earlier in an ordinary fluid 

than in a nanofluid with bottom-heavy distribution of nano-

particles. This implies that thermal conductivity of this kind 

of nanofluid is higher than that of ordinary fluids. 

The dispersion relation Eq.(44) is analysed mathemati-

cally. Graphs are plotted by giving some numerical values 

to the parameters to represent the stability characteristics. 

Figure 2 shows the variation of thermal Darcy-Rayleigh 

number with respect to the non-dimensional wave number 

for three different values of nanoparticles Rayleigh number 

RN = -0.8, -0.9, -1, and for fixed permissible values of NA = 5, 

 = 0.4, Le = 500, RS = 200, Ln = 500,  = 0.6, NCT = 1, NTC = 0.1. 

It is depicted from the graphs for cases of thermal Darcy-

Rayleigh number decreasing with the increase in nanoparti-

cles Rayleigh number which causes the destabilizing. 

 

Figure 2. Variation of thermal Darcy-Rayleigh number with the 

wave number for different nanoparticle Rayleigh number. 

Figure 3 shows the variation of thermal Darcy-Rayleigh 

number with wave number for different values of porosity, 

and it has been found that the Rayleigh number increases 

with increase in the value of porosity, thus porosity stabiliz-

ing the stationary convection. 

Figure 4 shows the variations of thermal Darcy-Rayleigh 

number with wave number a for three different values of 

thermosolutal Lewis number Le = 500, 1000, 1500, as plotted 

and it is found that the thermal Darcy-Rayleigh number 

increases with the increase in thermosolutal Lewis number, 

so the thermosolutal Lewis number has stabilizing effect on 

stationary convection. 

 
Figure 3.Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of medium porosity. 

 
Figure 4. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of thermosolutal Lewis number. 

Figure 5 represents the variation of thermal Darcy-Ray-

leigh number RD with wave number a for different values of 

Jeffrey parameter  = 0.5, 0.7, 0.9, and it decreases with the 

increase in Jeffrey parameter  = 0.5, 0.7, 0.9, which implies 

that Jeffrey parameter has a destabilizing effect on station-

ary convection. 

 
Figure 5. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of Jeffrey parameter. 

From Figure 6, the graphs show that with an increase in 

the values of thermo-nanofluid Lewis number, the thermal 

Darcy-Rayleigh number increases for stationary convection. 

Hence, the thermo-nanofluid Lewis number stabilizes the 

physical system for stationary mode. This happens so as for 

both Brownian motion of the nanoparticles increases with 

increase in thermo-nanofluid Lewis number. 

NA = 5,  = 0.4, Le = 500, RS = 200, 

Ln = 500,  = 0.6, NCT = 1, NTC = 0.1 

NA = 5, Le = 500, RS = 200, RN = -1, 

Ln = 500,  = 0.6, NCT = 1, NTC = 0.1 

NA = 5,  = 0.4, RS = 200, RN = -1, 

Ln = 500,  = 0.6, NCT = 1, NTC = 0.1 

NA = 5,  = 0.4, Le = 500, RS = 200, 

Ln = 500,  = 0.6, NCT = 1, NTC = 0.1 
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Figure 6. Variation of thermal Darcy-Rayleigh number with the 

wave number for different thermo-nanofluid Lewis number. 

Figure 7 shows the variation of the thermal Darcy-Ray-

leigh number for stationary convection with respect to the 

non-dimensional wave number for three different values of 

the modified diffusivity ratio NA = 5, 10, 15. The graph 

shows that with the increase in modified diffusivity ratio, 

the thermal Darcy-Rayleigh number increases for the station-

ary convection which has a stabilizing effect on the system. 

 
Figure 7. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of Modified diffusivity ratio 

Figure 8 show variations of the thermal Darcy-Rayleigh 

number with wave number a for three different values of the 

Soret parameter, namely NCT = 5, 10, 15, which shows that 

thermal Rayleigh-Darcy number decreases with the increase 

in Soret parameter. Thus, Soret parameter has destabilizing 

effect on the stationary convection. 

 
Figure 8. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of Soret parameter. 

Figure 9 shows the variations of thermal Darcy-Rayleigh 

number with wave number a for three different values of 

Dufour parameter, namely NTC = 0.1, 0.2, 0.3, which shows 

that the thermal Darcy-Rayleigh number increases with the 

increase in Dufour parameter. Thus, Dufour parameter has 

a stabilizing effect on stationary convection. 

 
Figure 9. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of Dufour parameter. 

Figure 10 shows variations of thermal Darcy-Rayleigh 

number with wave number a for three different values of 

the solutal Rayleigh number RS = 200, 400, 600, as plotted 

and it is observed that the thermal Darcy-Rayleigh number 

increases with increase in solutal Rayleigh number so the 

solutal Rayleigh number has a stabilizing effect on station-

ary convection. 

 
Figure 10. Variation of thermal Darcy-Rayleigh number with the 

wave number for different values of solutal Rayleigh number. 

CONCLUSIONS 

The onset of thermosolutal convection of nanofluid in 

porous medium in the presence of Jeffrey parameter is inves-

tigated by using linear stability analysis. The principal con-

clusions of the present study are given below: 

‑ Nanoparticles Rayleigh number and Soret parameter have 

destabilizing effect on stationary convection. 

‑ The Jeffery parameter has a destabilizing effect on station-

ary convection. 

‑ Medium porosity, thermo-nanofluid Lewis number, Dufour 

parameter, solutal Rayleigh number, thermosolutal Lewis 

number, and modified diffusivity ratio have a stabilizing 

effect on stationary convection. 

‑ The solutal Rayleigh number has a stabilizing effect on 

stationary convection. 
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