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Abstract 

Linear stability convection in a nanofluid layer of pulsat-

ing throughflow and rotating about the vertical saturating a 

porous layer heated at the lower surface with the inclusion 

of an external vertical AC electric field is developed for 

realistic boundary conditions, in which volume fraction flux 

of nanoparticles is taken to be zero on the isothermal bound-

aries. The basic profile for temperature gets altered for this 

flow and the volumetric fraction of nanoparticle vary from 

linear to nonlinear with layer height, which marks the stabil-

ity expressively. The exact solutions of the characteristic 

equation for both stress-free bounding surfaces are obtained 

analytically and the expressions of the thermal Rayleigh 

number for onset of both oscillatory and stationary modes 

are derived in terms of a variety of non-dimensional involved 

parameters. The pulsating throughflow, rotation and Lewis 

number are found to decrease size of the cellular stationary 

modes, whereas these are increased with rise in modified 

diffusivity ratio, the electric Rayleigh number, the medium 

porosity and Rayleigh number of nanoparticle concentration. 

The occurrence of oscillatory mode is ruled out for the real-

istic boundary conditions. The numerically computed values of 

the thermal Rayleigh number for stationary modes are plotted. 

Ključne reči 

• nanofluid 

• pulsirajuće strujanje 

• električno polje 

• rotacija 

• porozna sredina 

Izvod 

Linearna stabilna konvekcija u nanofluidnom sloju pulsi-

rajućeg strujanja i rotacije oko vertikalnog zasićenog poroz-

nog sloja koji se zagreva na donjoj površini i sa dodatkom 

spoljašnjeg vertikalnog električnog polja naizmenične struje, 

je razvijena u realnim graničnim uslovima, gde je udeo 

zapreminskog fluksa nanočestica jednak nuli na izoterm-

skim granicama. Osnovni temperaturski profil se menja u 

ovom strujanju i zapreminski udeo nanočestica se menja od 

linearnog ka nelinearnom po debljini sloja, čime se izrazito 

uočava stabilnost. Tačna rešenja karakteristične jednačine 

za obe slobodne granične površine bez napona su dobijena 

analitički, a izrazi za termički Rejlejev broj pri nastupanju 

oscilatornih i stacionarnih režima su izvedeni sa skupom 

bezdimenzionih parametara. Pulsirajuće strujanje, rotacija 

i Luisov broj opadaju sa veličinom posude u stacionarnom 

režimu, dok s druge strane rastu sa porastom modifikova-

nog koeficijenta difuzije, električnog Rejlejevog broja, poroz-

nosti sredine i Rejlejevog broja koncentracije nanočestica. 

Odbacuje se oscilatorni režim u realnim graničnim uslovi-

ma. Dati su dijagrami numerički određenih veličina termič-

kog Rejlejevog broja za stacionarne režime. 

 

INTRODUCTION  

Electro-hydrodynamics (EHD) is the study of motion of 

electrically charged particles or molecules in fluids due to 

the inclusion of external electric field and finds crucial role 

in dielectric fluids with low electric conductivity. Distilled 

water, most of organic substances and transformer oil are a 

few examples of dielectric fluids. Electroconvection in die-

lectric liquids has remained the focus of research over the 

past couple of decades after the experimental work by Gross 

and Porter /1/. They experienced very interesting result that 

the electric field established the convective pattern exactly 

similar to that of the familiar Bénard cells in natural convec-

tion. The impact of forces due to electrophoresis on the 

Bénard convection has been studied by Turnbull /2/ and the 

validity of PES (principle of exchange of stabilities) was 

proved over a certain set of boundary conditions. 

The pulsating throughflows have achieved great potential 

for the last 3-4 decades due to their diverse applications in 

industrial as well as biological processes such as respiratory 

and circulatory systems, reciprocating pumps, vascular dis-

eases, pulse combustors and IC engines. Pulse is the one of 

the active techniques to create a shock in the fluid motion to 

increase the heat transfer, which is the best way to increase 

the efficiency of heat exchangers. Wang /3/ analysed this 
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flow in a porous medium. Ishino et al. /4/ investigated the 

impact of pulsating on the fluid flow and heat transfer. They 

analysed the effect of throughflow in fluid and transfer of 

heat with the inclusion of three pulsating parameters i.e., 

the frequency, the amplitude, and the mean velocity assum-

ing boundary conditions of wall temperature constant. Nano-

fluids are the fluids formed by adding nanoparticles having 

size 10-50 nm in traditional fluids first coined by Choi /5/. 

These base fluids may be of aqueous or non-aqueous nature 

and regular nano size particles are like oxides, nitrides, 

carbides of metals, carbon nanotubes etc. 

Nanofluids are now considered of great potential in the 

present era to enhance the heat transfer, the characteristics 

of which are influenced primarily by specific heat, thermal 

conductivity, viscosity and density, size of particles, pH and 

zeta potential /6-9/. These fluids are usable in nano- compo-

sites, oil drilling, electronic cooling, bio medicines and nano 

structure fabrication transportation. Many researchers studied 

different properties of nanofluids along with their applica-

tion, scenario of applications both experimentally and numer-

ically /10-13/. 

Buongiorno /14/ formulated a mathematical model to 

capture the base fluid/nanoparticle slip by considering nano-

fluid as a mixture of two components and showed that the 

prior mechanisms accounting for the relative slip velocity 

between base fluid and nanoparticles are thermophoresis 

and Brownian motion. Agarwal and Kuznetsov /15/ studied 

the onset of natural convection for flow in nanofluid satu-

rating a porous medium by employing Darcy model. Ray-

leigh-Bénard convection in nanofluids was examined by 

Dhananjay et al. /16/. Xu and Xing /17/ numerically studied 

the flow and thermal performance of natural convection of 

a nanofluid flowing in a porous medium cavity by using the 

proposed LB model and found that the highly conductive 

porous foam and nanofluid will obviously improve natural 

convection's thermal performance, and its combination show 

a great potentiality for applications requiring a lot of heat 

flux. 

Coriolis forces are induced on spreading a nanofluid 

under the acceleration due to gravity and rotation vector 

normal to flow motions, which tends to show opposite 

influence on the spreading of flow. When viscous dissipator 

boundaries intersect isopotential surface, an equilibrium of 

geotropic state is reached, implying thereby a balance 

between Coriolis and buoyancy forces. Significance of rota-

tion on the onset of thermal instability in porous medium 

have been established by several researchers /18-23/. Shiva-

kumara and Nagashree /24/ studied the impact of electro-

thermoconvection in a rotating Brinkman porous layer. 

Yadav et al. /25/ examined the thermal instability of rotat-

ing nanofluid layers using a physically more realistic bound-

ary condition on the nanoparticle volumetric fraction and 

they have found a stabilizing effect of rotation on the system. 

Bakar et al. /26/ investigated the boundary layer flow and 

heat transfer in rotating nanofluid across a stretching sheet 

using the Buongiorno model and thermophysical properties 

of nanoliquids. Yadav /27/ has analysed numerically the 

importance of rotation and varying acceleration due to grav-

ity on the occurrence of convection in nanofluid saturated 

porous layer for both the cases of linear and parabolic vari-

ations in the gravity field. 

Several applications of electric field in dielectric fluids 

with low electric conductivity under variety of mechanisms 

are reviewed by Zhakin /28/. Some of these include heat 

exchange enhancement by EHD pumping, EHD- based 

devices used in aerospace industry to control vibrations and 

noise, formation of semiconductor by doping. Yadav et al. 

/29/ have given attention to the analysis of effect of electro-

thermal instability in the presence of nanoparticles in nano-

fluid layer. Chand and Rana /30/ investigated the impact of 

vertical AC electric field on the thermal convection in a rotat-

ing nanofluids by using the generalized Darcy-Brinkman 

model for porous media. Sharma et al. /31/ have investigated 

thermal convection of dielectric nanofluids in presence AC 

electric field. They observed the occurrence of oscillatory 

motion for case of bottom-heavy as well as top-heavy distri-

butions of nanoparticles. Recently, Rana et al. /32-35/ studied 

the effect of vertical AC electric field and rotation on the 

onset of thermal convection in a nanofluid layer for free-

free boundaries whereas Gautam et al. /36/ studied the effect 

of vertical AC electric field on the onset of thermal convec-

tion in a nanofluid layer for free-free, rigid-free and rigid-

rigid boundaries and found that the vertical AC electric field 

has destabilising influence, and rotation has stabilising influ-

ence on the system. 

The pulsating flow increases flow of fluid which depend 

on the nanofluids concentration and flow rate. Yadav /37/ 

studied the influence of pulsating throughflow of electrohy-

drodynamic convection in dielectric nanofluids saturated 

porous medium and found that amplitude of throughflow on 

varying frequency increases the stability of the system. The 

effect of pulsating throughflow on nanofluid thermal convec-

tion and heat transfer has been studied by many researchers 

/38-40/. Yadav /41/ investigated the combined influence of 

pulsing throughflow and magnetic field on the onset of 

convective instability in a nanofluid layer bounded in a Hele-

Shaw cell. Recently, simultaneous effect of rotation and 

pulsating throughflow on the development of longitudinal 

convective rolls in a porous media saturated by nanofluid is 

highlighted using the frozen profile method by Yadav /42/ 

and Yadav et al. /43/. They demonstrated that pulsing 

throughflow in both directions has a stabilizing impact. 

Oscillations of throughflow with higher amplitude are also 

found to stabilize a system to a large extent, which depends 

on the frequency. Recently, Vijayalakshmi et al. /44/ studied 

the hydromagnetic pulsating flow of nanofluid between two 

parallel walls with porous medium whereas Somasundaram 

and Reddy /45/ studied pulsating flow of electrically con-

ducting couple stress nanofluid in a channel with Ohmic 

dissipation and thermal radiation and found that velocity of 

nanofluid increases with an increment in frequency parame-

ter. 

Motivated by above studies, an attempt has been made to 

examine the onset of electroconvection in a rotating nano-

fluid with a vertical angular velocity, an AC electric field and 

pulsating throughflow in a porous medium by employing 

Darcy law of resistance forces, theoretically and analytically. 

The stress-free boundary conditions with zero volume frac-
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tion of nanoparticles are taken. This is an extension of the 

work of Yadav /42/. To the best knowledge of the authors 

this work has not been carried out yet. 

MATHEMATICAL FORMULATION 

An incompressible nanofluid with infinite extending elec-

trically conducting horizontal layer with thickness d between 

two parallel xy-planes is considered, which is heated from 

below in an isotropic porous medium of homogeneous 

medium porosity and medium permeability with tempera-

ture T0 at z = 0 toward lower plane and T1 at z = d toward 

upper plane with angular velocity  = (0, 0, ) as shown in 

Fig. 1. Both upper and lower boundaries are kept at constant 

temperature, respectively, (T1 < T0). Volumetric fraction flux 

of nanoparticles, Jz vanishes on both upper and lower plates. 

A vertical acceleration due to gravity force g (0, 0, –g) acts 

across the nanofluid and a uniform vertical external AC elec-

tric field is applied across the nanofluid layer. An electric 

circuit is maintained at lower bounding surface, whilst poten-

tials with root mean square value  is considered at upper 

bounding surface. 

 

Figure 1. Physical configuration of the problem. 

The equations of conservation of mass, momentum and 

energy using Boussinesq approximation for incompressible 

rotating nanofluid in pulsating throughflow saturated porous 

medium are /14, 15, 20, 36, 45/ 
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where: nq (u, v, w), k1, P, n, km, f, , n, , DB, DT, S 

represent Darcy velocity vector, medium permeability, 

density, volume fraction for nanoparticles, effective thermal 

conductivity, base fluids density, fluid dynamic viscosity, 

medium porosity, coefficient of thermal expansion, Brown-

ian diffusion coefficient, thermophoretic diffusion coeffi-

cient, specific heat at constant pressure, respectively. 

The electrical origin force /32/ ef  due to the presence of 

electric field is 
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Here, e and nE  represent density of charged particle and 

electric field, respectively. On right hand side of Eq.(5) first 

two terms are due to the presence of free charge particle 

(also known as coulomb force) and gradient of dielectric 

constant, and the last term is electrostriction term which is 

added with pressure pn in Eq.(2), without affecting the 

incompressibility of fluid. Thus, the modified pressure is 

given as: 
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Dielectric constant, n and nanofluid density,  are given by 

 0 01 ( )n e T T = − −   ,   0 01 ( )T T  = − −   . (7)  

Here, e is the coefficient of dielectric constant, and  is 

the coefficient of volume expansion. 

Assuming negligible density, /35/ are 

 .( ) 0n nE = ,   0nE = . (8) 

Second of Eq.(8), nE can also be written in terms of 

electric potential as 

 nE = − . (9) 

Since nanoparticles volume fraction on both the stress-

free bounding surfaces with uniform temperature vanish and 

the bounding surfaces are conducting perfectly. Therefore, 

Dirichlet boundary conditions of temperature are known as 

realistic. Thus, the appropriate boundary conditions to be 

satisfied are 
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 is the flux of nano-

particles volumetric fraction; w, 1 and  represent vertical 

velocity of nanoparticles, angular frequency vertical velocity 

of nanoparticle, and amplitude of pulsation, respectively. 

Introducing the non-dimensional variables for physical 

quantities 
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Equations (1)-(4) and (7)-(9) in non-dimensional form 

after using Eq.(11) become 

 . 0nq = , (12) 
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 modified Taylor number are the non-dimen-

sional parameters. 

The boundary conditions Eq.(10) become 

(1 cos )w U t = + , 1T = , 0zJ =    at   0z =    and  

(1 cos )w U t = + , 0T = , 0zJ =    at   1z = . (19) 

BASIC STATE 

Since there is no motion in the fluid flow initially and 

settling of the suspended nanoparticles in fluid, therefore, 

basic state solutions are given as  
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The solutions appropriate to basic state Eq.(20) are 
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represents relative volumetric fraction at z = 0. By consider-

ing mean value of Eq.(23) equality of b, in each section x 

is equal to its reference value 0, which yields 
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Eq. (26) gives the value of 0 in terms of Q1 and Q2 as 
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From Eq.(27) and (23), one gets 
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PERTURBATION EQUATIONS 

Now we shall explore at the hypothesis of a frozen profile. 

We write t0 for t in the basic solution Eqs.(22) and (28) and 
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Since our interest is to examine the stability pertaining to 

basic state, therefore, infinitely small disturbances are super-

imposed to the basic state of involved physical variables as  
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LINEAR STABILITY ANALYSIS 

Since the linear eigenvalue set of Eqs.(31)-(34) comprise 

of constant coefficients, therefore, a general solution varying 

exponentially on z is possible. We use normal mode tech-

nique, in which each arbitrary disturbance of dependent vari-

able is analysed in terms of normal modes, as well as to 

assess stability of individual modes, as 

( )
[ , , , ] [ ( ), ( ), ( ), ( )] x yi l x l y t
w T W z z z z e


 

+ +
=    , (37) 

where:  = r + ii is the growth rate of disturbance; lx and 

ly are horizontal wave numbers; a = (lx
2 + ly

2)1/2 is resultant 

wave number of the disturbance. 

Using Eq.(37) in Eqs.(31)-(34) and after some simplifi-

cations, the obtained stability equations are as under 

2 2 2 2 2 2 2( ) ( )a e a N eD a T D W R a R a R a R a D − + = − + +  + 
 

, (38) 

 2 2
1( ) 0bdT

W D a Q D
dz

− + − − −  = , (39) 

2 2
2 2 11 ( )

( ) 0b A

n e e n

d N QD a
W D a D

dz L L

 

  

 −
− + −  + − −  = 

  

,  (40) 

 2 2( ) 0D a D−  −  = . (41) 

The boundary conditions Eq.(19) in view of Eq.(37) trans-

form to 

 W = D2W = 0,  = 0, D = 0, D + NAD = 0 

 at   z = 0   and   z = 1. (42) 

METHOD OF SOLUTIONS (EXACT SOLUTION) 

The Eqs.(38)-(41) with boundary conditions Eq.(42) for 

the stress-free bounding surfaces constitute a characteristic 

equation with characteristic Ra whose solutions ought to be 

obtained. Therefore, the appropriate solutions of lowest mode 

satisfying the boundary conditions Eq.(42) are taken as 

 1sinW A z= , 1sinB z = , 1 sinAC N z = − , 

 and   1cosD z = . (43) 

Using this solution in Eqs.(38)-(41) and the condition of 

orthogonality over the range of z satisfying the boundary 

condition Eq.(42), we get the matrix form as 

2 2 2 2 2
1

2
1

12 2
11

2 12 21 1
2

1

1

( ) ( )

4
0 0

4
0

0

0 0

a e a A N e

A
A A

e e

J T a R R N R a a R

A
J

BQ

CN J J
J N N

DL L

J

 












 − + +
 

  
− −   

+    =
   
  − + 
    

 − − 

  (44)  

where: J1 = (a2 + 2); 
2 2 2

1
2 2 2 2 2 2 2

1 1

4 (4 )

(4 )(4 )

n e

n e

L Q
J

Q L Q

  

  

−
=

+ +
. 

The vanishing of coefficient matrix in Eq.(44) for occur-

rence of a non-trivial solution yields the thermal Rayleigh 

number Ra as 

2 2 2 2 2 2
2 1

2 2 2 2

(4 ) ( ){ (1 )}

( ) 4

a

a e

Q a a Ta
R R

a a

   

 

 + + + + +
 

= − + +
+

 

2 2 2 2 2 2 2
1

2 2 2 2 2 2
1

4 ( )( 1) (4 )

(4 ) ( )

A n n e e N

n e e

N a L L Q R

L Q a L

     


    

 + + + −
 

+
 + + +
 

, (45) 

which gives on putting  = ii  0 for pure oscillatory con-

vection, and after simplifications 

 1 2a iR i=  +  , (46) 

where, 
2 2 2 2 2

2 21
1 2 2 2 2

( )(4 )
[ (1 )]

4 ( )
a e

a Q a
a T R

a a

 


 

+ +
 = + + − −

+
 

 
2 2 2 2

1

2 2 2 2 2 2 2 2 2 2
1

(4 )

(4 )[ ( ) ]

e i n e
N A

n e e i

L L Q
R N

L Q L a

  


    

−
− −

+ + +
 

2 2 2 2

2 2 2 2 2 2 2 2 2 2
1

( ) [4 ( ) ]

(4 )[ ( ) ]

e n n
N A

n e e i

a L
R N

L Q L a

    


    

+ +
−

+ + +
, (47) 

 
2 2 2 2

1
2 2 2

(4 )[ (1 )]

4

aQ a T

a

 



+ + +
 = +  

2 2 2 2
1

2 2 2 2 2 2 2 2 2 2
1

( )[4 ( ) ]
e

(4 )[ ( ) ]

n e n e
N A

n e e i

a L L Q
R L N

L Q L a

     


    

+ − + + +
+

+ + +
.  (48) 

MATHEMATICAL ANALYSIS 

Stationary convection 

The occurrence of stationary modes is described by taking 

i = 0 in Eq.(47) which yields the thermal Rayleigh number 

of stationary modes 

 
2 2 2 2 2 2 2

1

2 2

( )( )(4 )

4

s a
a

a a T Q
R

a

   



+ + + +
= −  

 

2
2

2 2 2 2 2 2
1

4 ( )

( ) (4 )

A N e n n

e

n e

N R La
R

a L Q

  

  

 +
 

− −
+ +

. (49)  

It is observed from Eq.(49) that the value of Ra remains 

unaffected due to sign of Q1, the parameter accounting for 

pulsating throughflow on the stability. As t0 varies, the value 

of Q1
2 lies between a minimum U2(1 – 2) and a maximum 

U2(1 + 2), consequently, the physical system is stabilized 

large enough due to the presence of pulsating throughflow 

along both directions. 

To examine the effects of the involved non-dimensional 

parameters, the pulsating throughflow Q1, modified diffusiv-

ity ratio NA, electric Rayleigh parameter Re, medium porosity 

n, Taylor number Ta, nanofluid Lewis number Le, and Ray-

leigh number concentration RN, on the stability of stationary 

modes, the behaviour of 
1

s
aR

Q




, 

s
a

n

R

R




, 

s
a

A

R

N




, 

s
a

e

R

R




, 

s
a

n

R






, 

s
a

a

R

T




, and 

s
a

e

R

L




 have been examined analytically. Equation 

(49) yields that 

 2 2
12 2

1

11 1
( )

2

s
a aR T

a Q
Q a




 + 
= + + + 

  
 

 

2 2
1

2 2 2 2 2
1

8 ( )

(4 )

n n e e N A

n e

L L R Q N

L Q

  

 

+
+

+
, (50) 
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2

2 2 2 2
1

4 ( )

(4 )

s
a n n e A

N n e

R L N

R L Q

  

 

 +
= −

 +
, (51) 

 
2

2 2 2 2
1

4 ( )

(4 )

s
a N n n e

A n e

R R L

N L Q

  

 

 +
= −

 +
, (52) 

 
2

2 2( )

s
a

e

R a

R a 


= −

 +
, (53) 

 
2 2 2 2 2 2

1 1

2 2 2 2 2
1

4 (4 2 )

4(4 )

s
a e A n n e e N

n n e

R L N L Q L Q R

L Q

   

  

 − −
=

 +
, (54) 

 
2 2 2 2

1

2

( )(4 )

4

s
a

a

R a Q

T a

  + +
=


, (55) 

 
2 2 2 2 2 2

1 1

2 2 2 2 2
1

4 ( 4 2 )

(4 )

s
a N n A n n e e

e n e

R R N L Q L Q

L L Q

    

 

 − + +
=

 +
. (56) 

Equations (50) and (55) depict that pulsating throughflow 

Q1 and Taylor-Darcy number Ta are positive for all wave-

numbers, implying thereby that pulsating throughflow and 

angular velocity always stabilize a physical system for all 

wavenumbers; whereas destabilizing effect of electric field, 

medium porosity n, the diffusivity ratio (modified) and the 

concentration Darcy-Rayleigh number are assessed from 

Eqs.(51)-(54) for all wave numbers. The Lewis number sta-

bilizes or destabilizes a system for LeQ1
2(2n + Le) > 0 or 

< 0 as is clear from Eq.(56). 

Now special cases arise: 

Case I: in the absence of rotation, i.e. Ta = 0, Eq.(49) 

condenses to 
2 2 2 2 22

1

2 2 2 2

( ) (4 )

( ) 4

s
a e

a Qa
R R

a a

 

 

+ +
= − + −

+
 

 
2

2 2 2 2
1

[4 ( ) ]

(4 )

A N e n n

n e

N R L

L Q

  

 

+
−

+
, (57) 

which coincides with earlier result by Yadav, /36/. 

Case II: for regular fluids and absence of electric field, 

i.e. Le = RN = NA = 0, Re = 0, Eq.(57) further shrinks to 
22 2 2 2 2

1

2 2 2 2 2 2
1

[4 ( ) ]( ) (4 )

4 (4 )

s A N e n n
a

n e

N R La Q
R

a L Q

   

  

++ +
= −

+
. (58) 

This result agrees well with the result by Yadav, /42/. 

Case III: in non-pulsating throughflow, i.e. Q1 = 0, the 

Eq.(58) further reduces to 

 
2 2 2

2

( )s
a

a
R

a

+
= , (59) 

which is the well-known result for regular fluids in porous 

medium. 

CONVECTION OF OSCILLATORY MODES 

Comparing real and imaginary part of Eq.(46), the value 

of thermal Rayleigh number of oscillatory modes is given as 
2 2 2 2 2 22

1

2 2 2 2

( )(4 )[ (1 )]

( ) 4

osc a
a e

a Q a Ta
R R

a a

  

 

+ + + +
= − + −

+
 

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2 2 2
1

(4 ) ( ) {4 ( ) }

(4 )[ ( ) ]

e i n e e n n
N A

n e e i

L L Q a L
R N

L Q L a

       


    

− + + +
−

+ + +
 (60)  

and the frequency of oscillatory modes is expressed by the 

following expression 

4 22 2 2
2

2 2 2 2 2 2 2 2 2
1 1

16( )

[ (1 )](4 )(4 )

A N n
i

e a n e

a N Ra

L a T Q L Q

   


   

+
= − − +

+ + + +
 

 
2 2 2 2

1

2 2 2 2 2 2 2 2 2
1 1

4 [4 ( ) ]

[ (1 )](4 )(4 )

e A N n n e

e a n e

a L N R Q L

L a T Q L Q

      

   

− −
+

+ + + +
. (61) 

The oscillatory neutral solution exists for at least one posi-

tive root of Eq.(61). It is noticed from Eq.(61) that oscilla-

tory convection remains unaffected with electric field. In 

non-dispersion of nanoparticles (RN = 0, NA = 0), the frequen-

cy of oscillations becomes 
2 2 2

2

2

( )
0i

e

a

L

 


+
= −  . Hence, 

the oscillatory convection does not occur for regular fluid 

with pulsating throughflow and rotation. 

Using values of the non-dimensional parameters pertain-

ing to nanoparticles by Buongiorno, /14/, Yadav /29, 36/, 

that of the Lewis number Le ranges in 101 – 103, Rayleigh 

number concentration RN, diffusivity ratio (modified) NA 

and , 1 – 10 and that of porosity n, 0 – 1, it is observed 

from Eq.(61) that the frequency of oscillatory mode is always 

negative, i.e. i
2 < 0. Consequently, there is no real positive 

root which is necessary for the onset of oscillatory convec-

tion. Hence, the oscillatory motions do not occur for realis-

tic boundary conditions. 

NUMERICAL RESULTS AND DISCUSSION 

The expression of non-oscillatory thermal Rayleigh 

number, the deciding parameter of stability, is encapsulated 

in Eq.(49) to examine the impact of pertinent non-dimen-

sional parameters on the stability of a system. The values of 

these thermal Rayleigh numbers with variations in wave 

number are computed numerically using MATHEMAT-

ICA-12® by varying one of the non-dimensional parameters 

keeping other fixed with permissible values taken by many 

authors Buongiorno /14/, Yadav /36/, and Yadav et al. /43/, 

many more, i.e. Rn = 0.5, NA = 3, Le = 20, Re = 10, Q1 = 0.8, 

Ta = 5, n = 0.5. These numerically computed results have 

been represented graphically in Figs. 2-8 for both top- heavy 

as well as bottom heavy arrangements of nanoparticles. 

The variation of electric Rayleigh number, Re, accounting 

for AC electric field against the wave number is displayed 

in Fig. 2. It is assessed from figures that value of thermal 

Rayleigh number falls with rise in electric Rayleigh number, 

thereby advancing the initiation of stationary convection. It 

is also assessed that the critical wave number attains the 

same value i.e., however, the corresponding critical thermal 

Rayleigh number falls. Thus, the stability region under sta-

tionary modes is shrunk. This happens so for; the stability 

of the system is lowered with increasing the strength of the 

electric field and electrostatic energy. However, the critical 

wavenumber remains unaffected. 

The effect of various values of Lewis number, Le, on the 

thermal Rayleigh number versus a on the neutral curves is 

assessed in Fig. 3. It is depicted that a rise in the thermal 

Rayleigh number is observed with an increment in Le. This 

rise occurs due to the increase in Brownian motion of the 

nanoparticles with an increment in Le. However, the critical 

wavenumber remains unaffected. 
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Figure 2. Plot of neutral curves Ra against a vs. parameter Re. 
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Figure 3. Plot of neutral curves of Ra against a vs. parameter Le. 
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Figure 4. Plot of neutral curves of Ra against a vs. parameter NA. 

The impact of modified diffusivity ratio NA and the con-

centration Rayleigh number RN on the framework of stability 

are displayed in Figs. 4 and 5. It is assessed from Figs. 4 

and 5 that increment in the values of both Rayleigh number 

and modified diffusivity ratio of nanoparticles decrease the 

critical Rayleigh number. Consequently, both these parame-

ters tend to advance onset of stationary modes in nanofluids. 

It happens so because the thermophoresis, as well as nano-

particle’s Brownian rise in lieu of increasing values of both 

Rayleigh number and modified diffusivity ratio of the nano-

particles. It is also illustrated from the figures that the critical 

wave number remains unaffected. 
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Figure 5. Plot of neutral curves of Ra against a vs. parameter RN. 
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Figure 6. Plot of neutral curves of Ra against a vs. parameter Q1. 

The impact of distinct values of pulsating throughflow 

parameter Q1, on the thermal Rayleigh number versus wave 

number a is shown in Fig. 6. It is depicted that the thermal 

Rayleigh number takes higher values with an increment in 

the pulsating throughflow parameter, thereby shrinking the 

size of convection cells and expanding the region of stabil-

ity. A fall in the critical wave number with rise in the pulsat-

ing throughflow parameter is also observed. Thus, the system 

is stabilized large enough with pulsating throughflow param-

eter. 

Figure 7 reveals that the thermal Rayleigh number 

decreases with an increment in medium porosity n. Thus, 

medium porosity shows a destabilizing effect on stationary 

convection. This happens because the volume of the solid 

matrix enhances with a rise in the medium porosity. It is also 

observed that the critical thermal Rayleigh number descends, 

while value of the critical wave number is unchanged. 

Figure 8 demonstrates the impact of various values of the 

Taylor number Ta, accounting for angular velocity of the 

fluid on the framework of stability. It is depicted from the 

figure that there is an enhancement in the critical wave 
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number and Rayleigh number with an increment in the rota-

tion parameter. Therefore, the region of stability under the 

stationary modes is enhanced meaning, thereby, shrinking 

substantially the size of convective cells. Thus, rotation tends 

to suppress the fluid motion along the vertical, and the con-

vection as well. 
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Figure 7. Plot of neutral curves of Ra against a vs. parameter n. 
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Figure 8. Plot of neutral curves of Ra against a vs. parameter Ta. 

CONCLUSIONS 

The joint effect of vertical electric field and pulsating 

throughflow on the occurrence of thermal convection in a 

nanofluid layer rotating about the vertical in a porous media 

by employing Darcy law is examined analytically for realis-

tic stress-free boundary conditions. The Boungiorno model 

integrates effects of Brownian motion and thermophoresis 

diffusion coefficients with that of electrophoresis and elec-

trostatic energy. The stability criterion is analysed by apply-

ing linear theory, normal mode technique and one term Ga-

lerkin approximation. The numerically computed values of 

the thermal Rayleigh number with respect to pertinent 

involved parameters individually on the onset of stationary 

modes are represented graphically. It is established that pulsat-

ing throughflow and rotation tend to stabilize a system sub-

stantially. A system is destabilised by the electric field, modi-

fied diffusive ratio, and nanoparticle Rayleigh number. The 

Lewis number and the medium porosity stabilize or destabi-

lize a system under certain conditions involving parameters. 
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