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Abstract 

In this paper thermosolutal convection of unsteady rotat-

ing Jeffrey nanofluid in porous medium is considered. The 

mathematical form of the problem comprises of equations 

of continuity, motion, concentration, and energy. To solve 

all these equations, we used normal mode techniques. The 

Brownian motion and thermophoresis has important effect 

on the nanofluid model. Analytical expressions for both non-

oscillatory and oscillatory cases is derived when boundary 

surfaces are free-free. The effects of rotation (Taylor number 

Ta), Jeffrey parameter , solutal Rayleigh number Rs, 

medium porosity , nanoparticle Rayleigh number Rn, thermo 

nanofluid Lewis number Ln, thermosolutal Lewis number Le, 

modified diffusivity ratio NA, Dufour parameter NCT, and 

Soret parameter NTC are analysed analytically and presented 

graphically. 

Ključne reči 

• Jeffrey nanofluid 

• nanofluid 

• termo-rastvorljiva nestabilnost 

• rotacija 

• porozna sredina 

Izvod 

U radu se razmatra termo-rastvorljiva konvekcija pri 

neravnomernoj rotaciji Jeffrey nanofluida u poroznoj sredini. 

Matematički oblik problema sastoji se od jednačina proto-

ka, kretanja, koncentracije i energije. Za rešavanje svih 

ovih jednačine upotrebili smo metode u normalnom modu. 

Braunovo kretanje i termoforeza predstavljaju važan efekat 

u modelu nanofluida. Izvode se analitički izrazi za neoscila-

torni i oscilatorni slučaj za slučaj graničnih površina koje 

su slobodne-slobodne (bez opterećenja i graničnih uslova). 

Uticaji rotacije (Tejlorov broj Ta), Džefri parametar , Rejle-

jev broj rastvora Rs, poroznost sredine , Rejlejev broj nano-

čestica Rn, termički Luisov broj nanofluida Ln, Luisov broj 

termorastvorljivosti Le, modifikovan odnos difuznosti NA, 

Dufur parametar NCT i Soret parametar NTC su analizirani 

analitički i predstavljeni grafički. 

INTRODUCTION 

Natural surrounding is full of diffusive constituents. Ther-

mosolutal instability problems related to diverse types of 

fluids have been widely calculated. Veronis /18/ considered 

the problem of thermosolutal convection in a layer of fluid 

heated and soluted from below. Such problem has a vital 

sensation that has applications in different areas as, astro-

physics, geophysics, limnology, food processing, engineering 

and oil reservoir modelling. Nanofluid is the suspension of 

nanoparticles in a regular fluid having diameter lower than 

100 nm. The occurrence of the nanoparticles in the fluid 

improves the current thermal conductivity of the fluid and 

therefore boosts the heat transfer features. Choi /4/ was the 

first to introduce the term nanofluid. Nanoparticles are nor-

mally made up of metals, oxides, carbides or carbon nano 

tubes and regular fluids are like water, oil, bio-fluids, poly-

mer solutions and other common fluids. The study of nano-

fluids in a porous medium has appealed several investiga-

tors due to their uses in locomotive industries, Fuel cells, 

pharmaceutical processes, domestic refrigerator, heat exchang-

er, nuclear reactors, transformers, biomedical appliances. 

Many scientists have established that certain type of nano-

fluids can be used to abolish and destroy cancer cells with-

out injuring the normal tissues. Thermal convection and ther-

mosolutal convection of nanofluids in a porous medium has 

been deliberated by various researchers. Buongiorno /1/ 

analysed the problem of convective transport in nanofluids. 

He carried forward the work of Choi /4/. Sheu /16/ worked 

on thermal instability in a porous medium layer saturated 

with a viscoelastic nanofluid. Rana et al. /12/ have investi-

gated the problem on the onset of thermosolutal instability 

in a layer of an elastico-viscous nanofluid in porous medium 

and concluded that the Walters’ (model B’) elastico-viscous 

nanofluid behaves like an ordinary Newtonian nanofluid. 

Chand et al. /3/ worked on the problem thermal instability 

analysis of an elastico-viscous nanofluid layer. They con-

cluded that the viscoelastic nanofluids are very appropriate 

in the cooling of nuclear reactors, cooling of power plants 

and computers, drug delivery to kill the cancer cells and 

tissues, etc. Pundir et al. /11/ have investigated rotation on 

the thermosolutal convection in visco-elastic nanofluid in 

the presence of porous medium and concluded that visco-
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elastic nanofluid behaves as a regular Newtonian nanofluid. 

Sharma et al. /15/ investigated thermosolutal convection of 

an elastico-viscous nanofluid in porous medium in the pres-

ence of rotation and magnetic field and derived that mag-

netic field and Taylor number have stabilizing effect for 

stationary convection, simultaneously solutal Rayleigh num-

ber, nanoparticle Rayleigh number, thermo nanofluid Lewis 

number and modified diffusivity ratio have destabilizing 

effect for stationary convection. The role of rotation is very 

important in fluid machinery, power plants, petroleum indus-

try, biomechanics, mechanical engineering, geophysics, etc. 

Chandrasekhar /2/ scrutinized the effect of rotation on the 

Bénard convection which was later stretched. Microscopic 

work has been completed to analyse Jeffrey nanofluid model, 

it is reflected as a best model. Jeffrey /6/ worked on the 

stability of a layer of physiological fluids heated from below. 

Hayat et al. /5/ investigated heat transfer analysis in convec-

tive flow of Jeffrey nanofluid by vertical stretchable cylinder. 

Rana /14/ analysed the effects of rotation on a Jeffery nano-

fluid flow in a porous medium which is heated from below. 

He concluded that the rotation parameter has a stabilizing 

influence for both bottom/top-heavy patterns. This brief 

review of literature reflects that studies on such topics are 

lacking, hence present problem on effect of rotation on ther-

mosolutal convection in Jeffrey nanofluid with porous 

medium has been worked upon in the present communica-

tion. 

MATHEMATICAL MODEL 

Here we consider a rotating horizontal layer of thickness 

d, angular velocity  and in the presence of Jeffrey nano-

fluid situated between the plates z = 0 and z = d (as shown 

in Fig. 1). The fluid layer is heated from below and working 

upwards direction with a gravity force g = (0, 0, -g). Tem-

perature T, concentration C and volumetric fraction  of 

nanoparticle, at the upper boundary and lower boundary are 

taken to be: T1 and T0, C1 and C0, 1 and 0, respectively, 

with T0 > T1, C0 > C1, and 0 > 1. 

 
Figure 1. Physical configuration. 

GOVERNING EQUATIONS 

The governing equations for Jeffrey nanofluid in porous 

medium as given by Chandrasekhar /2/, Nield and Kuznetsov 

/7-10/, Pundir et al. /11/, Rana et al. /12-14/, and Sharma et 

al. /15/, are: 

 . 0 =q , (1) 

1

1 2
( . ) ( )

(1 )
p

t k

  


   

 
+  = − + − +   + 

q
q q g q q  , (2) 

where: , , p, , g, k1,  = 1/2, and q(u,v,w) denote respec-

tively the density, viscosity, pressure, medium porosity, 

acceleration due to gravity, coefficient of thermal conduc-

tivity or thermal conductivity, Jeffrey parameter (which is 

the ratio of stress relaxation-time parameter, 1 to strain retar-

dation-time parameter, 2), and Darcy velocity vector, in 

respect. 

The density of nanofluid can be written as (Buongiorno 

/1/), 

 (1 )P f   = + − , (3) 

where:  is the volume fraction of nanoparticles; pP is the 

density of nanoparticles; and f is the density of base fluid. 

Following Tzou /17/ and Nield and Kuznetsov /7-10/, we 

approximate the density of the nanofluid by that of the base 

fluid, that is, we consider  = f. 

Now, introducing the Boussinesq approximation for the 

base fluid, the specific weight, g in Eq.(2) becomes 

( ) ( )0 0(1 ) 1 ( ) ( )P T cT T C C      + − − − − −g g , (4) 

where: T is the coefficient of thermal expansion; and c is 

analogous to solute concentration. 

If one introduces a buoyancy force, the equation of motion 

for Jeffrey nanofluid by using Boussinesq approximation and 

Darcy model for porous medium (Kuznetsov and Nield /7-

10/) is given by, 

( ) ( )0 0(1 ) 1 ( ) ( )P T cp T T C C
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− + 
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For nanoparticles, the continuity equation given by (Buon-

giorno /1/) is 

 2 2

1

1
. T

B

D
D T

t T


 




 =  + 


+ q , (6) 

where: DB and DT are the Brownian diffusion coefficient and 

thermophoresis diffusion coefficient, respectively. 

For the nanofluid, the equation of thermal energy is given as 

2( ) ( ) . ( )m f m P
T

c c T k T c
t

   


+  =  + 


q  

 2

1

. ( )T
B f TC

D
D T T T c D C
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   +   +  

 

, (7) 

where: DTC is Dufour diffusivity; km is thermal conductiv-

ity; (c)P is the heat capacity of nanoparticles; and (c)m is 

heat capacity of the fluid in porous medium. 

The equation of conservation of solute concentration is 

given by 

 2 21
. SM TC

C
C D C D T

t 


+  =  + 


q , (8) 

where: DSM and DCT are the solute diffusivity of porous 

medium and Soret type diffusivity, in respect. 

The boundary conditions are given by: 

 w = 0,   T = T0,    = 0,   C = C0,   at   z  = 0 (9) 

 w = 0,   T = T1,    = 1,   C = C1,   at   z  = 1. (10) 

Non-dimensional quantities: we introduce the following non-

dimensional variables as: 
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( )

m

f

c

c





= , are thermal diffusivity of 

the fluid and the thermal capacity ratio, respectively. Drop-

ping the star (*) for simplification. 

Equation (1) and Eqs.(5), (6), (7), (8) reduce in non-di-

mensional form: 
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where dimensionless parameters are: thermosolutal Lewis 

number m
e

SM

L
D


= ; thermo nanofluid Lewis number m
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The dimensionless boundary conditions are: 

 w = 0,   T = 1,    = 0,   C = 1,   at   z = 0, (16) 

 w = 0,   T = 0,    = 1,   C = 0,   at   z = 1. (17) 

BASIC STATES AND ITS SOLUTIONS 

Following Nield and Kuznetsov /7-10/, Sharma et al. /15/, 

and Sheu /16/. The basic state of nanofluid is assumed and 

does not depend on time and describes as: 

 q(u,v,w) = 0   u = v = w = 0, 

 p = pb(z),   C = Cb(z),   T = Tb(z),    = b(z). (18) 

The basic variable represented by subscript b. 

Therefore, when the basic state defined in Eq.(18) is 

substituted into Eqs.(11)-(15), these equations reduce to: 
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b m n b D b b

e

Rd
p z R R z R T z C z

dz L
= − − − + + , (19) 

 
2 2

2 2
( ) ( ) 0b A b

d d
z N T z

dz dz
 + = , (20) 

22

2
( ) ( ) ( ) ( )A A B

b b b b
n n

N N Nd d d d
T z z T z T z

L dz dz L dzdz


 
+ + + 

 
 

 
2

2
( ) 0CT b

d
N C z

dz
+ = , (21) 

 
2 2

2 2

1
( ) ( ) 0b TC b

e

d d
C z N T z

L dz dz
+ = . (22) 

Using boundary conditions Eqs.(16) and (17), the solution 

of Eq.(20) is given by 

 ( ) (1 ) (1 )b b A Az T N N z = − + − . (23) 

Using boundary conditions Eqs.(16) and (17), the solution 

of Eq.(22) is given by 

 ( ) (1 ) (1 ) 1b b TC e CT eC z T N L N L z= − − + + . (24) 

Substituting the values of b(z) and Cb(z), respectively, 

from Eqs.(23) and (24) in Eq.(21), we get 
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−
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The solution of differential equation Eq.(25) with bound-

ary conditions in Eqs.(16) and (17) is 
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−

. (26) 

According to Buongiorno /1/, for most nanofluids inves-

tigated so far Ln /(1 – 0) is large, of order 105-106, and since 

the nanoparticle fraction decrement (1 – 0) is not smaller 

than 10-3 which means Ln is large. Typical values of exponents 

in Eq.(20) are small. 

By expanding the exponential function into the power 

series and retaining up to the first order and negligible other 

higher order terms (i.e., e-x = 1 – x + 
2

2!

x
 – 

3

3!

x
+ …  1 – x) 

and so, to a good approximation for the solution, 

 Tb = 1 – z,   Cb = 1 – z   and   b = z . (27) 

These results are identical with the results obtained by 

Kuznetsov and Nield /7-10/, Sharma et al. /15/, and Sheu 

/16/. 

PERTURBATION SOLUTIONS 

We introduce small perturbation on the basic state for 

investigating the stability of the system and write 

( , , ) 0 ( , , )u v w u v w= +q q ,  (1 )T z T = − + ,  (1 )C z C= − + , 

 z = + ,   
bp p p= + . (28) 

Using Eq.(28) in Eqs.(11) to (15), linearizing the resulting 

equations by neglecting nonlinear terms that are product of 

prime quantities and dropping the primes () for convenience, 

the following equations are obtained: 

 . 0 =q , (29) 
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and boundary conditions are: 

w = 0,   T = 0,    = 0,   C = 0   at   z = 0   and   z = 1 . (34) 

Note that the parameter Rm is not involved in Eqs.(29) to 

(33), it is just a measure of the basic static pressure gradient. 

Operating Eq.(30) with k̂ .curl.curl, we get (i.e., making use 

of result curl.curl = grad.div – 2), 
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2 2
2

2 2H
x y

 
 = +

 
 is the two-dimensional Laplace operator 

on the horizontal plane. 

NORMAL MODE ANALYSIS 

The disturbances analysing by normal mode analysis as 

follows: 

[ , , , ] [ ( ), ( ), ( ), ( )]exp( )x yw T C W z z z z ik x ik y nt =    + + , (36) 

where: n is growth rate; and kx and ky are wave numbers 

along x and y directions, respectively. 

Using Eq.(36) in Eqs.(31), (32), (33), and (35), we get 
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where: D = d/dz; and a2 = kx
2 + ky

2 is the dimensionless ensu-

ing wave number, and the boundary conditions in view of 

normal mode are: 

W = D2W =  =  =  = 0   at   z = 0   and   z = 1 . (41) 

 

LINEAR STABILITY ANALYSIS AND DISPERSION 

RELATION 

The eigen function fi (z) corresponding to the eigen value 

problem Eqs.(37)-(41) are fj = sin(z). 

Considering solutions W, , ,  of the form: 

 W = W0sin(z),   = 0sin(z),   = 0sin(z), 

  = 0sin(z). (42) 

Substituting Eqs.(42) into Eqs.(37)-(40) and integrating 

each equation from z = 0 to z = 1, we obtain the following 

matrix equations 
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where: J2 = 2 + a2 is the total wave number. 

The linear system Eq.(43) has a non-trivial solution if and only if 
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where: J2 = 2 + a2. 
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THE STATIONARY CONVECTION 

For the case of steady state, put n = 0 in Eq.(44), we obtain 
2 2 2 2
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. (45) 

The thermal Darcy Rayleigh number revealed from Eq. 

(45) is a function of: a, , , NTC, NCT, Le, Ln, NA, Rs, Rn, Ta. 

In the non-appearance of the Soret (NTC) and Dufour (NCT) 

parameters, Eq.(45) reduces to 
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The critical wave number obtained by minimizing RD 

with respect to a2, i.e., satisfying RD /a2 = 0, is 
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Now, the critical thermal Darcy Rayleigh number for 

steady onset is 
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Special cases 

In the absence of rotation, Ta = 0, then Eq.(46) becomes 
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In the absence of Jeffrey parameter and rotation (i.e.,  = 

0 and Ta = 0), then Eq.(46) becomes 
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In the absence of nanoparticles (i.e.,  = 0, Rn = 0, and 

NA = 0), then Eq.(46) becomes 
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THE OSCILLATORY CONVECTION 

Put  n = ini  in Eq.(44), we have 
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. (51) 

Let us take Lewis number (Ln) and Prandtl number (Pr) approach to infinity with negligible Dufour (NTC) and Soret (NCT) 

parameters, and heat capacity ratio () as unity, then we obtain Eq.(51) as 
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. (52) 

After separating real and imaginary parts of Eq.(52), we get Eq.(52) in the form:      1 2D iR in=  +  , (53) 

where: 
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. 

With oscillatory onset 2 = 0 and ni  0, this gives the dispersion relation of the form:      2 2 2
1 2 3( ) ( ) 0i ia n a n a+ + = , (54) 

where: 
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Then, Eq.(53) gives 
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We find the oscillatory neutral solution from Eq.(55) by 

procedure as follows: first find the roots of ni
2, Eq.(54). If 

there are no positive roots (i.e., if roots are negative, or in 

complex form) then oscillatory instability is not possible. If 

there are positive roots, the critical thermal Rayleigh number 

for oscillatory convection can be derived by numerically 

minimizing Eq.(55) with respect to wave number, after sub-

stituting various values of physical parameters for ni
2 of Eq. 

(54) to determine their effects on the onset of oscillatory 

convection (Sheu /16/). 

RESULTS AND DISCUSSION 

The Eq.(46) expresses for stationary thermal Darcy Ray-

leigh number computed as a function of Jeffrey parameter 

 = 1 /2, solutal Rayleigh number Rs, medium porosity , 

nanoparticle Rayleigh number Rn, thermo nanofluid Lewis 

number Ln, modified diffusivity ratio NA, and Taylor number 

Ta. Whereas Eq.(55) expresses for oscillatory thermal Darcy 

Rayleigh number computed as a function of Jeffrey param-

eter  = 1 /2, solutal Rayleigh number Rs, medium porosity 

, nanoparticle Rayleigh number Rn, thermo nanofluid Lewis 

number Ln, thermosolutal Lewis number Le, modified diffu-

sivity ratio NA and Taylor number Ta. 

We observe the nature of 
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 analytically. Equations (46) 

and (55) give results analytically.  

Graph 1 (Fig. 2) shows that the Rayleigh number RD de-

creases with increase in relaxation parameter 1 implying that 

relaxation parameter 1 has a destabilizing effect on the system. 

 
Figure 2. Variation of Rayleigh number with wave number for 

different values of stress relaxation-time parameter, 1. 

Graph 2 (Fig. 3) shows that the Rayleigh number RD in-

creases with increase in retardation parameter 2 implying that 

retardation parameter 2 has a stabilizing effect on the system. 

Graph 3 (Fig. 4) shows that the Rayleigh number RD 

increases with increase in Taylor number Ta which implies 

that Taylor number Ta has a stabilizing effect on the system. 

 

 
Figure 3. Variation of Rayleigh number with wave number for 

different values of strain retardation-time parameter, 2. 

 
Figure 4. Variation of Rayleigh number with wave number for 

different values of Taylor number, Ta. 

Graph 4 (Fig. 5) shows that Rayleigh number RD increases 

with solutal Rayleigh number Rs implying that solutal Ray-

leigh number Rs has a stabilizing effect on the system. 

 
Figure 5. Variation of Rayleigh number with wave number for 

different values of solutal Rayleigh number, Rs. 
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Graph 5 (Fig. 6) shows that the Rayleigh number RD 

decreases with increase in nanoparticle Rayleigh number Rn 

which implies that nanoparticle Rayleigh number Rn has a 

destabilizing effect on the system. 

 

Figure 6. Variation of Rayleigh number with wave number for 

different values of nanoparticle Rayleigh number, Rn. 

Graph 6 (Fig. 7) shows that Rayleigh number RD increases 

with thermo nanofluid Lewis number Ln which implies that 

thermo nanofluid Lewis number Ln has a stabilizing effect on 

the system. 

 

Figure 7. Variation of Rayleigh number with wave number for 

different values of thermo nanofluid Lewis number, Ln. 

Graph 7 (Fig. 8) shows that Rayleigh number RD increases 

with modified diffusivity ratio NA which implies that modi-

fied diffusivity ratio NA has a stabilizing effect on the system. 

Graph 8 (Fig. 9) shows that the Rayleigh number RD 

decreases with increase in medium porosity  which implies 

that medium porosity  has a destabilizing effect on the 

system. 

Graph 9 (Fig. 10) shows that the Rayleigh number RD 

increases with increase in thermosolutal Lewis number Le 

which implies that only in oscillatory convection the thermo-

solutal Lewis number Le has a stabilizing effect. 

 
Figure 8. Variation of Rayleigh number with wave number for 

different values of modified diffusivity ratio, NA. 

 
Figure 9. Variation of Rayleigh number with wave number for 

different values of medium porosity, . 

 
Figure 10. Variation of Rayleigh number with wave number for 

different values of thermosolutal Lewis number, Le. 
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CONCLUSION 

The onset of thermosolutal convection of Jeffrey nano-

fluid in a porous medium in the presence of rotation is inves-

tigated by using linear stability analysis. We draw the main 

conclusions as the following: 

‑ The Taylor number has a stabilizing effect for both station-

ary and oscillatory convections. 

‑ The retardation parameter, solutal Rayleigh number, 

thermo nanofluid Lewis number, and modified diffusivity 

ratio have stabilizing effects for both stationary and oscil-

latory convection. 

‑ Thermosolutal Lewis number has a stabilizing effect only 

for oscillatory convection. 

‑ The relaxation parameter, medium porosity, and nanopar-

ticle Rayleigh number have destabilizing effects for both 

stationary and oscillatory convection. 
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