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Abstract 

The present investigation deals with the deformation in a 

fractional order micropolar thermoelastic medium with mass 

diffusion subjected to thermomechanical loading due to input 

laser pulse. Laplace and Fourier transform technique is used 

to solve the problem. Concentrated normal force and thermal 

source are taken to illustrate the utility of approach. The 

compact form expressions for normal stress, tangential 

stress, tangential couple stress, mass concentration and 

temperature distribution are obtained in the transformed 

domain. Numerical inversion technique of Laplace trans-

forms and Fourier transform has been applied to obtain the 

resulting quantities in the physical domain after developing 

a computer programme. The normal stress, tangential stress, 

tangential coupled stress, temperature distribution, and mass 

concentration are depicted graphically to show the effect of 

relaxation times. Some particular cases of interest are 

deduced from the present investigation. 

Ključne reči 

• impulsni laser 

• mikropolarna sredina 

• masena difuzija 

• ravnomerno i linearno raspoređen izvor 

Izvod 

U radu se istražuju deformacije za slučaj mikropolarne 

termoelastične masene difuzione sredine frakcionog reda 

koja je opterećena termomehanički usled dejstva impulsnim 

laserom. Primenjene su metode transformacije Laplasa i 

Furijea za rešavanje problema. Radi ilustracije pristupa u 

rešavanju problema, razmatra se dejstvo skoncentrisane 

normalne sile i toplotnog izvora. Pri transformaciji domena, 

dobijaju se izrazi kompaktnog oblika za normalni napon, tan-

gencijalni napon, tangencijalni spregnuti napon, koncentra-

ciju mase i za raspodelu temperature. Numeričke inverzne 

metode Laplasove i Furijeove transformacije su primenjene 

za dobijanje rezultujućih veličina u fizičkom domenu nakon 

razvijanja programa za računar. Radi predstavljanja utica-

ja vremena relaksacije, grafički su predstavljeni normalni 

napon, tangencijalni napon, tangencijalni spregnuti napon, 

raspodela temperature, kao i koncentracija mase. Pojedinim 

slučajevima od interesa se posvećuje posebna pažnja. 

INTRODUCTION 

Eringen’s micropolar theory of elasticity /1/ is a well 

known theory. The stepwise development of this theory of 

micropolar elasticity is given in a monograph by Eringen. 

In this theory, a load across a surface element is transmitted 

not only by a force stress vector. A micropolar elastic mate-

rial can be considered as being composed of dumbbell-

shaped molecules and these molecules in a volume element 

can undergo rotation about their centre of mass along with 

the linear displacement. 

The dynamical interaction between thermal and mechan-

ical fields in materials have numerous applications in aero-

nautics, nuclear reactors, and high energy particle accelera-

tors. The micropolar theory was extended to include thermal 

effects by Nowacki /2/ and Eringen /3/. Maugin and Mild 

/4/ studied a solitary wave in micropolar elastic crystals. 

Shanker and Dhaliwal /5/ solved several dynamic thermo-

elastic problems in micropolar theory. Chirita /6/ proved the 

existence and uniqueness theorems for the equations of linear 

thermoelasticity with microstructures. 

In recent years fractional calculus is very useful. This 

mathematical tool makes possible to obtain new challenging 

insights and surprising correlations between different branches 

of science and engineering. The application of fractional 

calculus is given by Abel in the solution of an integral equa-

tion that arises in the formulation of the tautochrone problem. 

The history of the development of fractional calculus is 

written by Ross /7/ and Miller /8/. Podlubny /9/ surveyed 

many applications of fractional calculus in the area of science 

and engineering. Most important advantage of fractional 

calculus in these applications is its non-local property. Non-

local effects occur in space and time. The tools of fractional 

calculus are applicable to various fields of study. Povestenko 

/10/ has constructed a quasi-static uncoupled thermoelasticity 

model based on the heat conduction equation with fractional 

order time derivatives. Two general models of fractional 

heat conduction equation were derived by Ezzat and Kara-
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many /11/. Sherief et al. /12/ developed another theory of 

fractional thermoelasticity and proved a uniqueness theorem 

and derived a reciprocity relation and a variational principle. 

Youssef and Al-Lehaibi /13/ introduced another model of 

fractional heat conduction equation and also presented a one-

dimensional application. Ezzat /14/ formulated his model of 

fractional order generalised thermoelasticity. Youssef et al. 

/15/ derived a theory of generalised thermoelasticity with 

fractional order strain. A dynamical problem in fractional 

magneto-micropolar thermoelastic media with ramp type 

heating was studied by Kumar et al. /16/. The dynamical 

problem of fractional order micropolar thermoviscoelastic 

medium with diffusion under the effect of ramp type 

mechanical load was studied by Deswal et al. /17/. Lata and 

Kaur /18/ developed fractional order theory of thermal 

stresses for transversely isotropic thermoelastic materials. 

Yadav /19/ analysed the elastic wave propagation in a frac-

tional micropolar diffusion porous medium. 

Diffusion can be defined as a penetrative phenomenon 

from regions of high to regions of low concentration, derived 

from concentration differences of different regions of the 

materials. In recent past, several researchers have devoted 

their efforts to study this phenomenon inspired by its multi-

farious applications in geophysics, biology, and industry. 

For example, oil companies are interested in the process of 

thermodiffusion for more efficient extraction of oils from oil 

deposits. Thermodiffusion process also helps the investiga-

tion in the field associated with the advent of semiconductor 

devices and the advancement of microelectronics. Most of 

research associated with the presence of concentration and 

temperature gradients have been made with metals and 

alloys. Thermodiffusion in elastic solid is due to the coup-

ling of temperatures, mass diffusion and strain in addition 

to the exchange of heat and mass with the environment. 

Nowacki /20-23/ presented the theory of thermoelastic diffu-

sion in four research papers by using coupled thermoelastic 

model. Dudziak and Kowalski /24/ presented the theory of 

thermodiffusion, and Olesiak and Pyryev /25/ formulated 

coupled quasi-stationary problems of thermodiffusion for 

an elastic layer. Kumar /26/ studied a dynamical problem in 

laser irradiated microstretch thermoelastic medium with mass 

diffusion. 

Laser technology has a vital range of application in non-

destructive testing and evaluation of materials. If a material 

is heated with a laser pulse, it absorbs some energy which 

results in an increase in localized temperature. This causes 

thermal expansion and generation of ultrasonic waves in the 

material. There are generally two mechanisms for such wave 

generation, depending on the energy density deposited by the 

laser pulse. At high energy density, a thin surface layer of 

the solid material melts, followed by an ablation process, 

whereby particles fly off the surface, thus giving rise to 

forces that generate ultrasonic waves. At low energy density, 

the surface material does not melt, but it expands at a high 

rate and wave motion is generated due to thermoelastic 

processes. Very rapid thermal processes are interesting in 

the field of thermoelasticity, since they require a coupled 

analysis of temperature and deformation fields. A thermal 

shock induces very rapid movement in structural elements, 

giving rise to very significant inertial forces, and thereby, 

an increase in vibration. Rapidly oscillating contraction and 

expansion generates temperature changes in materials sus-

ceptible to diffusion of heat by conduction. Dubois et al. /27/ 

experimentally proved that penetration depth plays a very 

important role in the laser-ultrasound generation process. 

Ezzat et al. /28/ discussed the thermoelastic interaction in 

metal by fractional ultrafast laser. Al-Huniti and Al-Nimr 

/29/ discussed the thermoelastic changes of a composite slab 

under rapid dual-phase lag heating. The comparison of one- 

and two-dimensional axisymmetric approaches to the ther-

momechanical response caused by ultrashort laser heating 

was studied by Chen et al. /30/. Kim et al. /31/ investigated 

thermoelastic stresses in a bonded layer due to pulsed laser 

irradiation. Thermoelastic material response due to laser 

pulse heating with comparison in theories of thermoelasticity 

was presented by Youssef and Al-Bary /32/. Theoretical 

study of the effect on enamel parameters by laser induced 

surface acoustic waves in human incisor was studied by 

Yuan et al. /33/. A two-dimensional thermoelastic diffusion 

problem including laser pulse thermal heating was studied 

by Elhagary /34/. Othman et al. /35/ studied the influence of 

thermal loading due to laser pulse on generalised micropolar 

thermoelastic solid with comparison of different theories. 

The exact analysis of laser generated thermoelastic waves 

in an anisotropic infinite plate is mathematically done by 

Al-Qahtani and Datta /36/. Deswal et al. /37/ investigated a 

two-dimensional problem in magneto-thermoelasticity with 

laser pulse under different boundary conditions. Using 

normal mode analysis laser interactions in micropolar diffu-

sive solid were studied by Kumar and Kumar /38/. Laser 

interactions in generalised microstretch thermoelastic me-

dium were investigated by Kumar et al. /39/. A dynamical 

problem in piezo-microstretch thermoelastic solid was pre-

sented by Kumar and Ailawalia /40/. The effect of input 

pulsed laser heat source was discussed by Abo-Dahab et al. 

/41/. 

This research includes a mass diffusion effect and radia-

tion of ultra-short laser and establishes a model for frac-

tional micropolar thermoelastic medium by using integral 

transform technique. Stress components and temperature 

distribution are computed numerically. Resulting quantities 

are presented graphically to show the effect of mass con-

centration and temperature. 

BASIC EQUATIONS 

Following Eringen /3/ and Al-Qahtani and Datta /36/ the 

basic equations for fractional micropolar generalised thermo-

elastic solid with mass diffusion in the absence of body 

forces and body couples are given by: 

- stress equation of motion 
2

1 2( ) ( . ) ( )u k u k T C u      +   + +  +  −  −  = , (1) 

- couple stress equation of motion 

2( 2 ) ( ) ( . )k k u j       − + +   +  = , (2) 

- fractional order equation of heat conduction 

1
* 2 *0

1 0 01
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k T c T T e aT C

t t
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
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

 +

+

  
  = + + +
  +  

, (3) 
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- equation of balance of stress moments 
' ' 1

2 2 2 0
2 ' 1

( . ) 0
( ' 1)

z
D u Da T Db C C

t t

 






+

+

  
   +  −  + + =
  +  

, (4) 

- the constitutive relations are 

, , , , 1( ) ( )ij k k ij i j j i j i ijk k ijt u u k u T      = + + + − − −  

 
2 ijC − , (5) 

 , , ,ij k k ij i j j im    = + + , (6) 

 
2p e bC aT= − + − . (7) 

The plate surface is illuminated by laser pulse given by 

the heat input 

 
0 1 3( ) ( ) ( )Q I f t g x h x= . (8) 

Here, I0 is the energy absorbed. The temporal profile f(t) is 

represented as 

 ( )0

2
0

( )
t tt

f t e
t

−
= . (9) 

Here, t0 is the pulse rise time. The pulse is also assumed to 

have a Gaussian spatial profile in x1 

 
( )2 2

1

2

1
( )

2

x r
g x e

r

−
= . (10) 

Here, r is the beam radius, and as a function of the depth x3 

the heat deposition due to the laser pulse is assumed to decay 

exponentially within the solid, 

 
*

3*
3( )

x
h x e

 −
= . (11) 

Equation (8) with the aid of Eqs.(9)-(11) takes the form 

 
( ) ( )2 2

*
10 3

*
0

2 2
02

x rt t xI
Q te e e

r t





−− −
= , (12) 

where: , , , , , K are material constants;  is mass 

density; u = (u1, u2, u3) is displacement vector;  = (1, 2, 

3) is microrotation vector; T is temperature; T0 is the 

reference temperature of the body chosen; k* is coefficient 

of thermal conductivity; c* is specific heat at constant strain; 

D is thermoelastic diffusion constant; a is the coefficient 

describing the measure of thermal diffusion; and b is the 

coefficient describing the measure of mass diffusion effects; j 

is microinertia; t0 is pulse rise time;, I0 is absorbed energy, 

tij are components of stress vector; mij are components of 

couple stress vector; ij is Kronecker delta function; t0, t1 are 

thermal relaxation times with t0  t1  0. 

FORMULATION OF THE PROBLEM 

We consider a fractional micropolar thermoelastic mass 

diffusion medium with rectangular Cartesian coordinate 

system 0x1x2x3 having origin on x3-axis with x3-axis pointing 

vertically inward the medium. We consider plane strain prob-

lem with all field variables depending on x1, x3 and t. For 

two-dimensional problems, we take 

 1 3( ,0, )u u=u ,   2(0, ,0)= . (13) 

For further consideration, it is convenient to introduce in 

Eqs.(1)-(4) the dimensionless quantities defined as 
* * * * *
1 3 1 3 1 3 1 3( , , , ) ( , , , )x x u u w x x u u= ,  * * *
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*
'

k
Q Q

C


= . (14) 

Utilizing the expressions defined by Eq.(13) in Eqs.(1)-

(4) and with the help of expressions defined in Eq.(14), we 

reach to the following equations, 

2 2
1 1 2 1

1 3 1 1

( ) ( )
e T C

k u k u
x x x x


     

  
+ + +  − − − =

   
, (15) 

2 2
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. 

The displacement components u1 and u3 are related to 

non-dimensional potential functions  and  as 

 
1

1 3

u
x x

  
= −

 
,   

3
3 1

u
x x

  
= +

 
. (20) 

Substituting the values of u1 and u3 from Eq.(20) in Eqs. 

(15)-(19) and with the aid of Eq.(13), we obtain 

 2
2 2 2

0

1
a T a C

C
  − − = , (21) 

 2
3 1 2a a   + = , (22) 
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. (25) 

Now rearranging the Eqs.(21)-(25), we have 
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SOLUTION OF THE PROBLEM 

We define Laplace- and Fourier transform respectively as 

 
1 3 1 30

( , , ) ( , ) stf s x x f t x x e dt
 −=  , (31) 

 1
3 1 3 1

ˆ( , , ) ( , )
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
−
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Applying Laplace transform defined by Eq.(31) on Eqs. 

(26)-(30) and then applying Fourier transforms defined by 

Eq.(32) on the resulting quantities, we obtain 
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11

ˆ( ) 0a D C − − =

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On rearranging the relations Eqs.(33)-(37), we have the 

following set of equations 

 2
13 2 2

ˆ ˆˆ( ) 0D a a T a C− − − = , (38) 

 2 2 2
7 9

ˆ ˆˆ( ) 0D a D T a C − − + = , (39) 

4 2 2 4 2 2
9 11 16

ˆ ˆˆ( 2 ) [ ] 0D D a D T a D a C  − + + + − + = , (40) 

 2
1 2 3 17

ˆ ˆ( ) 0a a D a + − = , (41) 

 2 2
18 19 2 5 20

ˆ ˆ( ) ( ) 0a D a a D a − + − + = , (42) 

where:  
2

2
13 2

0

s
a

C
= + ; 

'
' 1 20

14 8 7
( ' 1)

a a s s a







+
 
 = + +
 +
 

; 2
15 9a a = ; 

'
' 1 20

16 12 11
( ' 1)

a a s s a







+
 
 = + +
 +
 

; 2 2
17 3a a s= + ; 

18 4a a = ;  

2 2
19 4 62

2k
a a a s



 
= + + 

 
; 2

20 5a a = . 

Eliminating Ĉ  and T̂ , ̂  and T̂ , and ̂  and Ĉ  in respect 

from the resulting Eqs.(38)-(40), we obtain 

 * 36 4 2
1

ˆ[ ]
x

D AD BD C f e
 −

+ + + = , (43) 

 * 36 4 2
2

ˆ[ ]
x

D AD BD C T f e
−

+ + + = , (44) 

 * 36 4 2
3

ˆ[ ]
x

D AD BD C C f e
−

+ + + = . (45) 

Eliminating 2̂  respectively from resulting Eqs.(41)-(42), 

we obtain 

 4 2 ˆ[ ] 0D ED F + + = , (46) 

where: f2 = Q1(a39*4 – a40*2 + a41)/a39; f3 = Q1(a42*4 + a43*2 + 

a44)/a39; f4 = (*6 + A*4 + B*2 + C); k1 = a7a11 – a2a7; k2 = 

a7a16 – a11a14 – a9a10 – a7a11a13 – a2a11 – 2a2a9 + 2a2a7 + a2a14; 

k3 = a14a16 + a9a15 + a7a13a16 + a11a13a14 + a9a9a13 + a2a16 + 

a2a112 + 2a2a9 – 2a2a74 + a2a15 + a2a92 – 2a2a142; k4 = –

a13a14a16 – a9a13a15 – a2a162 – a2a94 – a2a152 + a2a144; k5 = 

–a3a18; k6 = –a1a5 + a17a18 + a3a19; k7 = –a17a19; A = k2/k1; B = 

k3/k1; C = k4/k1; E = k6/k5; F = k7/k5. 

Solutions of Eqs.(43)-(46) satisfying the radiation condi-

tions that ( ̂ , * , T̂ , 2̂ , ̂ ) → 0  as x3 →  are given by 

 *1 3 2 3 3 3 3
1 2 3 1

ˆ m x m x m x x
B e B e B e L e

 − − − −
= + + + , (47) 

*1 3 2 3 3 3 3
1 1 2 2 3 3 2

ˆ m x m x m x x
T d B e d B e d B e L e

− − − −
= + + + , (48) 

*1 3 2 3 3 3 3
1 1 2 2 3 3 3

ˆ m x m x m x x
C e B e e B e e B e L e

− − − −
= + + + , (49) 

 4 3 5 3
4 5ˆ m x m x

B e B e − −
= + , (50) 

 4 3 5 3
2 4 4 5 5
ˆ m x m x

h B e h B e − −
= + , (51) 

where: 
4 2

39 40 41

2
37 38

i i
i

i

a m a m a
d

a m a

− +
=

+
, 

4 2
42 48 44

2
37 38

i i
i

i

a m a m a
e

a m a

+ +
=

+
, 

6 4 2

i
i

i i i

f
L

m Am Bm C
=

+ + +
, i = 1, 2, 3; 

2
2 1

3

( )i
i

a m
h

a

−
= , i = 5, 6; 

and mi
2 (i = 1, 2, 3) are the roots of the characteristic equa-

tion of Eq.(27), and mi
2 (i = 4, 5) are the roots of the charac-

teristic equation of Eq.(30). 

BOUNDARY CONDITIONS 

We consider concentrated normal force and concentrated 

thermal source at the boundary surface x3 = 0, mathematical-

ly, these can be written as 

33 1 1 1( ) ( )t F x t = − ,  31 0t = ,  32 0m = ,  2 1 1( ) ( )T F x t = , 

 3 1 1( ) ( )C F x t = , (52) 

where: F1 is the magnitude of the applied force; and F2 is 

the constant temperature applied on the boundary. Also, sub-

stituting the values of ̂ , 
* , T̂ , ̂ , 2̂  from Eqs.(47)-

(51) in the boundary condition Eq.(52), and using Eqs.(5)-

(11), (13)-(14), (31)-(32) and solving the resulting equations, 

we obtain: 

 *3 35
32 1 11
ˆ im x x

iit G e M e
− −

== − ,  1,2, ,5i = , (53) 

 *3 35
31 2 21
ˆ im x x

iit G e M e
− −

== − ,  1,2, ,5i = , (54) 

 *3 35
32 3 31

ˆ im x x
iim G e M e

− −
== − ,  1,2, ,5i = , (55) 

 *3 35
4 41

ˆ im x x
iiT G e M e

− −
== − ,  1,2, ,5i = , (56) 

 *3 35
5 51

ˆ im x x
iiC G e M e

− −
== − ,  1,2, ,5i = , (57) 

where: Gmi = gmiCi, Ci = i/0, i = 1,2,…,5; g1i = (mi
2 – b22) – 

(1 + 1s)1i – b112i(1 + 1s), g2i = (b5 + b6), g3i = 0, g4i = i, 

g5i = mii, i = 1,2,3; g1l = –b3ml, g2l = (b6ml
2 + b52) –b7l, 

g3l = –b8ml3l, g4l = 0, g5l = 0, l = 4,5; 
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11 12 13 14 15

21 22 23 24 25

31 32 33 34 350

41 42 43 44 45

51 51 51 51 51

g g g g g

g g g g g

g g g g g

g g g g g

g g g g g

 = , 1, 2, 3, 4, and 5  

are obtained by replacing the 1st, 2nd, 3rd, 4th, 5th columns by 

1 1 1 2 3 4 1 1 5ˆ ˆ( ( )), , ,( ( )),M F s M M M F s M + −   in 0, and 

*2 2 1
2 1 1 2 11 3

1
4

( ) (1 ) (1 )b f s f b s f
M

f

   − − + − +
= − , 

*
5 6 1

2
4

( )b b f
M

f

+
= − , 

3 0M = , 
*

2
4

4

f
M

f


= − , 

*
3

5
4

f
M

f


= − . 

Case 1: for the thermal source: F1 = 0. 

Case 2: for the normal source: F2 = 0. 

APPLICATIONS 

(a) Uniformly distributed source 

The solution due to uniformly distributed force applied 

on the half-space is obtained by setting 

 1
1 1

1

1,
( )

0,

x d
x

x d


 
= 



 (58) 

Applying Laplace and Fourier transforms on Eq.(58), gives 

 
1

2sin( )
ˆ ( )

d
 


= ,   0  . (59) 

(b) Linearly distributed source 

The solution due to linearly distributed force over a strip 

of non-dimensional width 2d, applied on the half-space is 

obtained by setting 

 
1

1
1 1

1

1 ,
( )

0,

x
x d

x d

x d




− 

= 
 

 (60) 

Applying Laplace and Fourier transforms on (60), gives 

 
1 2

2(1 cos( ))
ˆ ( )

d

d


 



−
= ,   0  . (61) 

SPECIAL CASE 

Micropolar thermoelastic solid: in absence of mass diffusion 

effect in Eqs.(53)-(57), we obtain the corresponding expres-

sions of stresses, displacements, and temperature for micro-

polar generalised thermoelastic half space. 

INVERSION OF THE TRANSFORMS 

The transformed components of displacements, stresses, 

temperature, chemical potential, and concentration deviation 

are functions of z and the parameters of Laplace and Fou-

rier transforms s and  respectively, and hence are of the 

form f(s, , z). We invert the Laplace and Fourier transform 

by using the methodology of Rakshit and Mukhopadhyay 

/44/ to find the solution of the problem in physical domain. 

NUMERICAL RESULTS AND DISCUSSIONS 

The analysis is conducted for a magnesium crystal-like 

material. For numerical computations, following Eringen 

/42/, values of physical constants are:  = 9.4  1010 Nm–2; 

 = 4.01010 Nm–2; K = 1.01016 Nm–2;  = 1.74103 kgm–3; 

j = 0.210–19 m2;  = 0.77910–9 N. 

Following Dhaliwal and Singh /43/, thermal and diffusion 

parameters are given by: c* = 1.04103 Jkg–1K–1; K* = 1.7106 

Jm–1s–1K–1; t1 = 2.3310–5 K–1; c1 = 2.481010 K–1;  T0 = 

298 K; 0 = 0.02; 1 = 0.01; c1 = 2.6510–4 m3kg–1; a = 2.9 

104 m2s–2K–1; b = 32105 kg–1m5s–2; 1 = 0.04; 0 = 0.03; 

D = 0.8510–8 kgm–3s. 

Effect of laser pulse on thermal stresses: a comparison of 

the dimensionless form of the field variables for the cases of 

fractional micropolar mass diffusion thermoelastic medium 

with laser heat source (FMPMDLSR) and fractional micro-

polar mass diffusion thermoelastic medium (FMPMD) for 

two different values of laser parameter I, i.e., I = 105 and I = 

0, subjected to mechanical forces are shown in Figs. 1-5. 

 x1

 

Figure 1. Variation of normal stress vs. distance. 

x1

 

Figure 2. Variation of tangential stress vs. distance. 
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 x1

 
Figure 3. Variation of couple tangential stress vs. x1. 

 x1

 
Figure 4. Variation of temperature vs. x1. 

 

x1

 
Figure 5. Variation of mass diffusion vs. x1. 

The values of all physical quantities for all cases are 

shown in the range 0 ≤ x1 ≤ 20. 

Solid and dashed lines correspond to fractional micropolar 

thermoelastic mass diffusion medium including input laser 

heating (FMPMDLSR) and fractional micropolar thermo-

elastic mass diffusion medium (FMPMD) without laser, in 

respect. 

Effect of fractional parameter on various physical quanti-

ties: a comparison of the dimensionless form of field varia-

bles for the cases of fractional micropolar mass diffusion 

thermoelastic medium with laser heat source (FMPMDL 

SR) for two different values of fractional parameter , i.e., 

 = 1 and  = 0.5, subjected to mechanical forces are 

shown in Figs. 6-10. The values of all physical quantities for 

all cases are shown in the range 0 ≤ x1 ≤ 20. 

Solid and dashed lines correspond to fractional micro-

polar thermoelastic mass diffusion medium including input 

laser heating (FMPMDL  = 1) and fractional micropolar 

thermoelastic mass diffusion medium (FMPMDL  = 0.5) 

with laser, respectively. 

 x1

 

Figure 6. Variation of normal stress vs. distance. 

 x1

 

Figure 7. Variation of tangential stress vs. distance. 

(= 1) 

(= 0.5) 

(= 1) 

(= 0.5) 
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 x1

 
Figure 8. Variation of couple tangential stress vs. x1. 

 

x1

 
Figure 9. Variation of temperature vs. x1. 

 

x1

 

Figure 10. Variation of mass diffusion vs. x1. 

CONCLUSIONS 

The problem of laser irradiation on micropolar thermo-

elastic mass diffusion medium is a significant problem in 

continuum mechanics. It is observed that the physical quan-

tities are also affected by the different non-classical theories 

of thermoelasticity with mass diffusion. It is observed from 

Figs. 1-10 that laser and fractional parameters have effect 

on stress components, temperature change, and mass concen-

tration depending on the distance x1. 

The present problem has a significant application in geo-

physics and electronics engineering. The effect of diffusion 

is used to improve the conditions of oil extractions. Nowa-

days, there is a great deal of interest in the study of this 

phenomenon due to its application in geophysics and the 

electronic industry. 
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