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Abstract 

When designing storage tanks and generally pressure 

tanks, the strength calculation is rather significant. There 

are different procedures by which we can, with more or less 

accuracy, determine the desired sizes that define the behav-

iour of the structure. More significant efforts in solving this 

task have led to standardized procedures and recommenda-

tions and standards in the field of tank design. Standards 

prescribe the shape and measures, as well as conditions for 

development and delivery of the welded steel tanks of differ-

ent volumes and purposes. They include empirical forms for 

the calculation of tank thickness, that contain safety coeffi-

cients with the addition of corrosion. Standards also predict 

material quality for the development of tanks, with special 

emphasis on obligatory control and examination. 

Ključne reči 

• metoda konačnih elemenata (MKE) 

• deformacija 

• cilindrični rezervoar 

• pritisak gasa    

Izvod  

U projektovanju rezervoara i uopšte posuda pod pritis-

kom, proračun čvrstoće je veoma značajan. Postoje različiti 

postupci kojima možemo sa manjom ili većom tačnošću odre-

diti željene veličine koje definišu ponašanje konstrukcije. 

Značajniji napori u rešavanju ovog zadatka doveli su do 

standardizovanih procedura, preporuka i standarda u oblasti 

projektovanja rezervoara. Ovim standardima propisani su 

oblici i mere, kao i uslovi za izradu i isporuku zavarenih 

čeličnih rezervoara različitih zapremina i namena. Stan-

dardi sadrže empirijske obrasce za proračun debljine zida i 

dna rezervoara, koji sadrže značajne koeficijente počev od 

nivoa sigurnosti do dodataka za koroziju. Standardi takođe 

predviđaju kvalitet materijala za izradu rezervoara, sa 

posebnim naglaskom na obaveznu kontrolu i ispitivanje. 

INTRODUCTION 

Cylindrical tanks of large volumes (> 150 m3) are devel-

oped as atmospheric. Tanks up to 150 m3 are more fre-

quently developed as tanks under pressure and can be both 

horizontal and vertical. In addition, they can be static or 

mobile. 

In order to reach practical solutions, a further simplifica-

tions of the theory is required. Such simplifications are not 

able to give us the real image of stress and area of move-

ment in a large number of locations on the tank. 

In calculations of tanks under pressure, particularly in 

complex boundary conditions and loading conditions, the 

application of FEM offers great possibilities, /2-10/. In that 

case, one can choose plate or shell elements as finite ele-

ments, and in some other cases membrane elements. 

The task of the paper is to determine the suitability of the 

application of this developed procedure and to evaluate the 

impact of some structural parameters on the stress state, field 

of displacement, and deformation field. 

As an illustration of the application of developed proce-

dures, the solutions of some derived structures are shown. 

Calculation of the shells relies on the following assump-

tions, /1/: 

1. Shell thickness () is small when compared to other shell 

dimensions. 

2. Deflections are small when compared to shell thickness. 

3. Points on the normal of the medium surface of the shell 

prior to the deformation are found normal to the deformed 

medium surface. 

4. Normal stresses that affect the medium surface of the 

shell are small and can be neglected. 

Figure 1 shows a volume shell element with its stress 

components, whose size depends on the coordinate z. The 

width of the lateral elements can be expressed through the 

coordinate z from the similarity of the triangles presented in 

Fig. 1, /11/. 

Having in mind that for z = 0, the width of the cross 

section equals one, and from the similarity mentioned, one 

can determine the width of lateral surfaces of the elements 

as a function of coordinate z. 

Based on Fig. 1, forces and moments per unit of shell 

section length will be /11/: 
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From the conditions of the normality of lateral sides of 

shell elements, it follows: 

 xy yx = . (2) 

Shear forces Nxy and Nyx, i.e. twisting moments Mxy and 

Myx will be equal only in case ry = rx (that is the case of the 

panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Forces and moments in shell sections. 

FINITE ELEMENTS METHOD AND APPLICATION 

For the analysis of strength and stability of bearing walls, 

we have chosen finite elements, as shown in Fig. 2, accord-

ing to /1/, which appear to be very efficient and suitable for 

solving problems in general theory of shells. Here, we expose 

only some main assumptions of these elements, and detailed 

derivations can be seen in /1/. 

Triangular finite elements of the shell, as can be seen in 

Fig. 2a, have 6 degrees of freedom per node, 3 translations 

and 3 rotations. The main idea in case of this element is that 

bending is observed separately from membrane leads and 

deformations. 

The element provides reliable and accurate solutions for 

any type of geometry of the shell taking into consideration 

different loads and boundary conditions. 
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Figure 2. Triangular finite element of the shell. 
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In nonlinear analysis, the element is suitable for calculat-

ing large displacements, big rotations, and material nonlin-

earity. 

The field of movement by bending is expressed in the 

local coordinate system x, y, z in the form, /1/: 

 ( , )x xu z x y= ,  ( , )y yu z x y= − ,  ( , )z zu u x y= , (3) 

where: x and y are rotations in the planes that contain axes 

x and y; and uz is transversal movement. 

Such an assumption for the movement field basically 

contains the physical condition for material line segments, 

primarily parallel to the medium plane of the shell and 

remain non-deformed, but they do not have to retain the 

direction normal to the medium surface after deformation 

/1/, 

 1 1 1 2 2 2 3 3 3{ } { , , , , , , , , }T T
B z x y z x y z x yu u u u     = . (4) 

For thin plates, transversal shear stresses are small in com-

parison to bending stresses. For that reason, the energy of 

transverse shear is negligible in comparison to the bending 

energy. For calculation of the element rigidity matrix, we 

start from the expression /1/: 

 
1

{ } [ ] { }
2

T
B

A

U K D K dA=  , (5) 

where: {K} is the bending vector, /1/: 
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Matrice [D]B in the general case of functions has the 

thickness of shell  and elastic features of particular layers 

of materials. In case of isotropic homogeneous plates of 

constant thickness, we apply the following relation /1/, 
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where: E is Young’s modulus of elasticity; and  Poisson’s 

ratio. 

ATMOSPHERIC TANK UNDER PRESSURE OF VARI-

ABLE WALL THICKNESS  

Figure 3 presents a vertical atmospheric tank of variable 

wall thickness (x), loaded with fluid pressure. In section 

x = const., the forces and moments per section length unit 

are, /1/, 

 X = Y = 0,   Z = – (H – x). (8) 

If the tank is deformed undisturbed, a state of stress would 

appear in the membrane. Forces in sections can then be cal-

culated based on the following equations, /1/: 

 N ZR = − ,   1
1
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N
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then it follows: 
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Figure 3. Vertical atmospheric tank of variable thickness. 

Specific elongation towards the ring will be: 

 0

0 0 0

1
( )x

N
N N

E E
 

 


 = − = , 

and thus for the radial movement we obtain: 

 0

0

2

0 ( )
rN R

w R H x
E E

 
 


= = = − . (10) 

Based on the above-mentioned we obtain a differential 

equation of the tank with variable wall thickness, /1/: 

 
2 2

2 2 2
( )

d d w w
K E H x

dx dx R
 

 
+ = − 

 
 

. (11)  

Determination of forces at particular nodes of the gener-

ated finite element mesh based on main data on the loads, 

represents a significant task in the procedure of automatic 

calculation considered here. The loads considered are: 

– wind pressure, pv, 

– hydrostatic pressure, ph, 

– gas pressure (overpressure), pg, 

– self-weight of the structure. 

Forces in the nodes are determined by projections of the 

force on the element on coordinate axes: 

 pi iF pA= ,   1,2,3i = , (12) 

where: p is a pressure on finite element; Ai projection of the 

triangle surface on i-coordinate axis. 

Wind pressure forces on the tank shell 

Wind pressure can be taken into consideration in case of 

vertical tanks. The disposition of wind pressure is shown in 

Fig. 4 and is the same for all points in one generating func-

tion of the shell, and that the function is only of the angle 

, /1/. 
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Figure 4. Distribution of wind pressure. 

In input data for loads we set the value of wind pressure 

p (based on which we determine the coefficients pn). If we 

use primarily five members of the order, we take the coeffi-

cients pn obtained by measurement of wind pressure on one 

gas tank with smooth walls /1/: p0 = 0.526p; p1 = 0.253p; 

p2 = 0.950p; p3 = 0.462p; and p4 = 0.189p. 

Hydrostatic pressure forces on tank shell 

Figure 5 shows the effect the hydrostatic pressure force 

on differential element of the surface. In addition, the surface 

element, and the projection of that element to the plane y-z 

(Ax) are also shown. 

 
Figure 5. Hydrostatic pressure force. 

Differential size of hydrostatic pressure force, according 

to Fig. 7: ( )h
pdF d H z d A

→ →

= − , (13) 

and its projections: 

2 1( ) ( )(sin sin )h
px c x cF H z A hR H z   = − = − − , 

1 2( ) ( )(cos cos )h
py c y cF H z A hR H z   = − = − − , (14) 

If only one part of the element is submerged in the liquid, 

then in the above equations, instead of (H – zc) it will be 

(H – zc), where zc is the coordinate of the bulk submerged 

part of the element. 

Hydrostatic pressure forces for ultimate nodes will be: 

2 2
1 ( ) ( ) , cos , sinh h h h h h h

x py px R py RF F F F F F F = + = = .  (15) 

Example: Vertical atmospheric tank under fluid pressure /1/  

Data: R = 800 cm tank radius; H = 1447 cm height of filling 

with fluid; H1 = 199 cm first height;  = 0.9 cm shell sheet 

thickness; t = 1.0 cm bottom sheet thickness;  = 0.0014 daN/cm2 

specific weight of fluid; E = 210000 MPa;  = 0.3. 

Calculation of forces in individual sections N (daN/cm) 

Total force by section unit length equals the sum of forces 

from the impact of hydrostatic pressure, edge force P and 

edge moment M: 

 
0 P M

N N N N   = + + , 

 
3

( ) [cos sin ] cos
2

xE e
N R H x M x x P x

RK


    



−

 = − + − − . (16)  

Based on Eq.(16) for particular sections and starting from 

the bottom towards the top of tank, we calculate the value 

of forces N  (Table 1). 

Table 1. Calculated forces N. 

x (cm) N (daN/cm)  = N /  (daN/cm2) 
 0   22.823  25.359  
 66 1615.421 1794.912 

 265 1323.834 1470.928 
 464 1100.96 1223.289 
 647 896  995.555 
 797  728  808.889 
 947 560  622.222 
1097  392  435.555 
1247 224  248.889 
1397 56  62.222 
1447 0  0 

Based on the obtained values in Table 1, a diagram of 

circular stress  is given in sections presented in Fig. 6a. 

From the figure we see that the largest value of circular stress 

is somewhat above bottom-shell junction (section x = 66 cm) 

and not in the junction itself. The explanation lies in the 

disorder of membrane state of stress at the junction location 

that prevents shell extension. In case there is no bottom, the 

tank shell can go through undisturbed extension under the 

impact of hydrostatic pressure, and we would have a membrane 

state of stress presented by an interrupted line in Fig. 6a. 
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Figure 6. Circular and axial stress diagram for vertical 

atmospheric tank V = 3000 m3. 

Calculating the moments in particular sections Mx  

Total moment per section length unit will be equal to the 

sum of the moments from edge force and edge moment:  

 Mx = Mxp + Mx . 

Total moment in the section Mx will be, /1/: 

 (cos sin ) sinx x
x

P
M Me x x e x   



− −= + − . (17) 

In Table 2 given are values of moment Mx for particular 

sections, as well as stress values in axial direction. Based 

on the values in Table 2, the diagrams of stress in axial 

direction are shown in Fig. 6b-c. From Fig. 6b one can see 

that the highest value of this stress is found at the support. 

In addition, we observe the change of the sign of this 

stress and its abrupt drop. The characteristic of this bending 

stress is that in the first ring of the tank it is muted and that 

its impact further towards the top of the tank can be 

neglected. Therefore, at a sufficient distance from the tank 

bottom, we can apply the membrane theory. 

Table 2. Values of moment Mx in particular sections. 

x (cm) Mx (daNcm/cm) x = 6Mx / 2 (daN/cm2) 
0 330.468 2447.911 
10 57.338 424.722 
20 -63.629 -471.324 
40 -76.719 -568.29 
60 -24.456 -181.152 
80 0.484 3.582 

100 8.87 65.704 
120 1.614 11.952 
140 0.15 1.11 
160 -0.171 -1.266 
180 -0.0977 -0.726 
200 -0.0179 -0.132 

CONCLUSIONS 

The method of discretization, the choice of the shape of 

elements, as well as the total number of elements, depend 

on the nature of the problem to be solved and the required 

accuracy of the required solution. 

In the example shown according to stress state analysis, 

optimisations are possible in the direction of reducing the 

sheets thickness to the allowable stress, or the use of other 

modern building materials such as polymers and composite 

materials. 
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