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Abstract

The present investigation deals with thermal and mechan-
ical interactions in a fractional order microstretch thermo-
elastic half-space subjected to inclined mechanical forces
acting at the boundary of the surface of the half-space.
Integral transform technique (Laplace and Fourier trans-
form) are applied to solve the basic equations mathemati-
cally. The mathematical expressions of mechanical stresses,
coupled tangential stress, microstress, and the temperature
distribution are obtained numerically. Some particular
results and special cases also have been derived from the
present research.

INTRODUCTION

Eringen /1, 2/ developed the linear theory of micropolar
thermoelasticity, theory of micropolar elastic solids with
stretch and derived the basic equations of motion, constitu-
tive relations and boundary conditions for these theories.
The later theory was very important for a class of materials
which can stretch and contract. In this theory Eringen /2/
presented a new model which explained the motion of a
certain class of materials, i.e. rigid chopped fibres, many
categories of composites and granular materials.

Eringen /3/ developed the theory of thermo-microstretch
elastic materials including microstructural expansion and
contractions. The material points of microstretch thermo-
elastic material are able to stretch and contract inde-
pendently of their translational and relational motion. Com-
posite substances reinforced with chopped fibres, porous
materials filled with asphalt and other insertions are also
categorized as microstretch thermoelastic materials. Here it
is noted that the theory of microstretch thermoelastic solids
is a particular case of micromorphic thermoelasticity and is
the generalization of micropolar theory of thermoelasticity.

The differential equations including higher-order frac-
tional derivatives play a significant role in mathematical
modelling of dynamical behaviour of some complex systems.
The fractional calculus has also applications in the solution
of problems of material engineering, physics, chemical engi-
neering and bio-medical dynamics. During the last decade
many researchers worked on fractional calculus. First of all,
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lzvod

Ova istrazivanja se bave termickim i mehanickim inter-
akcijama unutar mikrorastegljivog termoelasticnog polu-
prostora frakcionalnog reda, koji je opterecen kosim meha-
nickim silama, koje deluju na granicnoj povrsini polupros-
tora. Metode integralne transformacije (Laplasova i Furije-
ova transformacija) su primenjene za matematicko resava-
nje osnovnih jednacina. Matematicki izrazi za mehanicke
napone, spregnuti tangencijalni napon, mikronapon, kao i
za raspodelu temperature su dobijeni numericki. Pojedina
partikularna resenja i specijalni slucajevi su takode izvede-
ni u ovom istrazivanju.

Abel presented an application of fractional calculus in formu-
lation of the tautochrone problem. Povstenko /4/ also devel-
oped a quasi-static thermoelastic model for uncoupled equa-
tions taking the fractional time derivative in the heat con-
duction equation. Later Povstenko /5/ investigated the ther-
mal stresses in an infinite medium including cylindrical holes
by using the fractional heat conduction equation. Sherief et
al. /6/ presented a mathematical model of fractional order
theory of thermoelasticity by revising the Cattaneo law and
deduced the basic equations, constitutive relations, unique-
ness theorem, reciprocity theorem, and variational problems.
Youssef /7/ constructed another mathematical model for frac-
tional theory of thermoelasticity by taking different value of
fractional parameter a. He also discussed an application of
this theory. Ezzat /8, 9/ proposed another theory of frac-
tional order generalized thermoelasticity using Taylor’s
series expansion of time-fractional order. Later Ezzat and
Fayik /10/ extended this fractional order generalized ther-
moelasticity by including the thermo-diffusion and presented
a new theory named as fractional order thermoelasticity
theory with diffusion in elastic medium. They also, derived
the uniqueness theory, reciprocity theorem and variational
principle. Shaw and Mukhopadhyay /11/ observed the effect
of two temperature and moving heat source in micropolar
thermoelastic medium. Sur and Kanoria /12/ investigated a
1-dimensional problem in fractional thermoelasticity with
two-temperatures in the context of LS-theory and GL-theory.
Yu et al. /13/ discussed a problem in electromagnetic aniso-
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tropic medium using fractional order theory of thermoelas-
ticity. Sumelka /14/ discussed some applications and quali-
tative aspects in fractional continuum mechanics. A 1-di-
mensional fractional thermoelastic problem with diffusion
in a half-space is discussed by Povstenko and Klekot /15/.
Shaw and Mukhopadhyay /16/ developed a theory of frac-
tional ordered thermoelastic diffusion. Recently Chirila and
Marin /17/ worked on dipolar thermoelastic materials with
the property of double porosity and presented a generalized
theory of thermoelasticity with fractional order strain. Marin
et al. /18/ recently presented a mathematical model of frac-
tional order strain in dipolar thermoelasticity.

Here we have used the fractional theory of thermoelas-
ticity developed by Ezzat and Fayik /10/ and analysed the
thermo-mechanical interactions in a fractional order micro-
stretch thermoelastic medium. The normal stress, tangential
stress, coupled tangential stress, microstress, and temperature
distribution are computed using the numerical method tech-
nique involving Laplace and Fourier transform. The computed
physical quantities are also depicted graphically.

BASIC EQUATIONS

Following Eringen /3/, Ezzat and Fayik /10/, the basic
equations for homogeneous, isotropic microstretch general-
ised thermoelastic solids in the absence of body forces, body
couples and stretch forces are given by:

Stress equation of motion:

(A+m)V(VU)+(u+K)WV2Uu+kVxd+ Ve —BVT = pii, (1)
Couple stress equation of motion:
(V2 =2K)p+(a+ AV(VE+KVxu=pjb,  (2)
Equation of balance of stress moments:
(qVZ-A)p AV +01(1“1 ng =p_210¢~5*’ 3
Fractional order equation of heat conduction:

a~a+l
K*VZT:[Q+ 709

i W} (€T +uiTop )+
a

75 0%

+H1+—
[(a+1)ot*

here, 1= (31 + 2u+ K)on; v1= (31 + 2u+ K)ar; o1 and
o are coefficients of linear thermal expansion.
The constitutive relations are:

tj =(of +AUr ()& + (Ui +uj ) +K(Uj i —&ijedh) —

](ﬂlTOV-U -pQ), (4)

~AGT, ()
m;j :a¢r,r5ij +ﬂﬂ,j +7¢j,i +b05mji¢;n ) (6)
ﬂ'i* :a0¢,7+b05ijm¢j,m : (7

Following Sherief /6/, the Caputo fractional derivative in
the heat conduction Eq.(4) can be written as:

t n
! j(t—r)n_a_lmdr, n-l<a<n
d“f() _JF(h-a)g dz" ®)
dt® n
d f(r)’ gen
dt"
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inwhichn-1<a<nmeN={12,..}

where: A, i, a, B, 7 K, Ao, 11, o, bo, are material constants;
p is mass density; u = (us, Uy, us) is the displacement vector;
and ¢ = (4, ¢, ¢) is the microrotation vector; ¢ is the
scalar microstretch function; T is temperature; and T is the
reference temperature of the body chosen; K* is the coeffi-
cient of thermal conductivity; c” is specific heat at constant
strain; j is the microinertia; t; are components of stress; m;
are components of coupled stress; A" is the microstress
tensor; ¢ is Kroneker’s delta function.

FORMULATION OF THE PROBLEM

We consider an isotropic homogeneous fractional micro-
stretch thermoelastic half-space in an intact form at uniform
temperature To. The origin of rectangular Cartesian coordi-
nate system is taken on the xs axis with xs-axis pointing ver-
tically downward the medium.

<
<

v

x3=0 X1

Fractional order micrgstretch thermoelastic medium

X3 vy
Figure 1. Geometry of the problem.

We consider plane strain problem with all the field varia-
bles depending on (xi, X3, t). For two-dimensional problems,
we take

u=(u;,0uz), ¢=(0,40). ©)

For further consideration, it is convenient to introduce in

Egs.(1)-(4) the dimensionless quantities defined as:

* * 2 2
2 w ' pa) ’ p *r p *
=L, u=LoRy, gLy g LAy
Ct BiTo BiTo BiTo
T * ' * ’ * ’ 1
T=—, t'=0t, =070, 19 =071, tij =——1j,
To BiTo
« pC A+2u+K - @
P fl , 2 :—/l, mij :—mij . (10)
K p cAilo

Utilizing the expressions defined by EQ.(10) in Egs.(1)-
(4) and with the help of Eq.(9), we reach the following equa-
tions:

a1£+ aZVZU]_ —a3 %4- a.4 %—[14- Tlgjﬂ :Ul , (11)
aXl 8X3 6X1 ot 6X1

oe ) o, 04 oYoT .
a—+a,VUg+ag—=+ay ——| 1+ — |—=liz, (12)
16x3 2V TR 4o Tlat x 3

X 3 3
ou; ou "

V24, —2 1 U3 |_ , (13)
z a6¢z+ae[6X3 %J ardy

V24" —agp —age+ayg (1+ rlng =app » (14)
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J(T ~a3Vip+aye )=Qy, (15)

= atll+1
Here,
2 . 2
u+k k . GO 2key sic
a2=—2,a3=—2,a4=—2,a6= *2,872 ,
PC PC o¢p ro Y
2 2 2.
S NN [ N 60 _ oG Jg .
8 — *z’ag_ *o 0 910 © *x ! 12_2 d
oo oo Brogw =
2
T Vi 5T, *
813=—% 0, ay= 1ﬂ1* 0. ag=s+rgw * s
k o
, 2
\Y =—t— is the Laplacian operator.
6X1 8X3

Making use of Helmholtz’s decomposition theorem i.e.
representation of a vector into scalar and vector potentials,
the displacement components u; and us are related to non-
dimensional potential functions ¢ and y as:

o v, 0 v
ox oxg' ° oxg axl

Substituting the values of u; and us from Eq.(16) in Egs.
(11)-(15), we obtain:

V2g—¢ +a4¢*—£1+11§]T =0, (17)

(16)

2
2 0% | » 2 0\ _
(V —ag —apo —atz ]¢ —agv ¢+a10 (1+ 71 ajT =0, (18)

*o—1a+1
2 0 1w 2 )=
\v4 T_{§+ ata+1 J(T—algv ¢+a14¢ )_QO ) (19)
a,V2y —ij +agd, =0, (20)
Vg, 236 —3gV 2y =arg . (21)

SOLUTION OF THE PROBLEM

We define the Laplace and Fourier transforms, respec-
tively as:

(s, %, %) =g f (t.x,xg)e”dt (22)

f(x3,£,8) =] (5%, %5)e" tdx . (23)

Applying Laplace transform defined by Eq.(22) on Egs.
(17)-(21), and then applying Fourier transforms defined by
Eq.(23) on the resulting quantities, we obtain:

2
[;7—531]&4-34&*—1'111: =0, (24)

a2 ). [ d? o
—8g o P+ d7—azo ¢ +apyT =0, (25)
(D? —E2)T —(s+ 290 s ™)T —ay3(D* —£)g+

+ad =Q, (26)
d? .
[_ I j@ @)
X:

dx3
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d? d2 5.
——a | +3| —5—& | =0. (28)
dx3 x3
Eliminating ¢ and T, ¢ and T, and ¢ and 4, respec-
tively from Eqgs.(24)-(26), we obtain:
[D®—AD*-BD? +Clj=1,, (29a)
[D®—AD*-BD2+CJ4 =f,, (29b)
[D® — AD* -BD? +CJT = f5. (29¢)

Also eliminating ¢32 from Eqs.(27)-(28) yields:
[D*+ED? +F]y =0, (30)
where: &1 = &+ 5% ai= & +ag+as’; ar = & + ais; aig =
aisass; 19 = Awdis; 8z = A& — 8% an = &+ 2as + ars’; f1 =
—Qu(ruy™?+ axm); o= —Qu(any™+ ax); fs= —Qu(y™ -
amy 2+ ax); fa= (Y -Ay™*-By?2+C);A=—ai—ar— éu+
aag + aig B= aeae+ Sluast+ Suaur— a4a95— asdgdy7 —
awass?; C= —&naednr — Eudiodio — asdré + aiodisé? +
3-163-18552 ; B2 = (asas — azao1 — azo)/az; Bs = (azaz — a3a6§2)/a2.
The mathematical solutions of Eqgs.(29)-(30) satisfying

the radiation conditions that (¢, ¢ , T, ¢, ¥)— 0 as
X3 —> oo are given by:
=B ™5 1 Be ™M 1B ™R L, (31)
¢ =d;Be ™" +d,B,e ™8 +dyBe ™ + L,y (32)
T =gBe ™5 +e,Be ™" +e3Be ™8 + 1y, (33)
¥ =Bge ™ £ Bee 5 (34)
¢ =hyBse ™" £ heBe ™% (35)
where:
O L —(39317 +895% —agang)M; +agéayy —aypl? s .
m;* —(age +ay7)M; + 81687 +a50ag

_alSm (39319+318§ +250)MF —agé ayg —ay 2 a18

!~ (ayq + a7 )M +agg807 +apang

(=

i=123; h|_a2(m' ~4)
a3

the roots of the characteristic equation given by Eq.(29a);

and m? (I = 4,5) are the roots of the characteristic equation
of Eq.(30).

BOUNDARY CONDITIONS
We consider concentrated normal force and concentrated

thermal source at the boundary surface x; = 0, mathemati-
cally, these can be written as:
t33=—FR6(4q)5(1), t31 =—F,5(x)5(t), mg, =0
* oT
MH=0, — 6x3 =0, (36)
where: F1, F» are the magnitudes of the applied forces.
Substituting the values of ¢, ¢ , T, &, v from Egs.

(31)-(35) in boundary condition Eq.(36) and using Egs.(5)-

=45; and m? (i= 1,2,3) are
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(7), (9)-(10), (22)-(23) and solving the resulting equations,
we obtain:

fag =7 Gre " + Mye 7 % (37)

f31 =22, Gyie” M £ M, 67" (38)

Mgy =371 Ggie ™® + Mge™” % (39)

Jy =58, Gae ™ Mg, (40)

T :z?_le5ie‘mixs +Mge 7 %8, (41)

2u+K H+K

Here, bl:ﬁz ;b= b=
Jo pcl PC o]
* *2 *2

u_ . K . oy, o D . o .

by = by = by =L by =0y =
o) PO o) o} o)

AL
Gmi =9miCi s Ci =A—',|:1,2,...,5.

Special case:
Micropolar thermoelastic solid

In absence of microstretch effect in Eqgs.(37)-(41), we
obtain the corresponding expressions of stresses, displace-
ments, and temperature for micropolar generalised thermo-
elastic half space.

Inversion of the transform

The transformed displacements, stresses, and temperature
changes are functions of the parameters of Laplace and Fou-
rier transforms s and &, respectively, and hence these are of
the form f (s, & z). To obtain the solution of the problem in
the physical domain, we must invert the Laplace and Fourier
transform by using the method applied by Kumar /19/.
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