
INTEGRITET I VEK KONSTRUKCIJA 

Vol. 22, br. 1 (2022), str. 69–74 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 22, No 1 (2022), pp. 69–74 

 

69 

Praveen Ailawalia1*, Vikas Sharma2 

WAVE PROPAGATION IN THERMOELASTIC MICROELONGATED HALF-SPACE 

PROSTIRANJE TALASA U TERMOELASTIČNOM MIKROIZDUŽENOM POLUPROSTORU 

 
Originalni naučni rad / Original scientific paper 

UDK /UDC:  

 

Rad primljen / Paper received: 05.03.2021 

Adresa autora / Author's address: 
1) Department of Mathematics, Maharishi Markandeshwar 

(Deemed to be University), Mullana-Ambala, Haryana, 

India   email: praveen_2117@rediffmail.com  
2) Department of Applied Sciences, Chandigarh Group of 

Colleges, Landran-Mohali, Punjab, India 
 
Keywords 

• microelongated 

• velocity equation 

• thermoelastic 

• LS and GL theory 

• microelongation parameter 

Abstract 

The research article deals with the propagation of waves 

in a thermoelastic microelongated solid in the context of LS 

and GL theories of thermoelasticity. The governing equations 

are solved to obtain the velocity equation. The velocity 

equation shows the existence of four waves in the medium. 

Wave velocities have been computed for a particular medium 

and the effect of micro-elongation parameter on the veloc-

ity components has been depicted graphically. 

Ključne reči 

• mikroizduženje 

• jednačina brzine 

• termoelastičnost 

• teorije LS i GL 

• parametar mikroizduženja 

Izvod 

U ovom radu se bavimo istraživanjem prostiranja talasa 

termoelastičnom mikroizduženom čvrstom telu u kontekstu 

LS i GL teorija termoelastičnosti. Rešavanjem izvedenih 

jednačina dobija se jednačina brzine. Jednačina brzine 

pokazuje postojanje četiri talasa u medijumu. Izračunate su 

brzine talasa za poseban medijum, a uticaj parametra mikro-

izduženja na komponente brzine je grafički prikazan. 

 

INTRODUCTION 

A group of unified particles in the form of small rigid 

bodies experiencing both translational and rotational motion 

is known as a micropolar continuum. The theory is appro-

priate for simulating the mechanical behaviour of material 

particles having rigid directors, chopped fiber composites, 

platelet composites, aluminium epoxy, a large class of sub-

stances like liquid crystals with rigid molecules, rigid sus-

pensions, concrete with sand and muddy fluids, etc. The 

prevalent use of these types of composite materials has 

increased interest in this theory. The generalised theory of 

linear micropolar thermoelasticity is established by Boschi 

and Iesan /1/. Various works carried out in this field illus-

trate that each particle of the material may make both micro-

rotation and volumetric elongation along with the bulk defor-

mation. From this, we can conclude that a microstretch 

elastic solid has seven degrees of freedom. These may be 

detailed as, three degrees for translation, three degrees for 

rotation, and one degree for stretch. The stretching and 

contracting of material points of microstretched bodies are 

not affected by their rotation and translation. Such a gener-

alised solid may hold more information about the micro-

deformation inside a material point. This information can 

be used as a mathematical model for different media which 

may not fall under the domain of micropolar elasticity. 

The microstretch continuum provides a useful model in 

the study of different fields like, solids with micro-damages, 

animal bones, foams, and porous media whose pores are 

filled with gas or inviscid liquid, etc. Solid-liquid crystals, 

composite materials reinforced with chopped elastic fibers, 

porous media with pores filled with non-viscous fluid or 

gas can be categorised as a microelongated medium. 

Classical theory is not sufficient to model the behaviour 

of materials having internal structure. Eringen and Suhubi 

/2-3/ developed a nonlinear theory of microelastic solids. 

Later on, Eringen /4–6/ developed a theory according to 

which material particles in solids can undergo macro-defor-

mations as well as micro-rotations and entitled this theory 

as ‘linear theory of micropolar elasticity’. Then he gave a 

theory of micropolar elastic solid with stretch in which he 

introduced axial stretch, /7/. Nowacki /8/, Eringen /9/, 

Tauchert et al. /10/, and Nowacki and Olszak /11/ explained 

thermal effects in the micropolar theory. The generalised 

theory of thermoelasticity is the first theory, whereas the 

second of Lord and Shulman’s /12/ is the theory of tem-

perature-rate-dependent. An entropy production inequality 

is presented by Muller in the review of thermodynamics of 

thermoelastic solids. This helped him in considering res-

trictions on a class of constitutive equations /13/. Green and 

Laws /14/ proposed a generalisation of this. Green and 

Lindsay developed these constitutive equations /15/ differ-

ently. These equations are discussed by Suhubi /16/ inde-

pendently and explicitly which contains two relaxation time 

constants. This results in transforming all the equations of 

the coupled theory. Sherief /17/ discovered components of 

stress and temperature distributions in a thermoelastic 

medium due to a continuous source. Dhaliwal et al. /18/ 

examined thermoelastic interactions due to a continuous 

line heat source in a homogeneous isotropic unbounded 
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solid. Thermoelastic interface due to a continuous point heat 

source in a homogeneous and isotropic unbounded body is 

investigated by Chandrasekharaiah and Srinath /19/. Sharma 

and Chauhan illustrated mechanical and thermal sources in 

a generalised thermoelastic half-space /20/. Transient distur-

bance in half-space due to moving internal heat source under 

the L-S model is studied by Sarbani and Amitava /21/ to 

obtain the solution for displacements in the transformed 

domain. The solution of a problem on a generalised thermo-

elastic infinite medium with a spherical cavity subjected to 

a moving heat source is found by Youssef /22/. Shaw and 

Mukhopadhyay /23/ investigated the periodically changing 

heat source reaction in a functionally graded microelongated 

medium. A thermoelastic interaction in a microelongated, 

isotropic, homogeneous medium in the presence of a shifting 

heat cause is investigated by Shaw and Mukhopadhyay 

/24/. Ailawalia et al. /25/ discussed the effect of internal 

heat source in thermoelastic microelongated solid at an inter-

face for G-L theory. 

The present article deals with the plane wave propagation 

in a thermoelastic microelongated solid. The governing 

equations are solved analytically to obtain the velocity 

equation. The wave velocities have been obtained for an 

aluminium epoxy-like material and the effect of micro-

elongation parameter on the velocity components has been 

depicted graphically for LS and GL theories of thermo-

elasticity. 

BASIC EQUATION 

The constitutive equations for a homogeneous, isotropic, 

microelongated, thermoelastic solid are given by Shaw and 

Mukhopadhyay, /24/: 

, , , 0 1 2( ) 1ij kl r r k l l k k klu u u t T
t
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The field equation of motion according to /26, 27/ and 

heat conduction equation according to /28/ for the displace-

ment, microelongation, and temperature changes are 

, , 0 1 2 , 0 ,( ) 1j ij i jj k i iu u t T u
t

       
 

+ + − + + = 
 

, (5) 

0 , 1 1 2 1 0 , 0
1

1
2

ii k j ja t T u j
t

       
 

+ + + − = 
 

, (6) 

, 0 0 0 0 1 , 1 01 1 0ii k k kKT C t T T t u T
t t

    
    

− + − + − =   
    

, (7) 

where: 0 = (3 + 2)t1; 1 = (3 + 2)t3;  = kk is micro-

elongational stress tensor; s = skk is component of stress 

tensor; kl is Kronecker delta; mk is component of micro-

stretch vector;  and  are Lame’s elastic constants; a0, 0, 1 

are microelongational constants; C is specific heat at constant 

strain; K is thermal conductivity; t1 and t3 are coefficients 

of linear thermal expansion;  is density of microelongated 

medium; j0 is microinertia; t0, t1 are thermal relaxation 

times; T is thermodynamic temperature above reference tem-

perature T0;  is microelongational scalar; iu u=  is dis-

placement vector; k = 1 for Lord-Shulman (L-S) theory; and 

k = 2 for Green-Lindsay (G-L) theory. 

FORMULATION OF THE PROBLEM 

We have considered two dimensional disturbances of 

medium parallel to xy-plane with all physical quantities 

depending upon (x, y, t). For this we use displacement 

vector lu  = (u1, u2, 0). 

Hence, Eqs.(5)-(7) become: 
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The constitutive components of microelongational stress 

tensor are given by 

1 2
1 1 2 0( 2 ) 1xx k

u u
t T

x y t
       

   
= + + − + + 

   

, (12) 

1 2
1 1 2 0( 2 ) 1yy k

u u
t T

y x t
       

   
= + + − + + 

   

, (13) 

 1 2
xy

u u

y x
 

  
= + 

  

. (14) 

To simplify calculations, we use following non-dimen-

sional variables defined by 
*
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Using the above non-dimensional variables in Eqs.(8) to 

(13) and after dropping superscripts we get, 
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ANALYTICAL SOLUTION 

Here, we use normal mode analysis technique to decom-

pose the solution of the considered physical variables as 

 ( )* * * * s )in( cos –( , , , , , ,) im x q y q vt
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where: vi is phase velocity; (sin, cos) represents the projec-

tion of the wave normal onto the x-y plane; i, s is the wave 

number; and ui
*, T*, * and σij

* are the amplitudes of field 

quantities. Using this solution from Eqs.(15) to (18) we get: 
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Since Eqs.(23)-(26) represent a system of homogeneous in 

variables u1, u2, , T, therefore, its trivial solution requires: 

 

2 2 2 *
3 2 1

2 2 2 *
2 3 1

*
26 6 5 1 4

2
7 7 7 77

* 2 * 2
9 0 9 0 10

* * *
8 0 8 0 8 0

1
(sin cos ) sin cos sin sin

1
sin cos ( sin cos ) cos cos

1
sin cos

( ) ( ) ( )( )

sin cos

( )

l v l vt
ik

l l v vt
ik

A l l l t l v
v

im l im l l l iml im

l t imv l t imv l v

l t l t l t im

     

     

 

 

+ − −

+ − −

 =
 − − −
 
 

2

*
8 0

0

1
v

l t

=

 
 +
 
 

. (27) 

On solving this 
1 2
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But we can see that D2 = 0 as well as D3 = 0. Thus, we 

have D1∙D4 = 0, 
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And the roots of the equation are given as follows 
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The four roots j (j = 1...4) of Eq.(25) correspond to 

complex values of phase velocities of the P1, P2, P3, P4 

waves. If vi
–1 = Vi

–1 + i
–1qi (i = 14), the phase velocity v 

and wave number m are complex quantities and can be 

written as m iq
V


= + , where V and q are real. If the real 

part Re(v) ≥ 0, then the real parts of the four roots of 

Eq.(28) represent the speed of propagation of P1, P2, P3, P4, 

and Img(v) ≤ 0 refers to the damped wave. Then clearly, Vj 

and qj are the speeds of propagation and the attenuation 

coefficients of the coupled P1, P2, P3, and P4 waves. 
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NUMERICAL RESULTS AND DISCUSSION 

Numerical illustrations have been performed to calculate 

speeds v1, v2, v3, and v4, of reflected plane waves, namely, 

P1, P2, P3, and P4 waves, by taking the following relevant 

physical constants of the medium satisfying the inequalities 

between the constants at T0 = 20 °C. For numerical compu-

tations, we consider the values of constants for aluminium 

epoxy-like material as /24/:  = 7.59×1010 N/m2,  = 1.89× 

1010 N/m2, a0 = 0.61×10−10 N,  = 2.19×103 kg/m3, 1 = 

0.05×105 N/m2K, 0 = 0.05× 105 Nm2K, C = 966 Jkg−1K−1, 

T0 = 293 K, j0 = 0.196× 10−4 m2, 0 = 1 = 0.37×1010 N/m2, 

t0 = 0.3, t1 = 0.1, K = 252 J/msK. The computations are 

carried out for the value of non-dimensional time t = 0.3 in 

the range 0 ≤ y ≤ 1.0 and on the surface x = 1.0. 

To observe the effects of microelogation parameters 1 

on the velocity of these waves, authors have solved Eq. 

(25) numerically and calculated the absolute value of the 

speed of propagation of P1, P2, P3, and P4 waves. 

 
Figure 1. Variation of phase velocity v1 against wave number. 

 
Figure 2. Variation of phase velocity v2 against wave number. 

 
Figure 3. Variation of phase velocity v3 against wave number. 

The speeds of P1, P2, P3, and P4 waves are plotted against 

the wave number for different values of microelogation 

parameters 1 = 0, 10, 20. These variations of velocities of 

P1, P2, P3, and P4 waves are shown in Figs. 1-4, in respect. 

The values of phase velocity v1 decrease sharply in the 

range 0 ≤ k ≤ 12.0 and the degree of sharpness increase 

with increase in value of microelongation parameter 1. The 

effect of microelongation parameter 1 reduces with increase 

in wave number k. The variations of phase velocity v1 

against wave number k are shown in Fig. 1. The variations 

of phase velocity v2 are similar in nature to the variations of 

phase velocity v1 with the difference being that the values 

decrease in the range 0 ≤ k ≤ 5.0 for 1 = 10.0 and 0 ≤ k ≤ 

7.0 for 1 = 20.0. These variations of v2 are shown in Fig. 2.  

Contrary to the variations of phase velocities v1 and v2, 

the value of phase velocity v3 first increases and then de-

creases sharply for 1 = 10.0, 20.0. Values of phase velocities 

are very less and are almost constant in magnitude in the 

absence of microelongation parameter 1. Values of phase 

velocity v4 for 1 = 10.0 and 20.0 are identical to each other 

in the range 0 ≤ k ≤ 2.2. However, with increase in wave 

number, the difference between the values of phase velocity 

v4 becomes more and more significant. These variations of 

v3 and v4 are shown in Figs. 3 and 4, respectively. 

 
Figure 4. Variation of phase velocity v4 against wave number. 

 
Figure 5. Variation of phase velocity v1 against wave number for 

L-S and G-L theories. 

The velocities of P1, P2, P3, and P4 waves are plotted 

against the wave number to show the comparison between 

GL theory (–o–) and LS theory(–*–) of thermoelasticity for 

a fixed value of microelongation parameter 1 = 1.0. These 

variations of velocities of P1, P2, P3, and P4 waves are 

shown in Figs. 5-8, respectively. These variations of veloci-

ties show similar behaviour for both theories of thermo-
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elasicity. The values of phase velcocity v1 decrease sharply 

with increase in wave number and converge to a constant 

value as shown in Fig. 5. 

Values of phase velocity v2 decrease sharply in the range 

0 ≤ k ≤ 4.8 and then increase in the remaining range. These 

values of v2 are quite close to each other for both LS and 

GL theories of thermoelasticity. The difference in values of 

v2 among the two theories is visible in the range 3.0 ≤ k ≤ 

7.0. These variations of v2 are shown in Fig. 6. It is observed 

from Fig. 7 that the values of phase velocity v3 increase in 

the range 0 ≤ k ≤ 5.0 and further decrease in the range 5.0 < 

k ≤ 10.0. Unlike the values of v1 and v2, the values of phase 

velocity v3 for LS and GL theories are significant in magni-

tude in the range 0 ≤ k ≤ 9.0. The variations of phase veloc-

ity v4 follows a downward trend for both LS and GL theories 

of thermoelasticity. This downward pattern becomes more 

sharp in the region 9.0 ≤ k ≤ 10.0. These variations of phase 

velocities v3 and v4 are shown in Figs. 7 and 8, respectively. 

 
Figure 6. Variation of phase velocity v2 against wave number for 

L-S and G-L theories. 

 
Figure 7. Variation of phase velocity v3 against wave number for 

L-S and G-L theories. 

 
Figure 8. Variation of phase velocity v4 against wave number for 

L-S and G-L theories. 

CONCLUSION 

Coupled partial differential equations for a homogeneous, 

isotropic, microelongated, thermoelastic solid are formulated, 

and speeds of waves, namely, P1, P2, P3, and P4 waves, are 

obtained for a particular material. The effect of microelon-

gation parameters on phase velocities is studied. It is found 

that the microelongation parameter effects the speeds of 

plane waves significantly. In the absence of microelongation 

parameter the values of phase velocities are very less in 

magnitude. Also, the values of phase velocities for both the 

theories of thermoelasticity are quite close to each other. 
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