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Abstract 

In this paper, the onset of stationary convection in a 

porous layer saturated with a thermally unstable Jeffery 

nanofluid is considered. The behaviour of the nanofluid is 

described by using a Jeffrey fluid model and the porous layer 

is assumed to adhere to Darcy's law. The momentum-balance 

equations for the fluid are modified by the Jeffrey parame-

ter and nanoparticles. Linear stability analysis, the normal 

modes analysis, and Galerkin type weighted residual method 

(GWRM) techniques are used to calculate the dispersion 

relation for the Rayleigh number in terms of various param-

eters for rigid-rigid and rigid-free boundaries. The effects of 

the Rayleigh number of nanoparticles, Lewis number, modi-

fied diffusivity ratio, Jeffrey parameter, and porosity are 

investigated analytically and graphically. 

Ključne reči 

• nanofluid 

• Jeffrey model 

• Rejlejev broj 

• porozna sredina 

• konvekcija 

Izvod 

U ovom radu se razmatra uslov za stacionarnu konvekciju 

u poroznom sloju, koji je zasićen termički nestabilnim Jeffrey 

nanofluidom. Ponašanje nanofluida se opisuje primenom 

modela Jeffrey fluida, a porozni sloj se tretira prema zakonu 

Darcy-ja. Ravnotežne momentne jednačine za fluid se modifi-

kuju Jeffrey parametrom i nanočesticama. Primenjene su 

metode: analiza linearne stabilnosti, analiza u normalnom 

modu, analiza težinskim ostatkom tipa Galerkin (GWRM), 

za proračun relacije disperzije za Rejlejev broj, u uslovima 

različitih parametara za granice kruto-kruto i kruto-slobod-

no. Uticaj Rejlejevog broja nanočestica, Lewis-ovog broja, 

modifikovanog odnosa difuznosti, Jeffrey-ovog parametra i 

poroznost su istraženi analitički i grafički. 

 

INTRODUCTION 

Non-Newtonian fluids are extensively utilised in many 

different industries and have significant applications in many 

different branches of science and technology, including the 

production of plastics, the polymer industry, textile and paper 

dyeing, food processing, geophysics, the chemical and bio-

logical industries. Examples of non-Newtonian fluids include 

engine oil, soap solutions, sauces, foam, paints, lubricants, 

and biological fluids like blood. The modelling of non-

Newtonian fluids has produced a number of constitutive 

relations due to the importance of non-Newtonian fluids in 

contemporary technology and industry. The Jeffrey non-

Newtonian fluid model is one of these constitutive rela-

tions. A linear model called the Jeffrey fluid model substi-

tutes time derivatives for convective derivatives. Jeffrey /4/ 

investigated the stability of a fluid layer that had been heated 

from below. He came up with a numerical solution to a few 

issues with the stability of a layer in a compressible fluid as 

temperature rises. Chandrasekhar /3/ has provided a thorough 

literature assessment on thermal instability in a Newtonian 

fluid. The Jeffrey fluid model has been researched by numer-

ous researchers and as a result, it is today regarded as the 

best fluid model to represent the behaviour of physiological 

and industrial fluids, /1, 5, 10-13, 16/. 

The flow of a fluid through a homogenous and isotropic 

porous medium is governed by Darcy’s law that states that 

the usual viscous term in the momentum-balance equations 

is replaced by the resistance term, where the viscosity is the 

medium permeability, is the Jeffrey parameter and is the 

Darcian (filter) velocity of the Jeffrey fluid. The study of 

flow in porous layers has many real-world applications, 

including flow in molten earth cores, oil reservoirs, tires, 

ropes, cushions, chairs, and sand beds. Examples of naturally 

porous materials include sandstones, limestone, human lungs, 

bile ducts and gallbladders containing blood vessel stones. 

The convective flow in a porous material was researched by 

Lapwood /7/. The Rayleigh's instability of a thermal bound-

ary layer in a flow through a porous media was explored by 

Wooding /21/. They discovered that the layer is stable under 

certain conditions, including a critical positive Rayleigh 

number for the system and a limited wave number for the 

critical neutral disturbance. Nield and Bejan /9/ worked on 

the problem of thermal convection in a porous medium. 

The Buongiorno /2/ model-based investigation of hydro-

dynamic thermal convection issues in porous and non-porous 
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media saturated by a nanofluid layer has attracted the atten-

tion of numerous researchers over the past ten years /1, 5-

17/. Nanofluid is used in a wide range of industries, includ-

ing the car industry, energy conservation, and nuclear reac-

tors, etc. Nanoparticle suspensions are widely used in medi-

cal applications, such as cancer treatment. Numerous engi-

neering applications, including geothermal energy recovery, 

crude oil extraction, groundwater pollution and thermal 

energy storage. Different authors /1, 6-8, 10, 13, 19, 20/ 

investigated the natural convection of a nanofluid using 

Buongiorno's model and they found that nanofluids are effec-

tive coolants because of their improved thermal conductivi-

ties. 

Many researchers /1, 5, 10-11, 14, 16, 18, 19/ have re-

searched thermal convection in a viscoelastic nanofluid layer 

saturating a porous media and they discovered that visco-

elastic nanofluids have applications in a variety of automo-

tive sectors and biomedical engineering. The primary goal 

of this research is to investigate the impact of Jeffrey param-

eter and other parameters in a porous layer saturated in a 

nanofluid heated from below, taking into consideration the 

numerous applications of viscoelastic nanofluid as mentioned 

above. On the commencement of stationary convection, an 

analytical/graphical analysis of the thermal instability of a 

porous layer saturated with a Jeffrey nanofluid is conducted 

for rigid-rigid and rigid-free boundaries. The above problem 

is the extension of the work of Rana and Gautam /10/. To 

the author's knowledge, no research has yet been done on 

this issue. 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider an infinite horizontal layer of Jeffrey nanofluid 

of thickness d bounded by planes z = 0 and z = d and heated 

from below (see Fig. 1). Temperature T and volumetric frac-

tion of nanoparticles  at z = 0 and z = d are assumed to 

take constant values T0, 0, and T1, 1 (T0 > T1 and 1 > 0),  

respectively. The physical system is permeated by the gravity 

force g = g(0, 0, –g). 

 
Figure 1. Physical sketch of the problem. 

GOVERNING EQUATIONS 

For an incompressible fluid, the mass-balance equation is 

 . 0 =Dq , (1) 

where: qD is the flow velocity of nanofluid. 

The modified momentum-balance equation of Jeffrey 

nanofluid in a porous layer after applying the Boussinesq 

approximation /1, 5, 10-13, 16/, is: 
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where: 3 = 1/2, 1, 2, f, P, T, , k1, and  denote the 

Jeffrey parameter (accounting for viscoelasticity), stress 

relaxation-time parameter, strain relaxation-time parameter, 

fluid density, fluid pressure, fluid temperature, fluid viscos-

ity, medium permeability and medium porosity, in respect. 

Let kB, kf, kp, f, f and dp denote the Boltzmann’s 

constant, thermal conductivities of base fluid, thermal con-

ductivities of nanoparticles, base fluid density, base fluid 

viscosity, and nanoparticles diameter, respectively. The 

Brownian diffusion coefficient DB and thermophoretic diffu-

sion coefficient DT are defined respectively, as: 

 
3

B
B

f p

k T
D

d
=   and   

0.26

(2 )

f f
T

f f p

k
D

k k





=

+
. 

The momentum-balance equation of nanoparticle /1-15/ 

is given by 

 2 2
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The energy-balance equation is given by 
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where: km is thermal conductivity of porous medium; and 

(c)f  is the heat capacity of fluid. 

In non-dimensional form Eqs.(1)-(4) can be written by 

omitting the dashes () for convenience as: 

 . 0Dq = , (5) 
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Here, we have used the non-dimensional variables: 
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where: m = km /(c)f is the thermal diffusivity of the base 

fluid;  = (c)p /(c)f is thermal capacity ratio; the Prandtl 

number is Pr = /fm; Darcy’s number is Da = k1/d2; the 

Vadasz number is Va =  Pr /Da, the Rayleigh number is 

Ra = fgdk(T0 – T1)/fm; nanoparticle’s Rayleigh number 

is Rn = (p – f)(1 – 0)gk1d/m; modified particle density 

increment is NB = (c)p(1 – 0)/(c)f ; the Lewis number is 

Le = m /DB; the modified diffusivity ratio is NA = DT(T0 – 

T1)/DBT1(1 – 0); the basic density Rayleigh number is 

y 

x z = 0 

z = d 

Heated from below 
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Rm = (p0 + f (1 – 0))gk1d/m; 
2 2 2

2

2 2 2x y z

  
 = + +
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 is 

a Laplacian operator; and 
2 2

2

2 2H
x y

 
 = +

 
 is a horizontal 

Laplacian operator. 

The dimensionless boundary conditions are 

 0w = , 0T T= , 0 = ,  at  0z =    and 

 0w = , 1T T= , 1 = ,  at  z d= . (9) 

STEADY STATE SOLUTIONS 

Following Buongiorno /2/, Nield and Kuznetsov /8/, and 

Sheu /18, 19/, the basic state of the nanofluid is assumed 

and does not depend on time and is describes as: 

 ( , , ) 0Dq u v w =     0u v w= = = , 

 ( )bp p z= ,  ( )bT T z= ,  ( )b z = . (10) 

The basic variable is represented by subscript b. There-

fore, when the basic state defined in Eq.(10) is substituted 

into Eqs.(5)-(8), these equations reduce to: 
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Using boundary conditions Eq.(9) in Eq.(12), we get 

 ( ) (1 ) (1 )b b A Az T N N z = − + − . (14) 

Substituting Eq.(14) in Eq.(13), we get 
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Neglecting the higher degree term, we get 
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The solution of differential Eq.(15) with boundary condi-

tion Eq.(9) is 
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According to the Buongiorno /2/ hypothesis, the approxi-

mation solution for Eqs.(14) and (16) are given as 

 1bT z= −    and   b z = . (17) 

These results are identical with the result obtained by 

Buongiorno /2/, Nield and Kuznetsov /8/, Sheu /18, 19/, and 

Sharma et al. /11-17/. 

PERTURBATION SOLUTIONS 

For the examination of the stability of the system, a small 

perturbation to the basic state is introduced as 

 *( , , ) 0 ( , , )D Dq u v w q u v w= + ,   *
bp p p= + , 

 *
bT T T= + ,   *

b  = + . (18) 

Using Eq.(18) in Eqs.(5) to (8), linearizing the resulting 

equations by neglecting nonlinear terms, we obtain the non-

dimensional perturbed equations as 
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and the boundary conditions are 

 * * * 0w T = = =    at   0z =    and   1z= . (23) 

Operating Eq.(20) with *ˆ . . .z De curl curl q , we get 
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NORMAL MODE AND STABILITY ANALYSIS 

The disturbances analysis by normal mode analysis is as 

follows: 
* * *[ , , ] [ ( ), ( ), ( )]exp( )w T W z z z ilx imy t =   + + . (25) 

Using Eq.(25) in Eqs.(22) to (24), we get 
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where: D = d/dz; and a2 = l2 + m2 is the dimensionless result-

ant wave number. 

The set of differential Eqs.(26) to (28) together with the 

boundary conditions Eq.(23) constitute a characteristic value 

problem for Rayleigh number Ra and given value of the other 

parameters 3, Rn, , Le, NA, NB, Va, whose solutions have 

to be obtained. 

RIGID-RIGID BOUNDARIES 

We confine our analysis to the one-term Galerkin approxi-

mation. Appropriate trial functions satisfying the boundary 

conditions, which are now 

 0W = ,  0= ,  0= ,  0DW =    at   0z =  

 0W = ,  0= ,  0= ,  0DW =    at   1z= . (29) 

LINEAR STABILITY ANALYSIS 

We assume the solution to W, , and  is of the form 
2 2

0 (1 )W W z z= − ,  
0 (1 )z z= − ,  

0 (1 )z z= − , (30) 

which satisfies boundary conditions Eq.(29). 

Substituting solution Eq.(30) into Eqs.(26) to (28), inte-

grating each equation from z = 0 to z = 1, and performing 

some integrations by parts, we obtain the following matrix 

equation: 
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 
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The above matrix equation has a non-trivial solution, if 
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which implies that 
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Non oscillatory convection 

For the case of steady-state (i.e., the principle of exchange 

of stability), we put  = 0 in Eq.(33) and obtain 

2 2
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Equation (34) is the required dispersion relation according 

for the effect of the Jeffrey parameter, Lewis number, nano-

particle’s Rayleigh number, modified diffusivity ratio, and 

medium porosity on the onset of thermal instability in a 

porous layer saturating a Jeffrey nanofluid. 

The critical wave number at the onset of instability is 

obtained by minimizing Ra with respect to a2, thus the criti-

cal wave number must satisfy 
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Equation (34) gives 

 3.31ca = . (35) 

RIGID-FREE BOUNDARIES 

We confine our analysis to the one-term Galerkin approxi-

mation. Appropriate trial functions satisfying the boundary 

conditions are now 

 0W = ,  0= ,  0= ,  0DW = ,   at   0z =  

 0W = ,  0= ,  0= ,  
2 0D W = ,   at   1z= . (36) 

LINEAR STABILITY ANALYSIS  

We assume the solution to W, , and  is of the form 
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which satisfies boundary conditions Eq.(36). 

Substituting solution Eq.(37) into Eqs.(26) to (28), and 

integrating each equation from z = 0 to z = 1, and performing 

some integrations by parts, we obtain the following matrix 

equation: 
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The above matrix equation has a non-trivial solution if 
2

2 2
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a 3
2 2

2
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R R
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13 1 1 1
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13 1
0

420 3 30 30

A

a
a a

N a a

a







 



  
+ + −   +  

   
+ + + =   

   
   

   
− + +   
   

 

which implies that 

2 2
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a 3
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R (216 19 ){(10 ) }

V 1507
a a

a






 
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Le R
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AN aa

a









++ +
+

−
+

+

. (40) 

Non oscillatory convection 

For the case of steady-state (i.e., the principle of exchange 

of stability), we put  = 0 in Eq.(47) and obtain 

2 2
a n 2

3

Le 28 1
R R (216 19 ) (10 )

1507
AN a a

a 

   
+ + = + +   

+     

. (41) 

Equation (41) is the required dispersion relation according 

for the effect of the Jeffrey parameter, Lewis number, nano-

particle’s Rayleigh number, modified diffusivity ratio and 

medium porosity on the onset of thermal instability in a 

porous layer saturating a Jeffrey nanofluid. 

The critical wave number is at the onset of instability is 

obtained by minimizing Ra with respect to a2, thus the criti-

cal wave number must satisfied  

 
2

0

c

a

a a

R

a =

 
= 

 
. 

Equation (41) gives 

 3.27ca = . (42) 

RESULT AND DISCUSSIONS 

In this paper, we have analysed the effects of Jeffrey 

parameter, Lewis number, nanoparticle’s Rayleigh number, 

modified diffusivity ratio and medium porosity on the onset 

of stationary convection by considering Jeffrey nanofluids in 

the presence of rigid-rigid and rigid-free boundary condi-

tions. We have analysed their effects analytically and pre-

sented graphically. 

(32) 

(39) 
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Figure 2 shows the graph of Ras w.r.t. wave number a for 

different value of 3 = 0.3, 0.5, 0.9 by fixing the other param-

eters as NA = 10, Le = 1000,  = 0.6, Rn = –1. It is clear from 

Fig. 2 that within increase in the value of 3, Ras goes on 

decreasing, and hence shows the destabilising effect on 

stationary convection. It is also clear from Fig. 2 that rigid-

rigid boundary condition has more destabilising impact on 

stationary convection as compared to rigid-free boundary 

conditions. Thus, 3 enhance the onset of convection. 

  a 
Figure 2. Variation of stationary Rayleigh number Ras with wave 

number a for different value of Jeffrey parameter 3. 

  a 
Figure 3. Variation of stationary Rayleigh number Ras with wave 

number a for different value of medium porosity . 

  a 
Figure 4. Variation of stationary Rayleigh number Ras with wave 

number a for different value of Lewis number Le. 

Figure 3 shows the graph of Ras w.r.t. wave number a for 

different value of  = 0.3, 0.6, 0.9 by fixing the other param-

eters as NA = 10, Le = 1000, Rn = –1, 3 = 0.5. It is clear from 

Fig. 3 that within increase in the value of , Ras goes on 

decreasing, and hence shows the destabilising effect on 

stationary convection. It is also clear from Fig. 3 that rigid-

rigid boundary condition has more destabilising impact on 

stationary convection as compared to rigid-free boundary 

conditions. Thus,  also enhances the onset of convection. 

Figure 4 shows the graph of Ras w.r.t. wave number a for 

different values of Le = 500, 1000, 1500 by fixing the other 

parameters as NA = 10,  = 0.6, Rn = –1, 3 = 0.5. It is clear 

from Fig. 4 that within increase in the value of Le, Ras goes 

on increasing, and hence shows the stabilising effect on 

stationary convection. It is also clear from Fig. 4 that rigid-

free boundary condition has more stabilising impact on 

stationary convection as compared to rigid-rigid boundary 

conditions. Thus, Le delays the onset of convection. 

  a 

Figure 5. Variation of stationary Rayleigh number Ras with wave 

number a for different value of  modified diffusivity ratio NA. 

  a 

Figure 6. The variation of stationary Rayleigh number Ras vs. wave 

number a for different value of nanoparticles Rayleigh number Rn. 

Figure 5 shows the graph of Ras w.r.t. wave number a for 

different values of NA = 1, 5, 10 by fixing the other parame-

ters as 3 = 0.5, Le = 1000,  = 0.6, Rn = –1. It is clear from 

Fig. 5 that within increase in the value of NA, Ras goes on 

increasing, and hence shows the stabilising effect on station-

ary convection. It is also clear from Fig. 5 that rigid-free 
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boundary condition has more stabilising impact on station-

ary convection as compared to rigid-rigid boundary condi-

tions. Thus, NA delays the onset of convection. 

Figure 6 shows the graph of Ras w.r.t. wave number a for 

different values of Rn = –1, –0.5, –0.1 by fixing the other 

parameters as 3 = 0.5, NA = 10, Le = 1000,  = 0.6. It is clear 

from Fig. 6 that within increase in the value of Rn, Ras goes 

on decreasing, and hence shows the destabilising effect on 

stationary convection. It is also clear from Fig. 6 that rigid-

free boundary condition has more destabilising impact on 

stationary convection as compared to rigid-rigid boundary 

conditions. Thus, Rn accelerate the onset of convection. 

CONCLUSIONS 

In this paper, we have analysed the stationary convection 

in the thermal instability of Jeffrey nanofluid in a porous 

medium: rigid-rigid and rigid-free boundary conditions. For 

this analysis we have utilised the GWR method. 

We have drawn the following conclusions: 

‑ Jeffrey parameter 3, nanoparticle’s Rayleigh number Rn 

and medium porosity  have destabilising effects on 

stationary convection. 

‑ Lewis number Le and modified diffusivity ratio NA, both 

have stabilising impact on stationary convection. 

‑ It is found that in case of rigid-free boundary condition, 

the system remains more stable rather than at rigid-rigid 

boundary condition. 
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