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Abstract 

The paper aims to delve into the critical connection 

between optimal design and the reliability or safety of 

structures. The discussion primarily centres on structures 

whose reliability or failure probability can be reasonably 

assessed, especially in a redesigned context. A review of 

structural problems that have been optimised within a 

reliability framework is presented. Given the topic's focus 

on safety from a probabilistic perspective, it is necessary to 

address relevant issues of sensitivity, damage costs, limited 

empirical data, and safety philosophy. The paper primarily 

emphasizes the relationship between optimisation and relia-

bility, considering the computational and philosophical ques-

tions that arise from failure analysis and reliability-based 

design. It highlights the drawbacks of current deterministic 

approaches and the potential benefits of a probabilistic 

approach to safety and design. It also notes that while most 

structural reliability analyses have been based on a static 

approach to loads and strength, a more holistic perspective 

should consider factors like stresses or fatigue strength that 

might be stochastic or time-dependent. 

Ključne reči 

• optimizacija konstrukcija 

• pouzdanost 

• sopstvene vrednosti 

• MKE 

Izvod 

Cilj ovog rada uspostavljanje kritične veze između opti-

malnog dizajna i pouzdanosti i sigurnosti konstrukcija. 

Diskusija je mahom fokusirana na konstrukcije za koje se 

može odrediti verovatnoća otkaza sa dovoljno sigurnosti, 

posebno u kontekstu renoviranih konstrukcija. Pregled prob-

lema koji su optimizovani u okvirima pouzdanosti je takođe 

prikazan. Uzimajući u obzir fokus ove teme na pouzdanost 

sa tačke gledišta verovatnoće, neophodno je obratiti pažnju 

na probleme vezane za osetljivost, troškove usled oštećenja, 

ograničen broj empirijskih podataka, i filozofiju bezbednos-

ti. Ovaj rad pre svega naglašava vezu između optimizacije i 

pouzdanosti, uzimajući u obzir računska i filozofska pitanja 

koja se javljaju pri analizi otkaza i dizajnu zasnovanom na 

pouzdanosti. Posebno su istaknuti nedostaci trenutnih deter-

minističkih pristupa i potencijalne prednosti pristupa odre-

đivanju bezbednosti zasnovanog na verovatnoći. Takođe je 

napomenuto da, iako je većina analiza pouzdanosti kon-

strukcija zasnovana na statičkom opterećenju i čvrstoći, 

sveobuhvatniji pristup bi trebao da uzme u obzir i zamor, 

kao stohastičku veličinu, zavisnu od vremena. 

INTRODUCTION 

This paper offers a review of approximations in struc-

tural dynamics. Several key observations are outlined: 

(i) by simultaneously altering configuration and implement-

ing structural size modifications, designs can be signifi-

cantly improved and made more cost-effective. However, 

additional shape/topology considerations are needed; 

(ii) by incorporating stress and displacement constraints 

under various load conditions into the frequency constraint 

problem, designs can be made more realistic; 

(iii) application of dynamics optimisation to smart struc-

tures for vibration control has yet to be thoroughly explored. 

Potential methodologies for investigation include neural 

networks and genetic algorithms; 

(iv) Finite Element (FE) model validation has been signifi-

cantly advanced through the study of primary procedures of 

the model validation process, as well as the development of 

model verification methods. 

STRUCTURAL OPTIMISATION 

The structural optimisation problem with frequency con-

straints is subjected in one of the following ways: 

(i) Maximize the natural frequency or difference between 

two consecutive frequencies subject to a specified constraint 

 ( ) ( ) 0h p g p g= − = , (1) 

and side constraints on the design values 

 l u
i i ip p p  . (2) 

(ii) Minimize structural weight g(v) subject to behaviour 

constraints 

 2 2( ) 0j j jh p  = − = ,   1,2, ,j k= , (3) 

 2 2( ) 0j j jh p  = −  ,   1, 2, ,j k k m= + + , (4) 

where: pi is the design variable or updating parameter; pi
l is 

the lower limit; pi
u is the upper limit on the design variable; 

ωj is the j-th natural frequency; j  is the specified value of 

the j-th natural frequency; g(p) is the structural weight; g  

is the specified weight; n is the number of design variables; 
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and m is the number of design constraints. The design 

variables are inherently dependent on the nature of the opti-

misation problem. When considering the design of struc-

tural components, such as stiffened panels and cylinders, 

design parameters typically encompass aspects such as stiff-

ener spacing, size and shape, along with the thickness of the 

skin. In scenarios where the skin and/or stiffeners are com-

posed of layered composites, fibre orientation and their 

proportion might become additional variables to consider. 

In the case of a structural system with a fixed configura-

tion, such as frames, trusses, wings, fuselages, etc., the 

sizes of the elements serve as design variables. These sizes 

can be represented by plate thickness, cross-sectional areas 

of bars, areas, moments of inertia, and torsional constants 

of beams. 

When optimisation includes configuration, these parame-

ters may be spatial. Furthermore, in dynamics problems, 

nonstructural mass locations and magnitudes may be viewed 

as variables. If the optimisation problem includes only fre-

quency constraints, it is recommended to incorporate non-

structural masses into the structural model to represent 

aspects like fuel, payload, attachments, etc. 

When executing a model updating procedure, every 

parameter in a Finite Element (FE) model can be seen as a 

potential updating parameter. In an FE model for a continu-

ous structure, the number of independent parameters corre-

sponds to the model's degrees of freedom. 

EIGENSENSITIVITY ANALYSIS 

Numerous techniques exist for dynamics approximations 

in mechanical structures with sensitivity analysis being 

among the most popular. This approach has been exten-

sively developed and applied to the general eigenvalue prob-

lem /1-14/, and it's been specifically utilized in the context 

of structural dynamic modification analysis, /15-18/. Sensi-

tivity derivatives are instrumental in examining the impact 

of parametric modifications, determining the search direc-

tions for an optimal design, building function approxima-

tions, and carrying out ‘what-if’ design trade-off studies. 

Recent reviews have shed light on the progress and applica-

tions of sensitivity analysis. This section focuses on the use 

of sensitivity analysis tools in frequency optimisation. 

The eigenvalue problem is given as follows: 

 [ ]{ } [ ]{ } {0}ii i
K Q M Q− = , (5) 

where: [K], [M], i = ωi
2, and {

i
Q } are the stiffness matrix, 

mass matrix, eigenvalue, and eigenvector, respectively. 

Derivatives of the distinct eigenvalues with respect to the 

design variable pj using the orthogonality conditions, 

 { } [ ]{ } 1T

i i
Q M Q = ,   are given as 

 
[ ] [ ]

{ } { }Ti
ii i

j j j

K M
Q Q

p p p




   
 = −
   
 

. (6) 

Fox and Kapoor /2/ introduced methods for calculating 

the eigenvalue and eigenvector derivatives of symmetric 

matrices, offering two techniques for eigenvector gradients. 

The first method involved differentiating the algebraic eigen-

value problem in relation to the design variables, with deriv-

atives calculated following algebraic manipulations. How-

ever, this approach disrupted the banded nature of the equa-

tions. In the second method, the derivative was expressed as 

a series of eigenvectors. Nelson /19/ later formulated an alter-

nate approach for eigenvector derivatives that preserved the 

banded nature of matrices. Pritchard et al. /20/ derived an 

expression for the derivative of the nodal location of the 

mode shape with respect to the design variable for one-

dimensional structures. Sutter and his team /21/ compared 

four methods for calculating the derivatives of vibration 

modes with respect to the design parameters and concluded 

that Nelson's method was superior for its accuracy and effi-

ciency. 

The computation of sensitivity for repeated eigenvalues 

has also been explored by various researchers. Given that 

repeated eigenvalues are not differentiable, only directional 

derivatives can be obtained. Studies /22-25/ have addressed 

structural optimisation problems with repeated eigenvalues 

using directional derivatives. In the case of real symmetric 

matrices, a generalised version of Nelson's method was pre-

sented in references /26-28/, maintaining the bandedness of 

the matrix. The complexity in sensitivity computation arises 

from the non-uniqueness of the eigenvectors of the repeated 

eigenvalues. The eigenvalue derivatives for repeated roots 

can be obtained by solving a sub-eigenvalue problem, 

  
[ ] [ ]

{ } [ ] { } 0T i
i i i i

j j j

K M
Q Q I A

p p p




    
  − − =

      

, (7) 

where: {Qi} consists of eigenvectors corresponding to 

repeated roots; {Ai} is a coefficient vector; and [I] is an 

identity matrix. The eigenvalues of Eq.(7) represent the 

 pj vector. 

Reference /29/ made use of reduced-order models for the 

computation of sensitivities for both repeated and non-re-

peated frequencies. Hou and Chuang /30/ formulated equa-

tions for eigenvalue and eigenvector sensitivities in contin-

uous beams subject to variations in support locations, 

employing both domain and boundary methods in their deri-

vations. 

APPROXIMATIONS OF FREQUENCY CONSTRAINTS 

Barthelemy and Haftka /31/ have categorised function 

approximations used in structural optimisation into local, 

medium-range, and global types in their paper. While most 

conventional approximation techniques are suitable for 

frequency functions, a few researchers have developed 

premium approximations specifically for frequency prob-

lems /32-36/, to achieve stable convergence with less restric-

tive move limits. Owing to the inherent nonlinear attributes 

of natural frequency constraints, Miura and Schmit /33/ 

introduced a second-order Taylor series approximation for 

each eigenvalue to enhance stability and overall efficiency 

of the synthesis process. Their research indicates the high 

nonlinearity of eigenvalues in both direct and reciprocal 

design variable space, necessitating strict move limits. They 

reported that while the second-order approximation yielded 

stable convergence without stringent move limits, the total 

computation time was similar to that required with first-order 

approximation with move limits. Starnes and Haftka /34/ 
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proposed that a hybrid constraint using mixed variables (a 

blend of direct and reciprocal variables) delivers a more 

conservative approximation. Woo /36/ extended this concept 

in his generalised hybrid constraint approximation, where a 

variable exponent determines the conservativeness of the 

convex approximation, with the concepts demonstrated on a 

space frame structures design. The presentation of a second-

order approximation employing a half-quadratic scheme, a 

generalised power approach, a generalised method of moving 

asymptotes, and a full second-order Taylor approximation 

can be found in /37/. Considering the computational cost, 

the authors suggest that second-order approximations are 

suitable for challenging problems, whereas for less sensitive 

problems, approximate second-order information is recom-

mended. Pritchard and Adelman /38/ presented an innovative 

approach by interpreting sensitivity expressions as differen-

tial equations, thereby obtaining closed-form exponential 

approximations for eigenvalues and eigenvectors, which 

proved superior to linear models. Despite the evident nonlin-

earity of frequencies via the appearance of cross-sectional 

variables in both the numerator and denominator of Ray-

leigh’s quotient, Venkayya and Tischler /39/, and Maneski 

/40/ argue that in practical structures, the denominator 

(kinetic energy) is predominantly influenced by the nonstruc-

tural mass. In this scenario, the eigenvalues are nearly 

linear in the cross-sectional property (direct design variable 

space). Vanderplaats and Salajegheh /35/ illustrated better 

quality using a linear approximation of the eigenvalues con-

cerning the member section properties of frame elements, 

given the optimisation design variables were cross-sectional 

dimensions. However, no effort was made to create a 

convex or separable form of the optimisation problem. The 

optimality criterion approach proposed by Venkayya and 

Tischler /39/, and Grandhi and Venkayya /41, 42/ indicate 

that the modal strain and kinetic energies could be more 

appropriate quantities for approximation than the eigenvalue. 

Canfield /32/ constructed the Rayleigh quotient approxima-

tion (RQA) by creating first-order approximations to the 

modal strain and kinetic energies, independently, 

 
,

,

{ } [ ]{ }

{ } [ ]{ }

T
i Ai i

i T
i A

i i

Q K Q U

TQ M Q
 = = , (8) 

where: Ui,A and Ti,A are first-order approximations for modal 

strain (potential energies) and kinetic energies, respectively. 

He achieved fast and stable convergence with generous 

move limits. Interestingly, this concept is akin to an alterna-

tive approximation proposed by Fox and Kapoor /2/, 

excluding the use of the eigenvector's first-order estimate 

here. Methods for approximate eigenvalue reanalysis of 

locally modified structures are developed, drawing on the 

generalised Rayleigh's quotients as presented by Wang and 

Pilkey /43/. For straightforward modifications such as the 

addition of springs and masses or alterations to the truss 

member's cross-sectional area, closed-form formulas are 

provided. Two effective approaches for achieving excellent 

results based on one-term approximations via Rayleigh's 

quotients are detailed, including their practical applications 

as per Hodges /44/. As demonstrated therein, the utilisation 

of the improved functions in Rayleigh's quotient allows for 

an upper frequency bound, boasting better accuracy than 

the lower bound directly derived from the method itself. An 

enhanced first-order approximation procedure for the re-

analysis of eigenvalues and eigenvectors of modified struc-

tural dynamic systems has been proposed by Nair, Keane, 

and Langley /45/. The current methodology, as shown, can 

be employed to acquire reliable estimates of the natural fre-

quencies during simultaneous structural parameter perturba-

tions. Furthermore, this method can be utilised without 

significant accuracy loss when using approximate eigen-

vector derivatives/perturbations to calculate basis vectors. 

CONCLUSION 

The following key points are noted: 

• Significant improvements and cost-effective designs can 

be achieved through simultaneous alterations in configu-

ration (beam lengths, boundary, or support conditions) in 

conjunction with modifications to the structural size. 

• More authentic designs can be achieved by incorporating 

stress and displacement constraints under various load con-

ditions within the frequency constraint problem. 

• Recent studies /46, 47, 48/ focus on the experimental vali-

dation of optimised designs that meet frequency require-

ments. This is a promising area of exploration, given the 

increased sensitivity of optimised designs to the paramet-

ric uncertainties inherent in the physical system. 

Future research efforts should also include the develop-

ment of formal methodologies for the observation of mode-

switching phenomena during optimisation. 
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