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Abstract 

The present research deals with thermal behaviour in a 

rotating disc of transversely isotropic material with rigid 

shaft by using transition theory and generalized strain meas-

ure. It has been seen that the radial stress has a maximum 

at the internal surface of the disc made of transversely iso-

tropic material. Transversely isotropic material required 

higher value of radial stress at the internal surface of meas-

ure n = 1/5 in comparison to the disc of isotropic material, 

meaning that the transversely isotropic material is more 

comfortable than that of isotropic material. By increasing 

the values of angular speed and thermal condition, the value 

of radial stress as well as tangential stress must be increased 

at the internal surface depicted graphically. With the intro-

duction of thermal condition the creep strain rates increase 

at the internal surface of the disc of isotropic material. 

Ključne reči 

• termičko ponašanje 

• disk 

• osovina 

• berilijum 

• mesing 

Izvod 

Opisano istraživanje se bavi termičkim ponašanjem roti-

rajućeg diska od transverzalno izotropnog materijala sa 

krutom osovinom primenom teorije prelaznih napona i gene-

ralisane mere deformacija. Pokazuje se da radijalni napon 

dostiže maksimum na unutrašnjoj površini diska od transver-

zalno izotropnog materijala. Transverzalno izotropni mate-

rijal zahteva veću vrednost radijalnog napona na unutraš-

njoj površini sa merom n = 1/5 u odnosu na disk od izo-

tropnog materijala, što znači da je transverzalno izotropni 

materijal pogodniji od izotropnog materijala. Povećanjem 

vrednosti ugaone brzine i termičkih uslova, vrednost radi-

jalnog napona kao i tangencijalnog napona se povećavaju 

na unutrašnjoj površini diska što je ilustrovano grafički. 

Uvođenjem termičkog uslova, vrednosti brzine puzanja rastu 

na unutrašnjoj površini diska od izotropnog materijala. 

INTRODUCTION 

A lot of research has been carried out to predict creep 

deformation and thermal flow using thermoelasticity theories 

during the past few years. The process of creep has been 

observed for different materials. Under the conditions of 

constant load or stress with respect to time-dependent plastic 

flow of materials is defined as creep. Creep is usually con-

cerned with engineers and metallurgists when evaluating 

components that operate under high stresses or high tem-

peratures. Transition stresses in the rotating discs play a very 

important role for efficient design. Rotating discs have a 

wide range of applications such as rotors in rotating high 

speed gear engines, flywheels, turbines, computer disc 

drives, shrink fits, compressors, and machinery, etc. Such 

discs work under complex thermal and mechanical loads. 

For instance, gas turbine rotors engaged in power plants 

and aerospace engineering are subjected to centrifugal force 

and low and high temperature environment are highly 

strung to creep for a long time. The analytical studies of 

elastic-plastic rotating discs made of transversely isotropic 

materials can be found in many books /1-4/. The uses of 

rotating discs in engineering and scientific applications have 

generated interest in creep problems and have continued the 

research area for a long time. Swainger /5/ explained the 

analysis of deformation. Ghose /6/ discussed the thermal 

effect on the transverse vibration of a spinning disk of 

variable thickness. Murakami et al. /7/ obtained constitutive 

equation for transversely isotropic materials and its applica-

tion to the bending of perforated circular plates. Further-

more, Thakur et al. /8/ applied Seth’s transition theory to 

the problem of thermal creep transition stresses and strain 

rates by finitesimal deformation in a thin rotating disc with 

shaft and having variable density parameter. Gupta et al. /9/ 

investigated thermoelastic plastic transition in a thin rotat-

ing disc with inclusion by using Seth’s theory. In this paper, 

thermal behaviour in a rotating disc made of transversely 

isotropic material with rigid shaft is discussed by using 

transition theory. The generalized principal measures in 

Cartesian coordinates may be written in the form /10, 11/: 

 ( )
1

2 2

0

1
1 2 1 1 2

A
ii

n n
A A A

ii ii ii iid
n



   
−  

   = − = − −
   

 

 , (1)  

where: n is strain measure coefficient; ii
A Almansi finite 

strain component; and i = 1, 2, 3, and n = -2, -1, 0, 1, 2, it 

gives Green, Cauchy, Hencky, Swainger, and Almansi, 

respectively. 
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MATHEMATICAL PROFILE AND GOVERNING BASIC 

EQUATIONS 

We consider a homogeneous rotating disc mounted on a 

rigid shaft made of transversely isotropic material with 

constant density and having central bore of internal radius ri 

and external radius r0 (r0 > ri) as shown in Fig. 1. The disc 

rotates gradually increasing at angular speed  around an 

axis perpendicular to its plane and passes through the centre. 

The thickness of disc is assumed very small so that the disc 

is effectively in a state of plane stress and the temperature 

 is applied to the central bore of the internal surface of the 

disc made of transversely isotropic/isotropic materials. 

 

Figure 1. Geometry of rotating disc. 

Boundary conditions: we consider internal surface of the 

rotating disc is fixed to a shaft and external surface is free 

from mechanical load. So, the boundary conditions of the 

problem are taken mathematically as: 

 00,   ;   0,   i rru r r r r= = = = , (2) 

where: rr and u are radial stress and displacement along the 

radial direction, respectively. 

Displacement coordinates and strain measures: since the 

shaft is strained symmetrically, therefore, we can take the 

components of displacement in cylindrical coordinates as: 

 0;(1 );      u zvr w d= − == , (3) 

where:  is position function, depending on 
2 2x y = +  

only; and d is a constant. 

Finite-strain components: the finitesimal components of 

strain are given by /10, 11/ as: 

2 2 2
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 0A A A
r z zr   = = = , (7) 

where: u, v, w are the physical components of displacement 

and rr
A, A, zz

A, r
A, z

A and zr
A are the components of 

strain tensor ij
A and superscript ‘A’ is the Almansi and  = 

d/dr. 

Generalized strain components: using the generalized 

components of strain is given by /11/: 
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( ') 1n
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 
, (8) 
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, (10) 

 0r z zr   = = = . 

Stress-strain relations for transversely isotopic material: 

thermoelastic constitutive equations are given by /2, 12/:  

 11 11 66 13 1( 2 )rr rr zzc c c c    = + − + −  , 

 11 66 11 13 1( 2 ) rr zzc c c c     = − + + −  , 

 0r z zr zz    = = = = , (11) 

where: 1 = 1c11 + 22c12; 1 is coefficient of linear thermal 

expansion across the axis of symmetry; 2 is the corre-

sponding quantities orthogonal to axis of symmetry; cij are 

elastic material parameters (constants); and  is the temper-

ature change. Stresses are obtained as substitution in Eqs. 

(8)-(10), we get 
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 0r z zr zz    = = = = . (12) 

The temperature field satisfying the heat equation is 

given /2/: 

 
2 1

0
d d

r
r dr dr

 
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 
, 

 and   0=    at   r = ri,   0=    at   r = r0, 

where: 0 is a constant. Solving this equation, we get 

 0 0ln( / )r r= , (13) 

z 
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where: 0
0

0ln( / )ir r


 = . 

Equations of equilibrium for stress-strain are satisfied 

except 

 2( )
( ) 0rr

rr
d

r
dr r

 
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−
+ + = , (14)             

where: 
 
is the constant density of the disc material. 

Asymptotic solution at transition points: from Eq.(12) in 

Eq.(14), we get a nonlinear differential equation in  as: 

1 1
11 11 11 66(1 ) (1 ) ( 2 )n n n n ndT

c n T T c n T T c c n T
d
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
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( ) 2 2
66 12 1 1

n n
oc T n n r   + − + −  +

  
, (15)          (15) 

where: r = T. From Eq.(13), the transitional points of  

are T = –1 and T → . 

ANALYTICAL CREEP SOLUTION OF THE PROBLEM 

Gupta et al. /9/, Seth /10, 11/, and Thakur et al. /13-35, 

37, 38/ have shown the asymptotic solution which leads to 

creep state at transition point T → –1 via the principal stress 

differences. We define the transition function  to find the 

creep stresses as: 

 66
2

(1 ) 1n n
rr c T

n
     = −  − + +

 
. (16) 

Taking the logarithmic differentiation of Eq.(16) with 

respect to r, we get: 

 

1 (1 ) (1 )

(ln )
(1 ) 1

n n

n

dT
nT T T

dd

dr r T




 
− + − + 

 
 =

 − + +
 
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Using Eq.(15) into Eq.(17) and by taking asymptotic value 

T → –1, we get 
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 (18) 

where: c1 = 2c66/c11. As T → –1, the asymptotic value of  

is M/r, M is a constant. Now integrating Eq.(18), we get 

 12 ( 1)
1 exp( )

n c n
rr A r f  − + −

= −  , (19) 

where: A1 is a constant of integration and 
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From Eq.(19) and Eq.(14), we get 

1

2 2
1 2 ( 1)

1 2exp( )
2

n c n
rr

r
A r f dr A


 − − + −

=− − + , (20) 

where: A2 is a constant of integration. Inserting Eq.(4) into 

Eq.(20), we have 
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By using Eq.(21) into Eq.(20), we get 
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Now, from Eq.(19) by making use of Eq.(22), we get 

0
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To investigate the displacement of the rotating disc by 

combining Eq.(16) and Eq.(19), we get 
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As T → –1, Eq.(24), we get 
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Inserting Eq.(25) into Eq.(3), the component of displace-

ment becomes: 
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Therefore, the constant A1 is obtained by applying Eq.(2) 

into Eq.(26), we get 
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Now, using the value of A1 in Eqs.(22), (23) and (26), we 
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Non-dimensional components: non-dimensional quantities 

are introduced as follows: 
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Creep stress distribution and displacement 

Creep stress distribution and displacement in non-dimen-

sional form become from Eqs.(28)-(30), we get 

1

1

0

2 ( 1) 2 21
1 2 ( 1)02 ( 1)

exp( )
2exp( )

n c n
n c n

r
RR R

R R
R f dR

n f


− −
− − + −

=

 −
= − , (31) 



Thermal behaviour in a rotating disc made of transversely  Termičko ponašanje rotirajućeg diska od transverzalno  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 21, br.3 (2021), str. 217–223 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 21, No.3 (2021), pp. 217–223 

 

220 

1

1

0

2 ( 1) 1
1 2 ( 1)02

exp( )
exp( )

n c n
n c n

RR R

R
R f dR

n f


− −
− − + −

=


= −


  

 1

2 2
2 ( 1) ( 1)

exp( )
2

n c n R
R f
− + −  −− −


, (32) 

 

1

0

1

2 ( 1)

0

exp( )

exp( )

n c n n

R R

R f
U R R

R f

− + −

=

 
  = −  
  
 

, (33) 

where: 
2

20 04 1 1

2 2( 2)

n n
n nr rc n c

f R R
M n n

 +   
= −   

+   
. 

Creep strain rates: creep strain rates are given /34/: 
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Equations (31)-(34) are the same as given by Thakur et 

al. /31/ when we neglect the thermal condition. 

NUMERICAL RESULTS AND DISCUSSION 

Simpson’s 1/3 rule of numerical integration has been 

used to approximate the values of the definite integrals in 

Eqs.(31) and (32). To illustrate, the following analysis of 

creep stresses and strain rates and displacement based on 

the below analysis, the following values have been taken: 

2 = 2r0
2 = 15.20; elastic constants cij (1010 N/m) for trans-

versely isotropic material (say beryl: c11 = 2.746, c12 = 0.980, 

c13 = 0.674) and isotropic material (say brass: c11 = 3.000, 

c12 = 1.000, c13 = 1.000) /31/; 4 = 0, 25, 50; n = 1/N (meas-

ure in classical theory) /36/. Figure 2 depicts the creep 

stress distribution along the radii ratio R = r/r0
 
at 2 = 15, 

20; and temperature 4 = 0, 25, 50; and n =1/3, 1/5 (i.e. N = 

3, 5). It has been observed that from Fig. 2a-c the radial 

stress is maximum at the internal surface of the disc made 

of beryl material as compared to the brass material. Beryl 

material disc required higher value of radial stress at the 

internal surface to measure n = 1/5 in comparison to the 

disc made of brass material, meaning that beryl material 

disc is more comfortable than that of brass material. With 

increasing the values of angular speed and thermal condi-

tion, the value of radial stress as well as tangential stress 

must be increased on the internal surface. 

From Fig. 3, curves are drawn between the strain rates 

and radii ratio R = r/r0 at 2 = 15, 20; 4 = 0, 25, 50, and 

n = 1/3, 1/5 (i.e. N = 3, 5). It has been observed that the 

rotating disc made of brass material has a maximum value 

at the internal surface as compared to beryl material for 

measures n = 1/3, 1/5 (i.e. N = 3, 5) at 2 = 15. The values 

of strain rates further are increased at the internal surface 

with increasing value of 2 = 20 for measures n = 1/3, 1/5 

(i.e. N = 3, 5). With the introduction of thermal condition, 

the values of creep strain rates increase at the internal 

surface of the disc made of brass material in comparison to 

beryl material. 

(notation: Sigma r  r , Sigma theta   ) 

(a) 4 = 0 
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(b) 4 = 25 

   

(c) 4 = 50

      

Figure 2. Creep stresses along the radii ratio R = r/r0 at: a) 4 = 0; b) 4 = 25; and c) 4 = 50. 

(notation: err  ̇rr, eqq   ̇ and ezz   ̇zz) 

(a) 4 = 0
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(b) 4 = 25

    

(c) 4 = 50

    

Figure 3. Creep strain rates along the radii ratio R = r/r0 at: a) 4 = 0; b) 4 = 25; and c) 4 = 50. 

CONCLUSIONS 

Solutions are calculated that consider the plane symmetry 

to achieve a goal for reliable rotating disc analysis and to 

obtain the stress distribution and strain rates under the appli-

cation of the thermal condition. To gain such type of goal, 

transversely isotropic disc or an isotropic disc with shaft is 

considered. It is observed that the radial stress has a maxi-

mum at the internal surface of the disc made of beryl mate-

rial as compared to the disc of brass material. Beryl mate-

rial disc required higher value of radial stress at the internal 

surface for measure n = 1/5 in comparison to the disc of 

brass material which means that the beryl material disc is 

more comfortable than that of the brass material. With 

increasing the values of angular speed and thermal condi-

tion the radial, as well as tangential stress must be increased 

on the internal surface. It is also observed that the rotating 

disc of brass material has a maximal value at the internal 

surface as compared to the beryl material for measures n = 

1/3, 1/5 (i.e. N = 3, 5) at 2 = 15. With the introduction of 

thermal condition, the values of creep strain rates increase 

at the internal surface of the disc made of brass material. 
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