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Abstract 

In this paper we study electrothermal convection in a 

horizontal layer of Maxwellian dielectric nanofluid saturat-

ing a porous medium. Darcy-Maxwellian fluid model is used 

to describe rheological behaviour of nanofluid. The used 

model for nanofluid incorporates the effects of thermo-

phoresis and Brownian diffusion. The Navier-Stokes equa-

tions of motion are modified due to the presence of applied 

AC electric field by the inclusion of dielectrophoretic force 

and Coulomb force. By applying linear stability analysis 

based upon perturbation theory and one-term Galerkin 

method, we derive the expression for thermal Rayleigh number 

for cases of stationary convection and oscillatory motion. 

Effects of Vadasz number, AC electric Rayleigh number, 

Lewis number, modified diffusivity ratio, nanoparticle Ray-

leigh number and medium porosity have been discussed for 

the case of stationary and oscillatory convection. 

Ključne reči 

• nanofluid 

• elektrotermalna konvekcija 

• Rejlejev broj 

• Maksvelov model 

• porozna sredina 

Izvod 

U radu se istražuje elektrotermalna konvekcija u hori-

zontalnom sloju dielektričnog Maksvelovskog nanofluida koji 

je zasićen u poroznoj sredini. Model tipa Darsi-Maksvel 

fluida se primenjuje u opisivanju reološkog ponašanja nano-

fluida. Primenjeni model nanofluida sadrži uticaje termo-

foreze i Braunove difuzije. Jednačine kretanja Navije-Stoksa 

su modifikovane usled prisustva električnog polja naizme-

nične struje, dodavanjem dielektroforetičke i Kulombove sile. 

Primenom linearne analize stabilnosti, na bazi teorije per-

turbacije i jednočlanog metoda Galerkina, izveden je izraz 

za termički Rejlejev broj za slučajeve stacionarne konvek-

cije i oscilatornog kretanja. Uticaji Vadazovog broja, Rejlej-

evog broja naizmeničnog polja, Luisovog broja, modifiko-

vanog koeficijenta difuzivnosti, Rejlejevog broja nanočes-

tice i poroznosti sredine, su diskutovani za slučaj stacio-

narne i oscilatorne konvekcije. 

INTRODUCTION 

Maxwel /1/ was the first who proposed a model for visco-

elastic fluid having an immense storage space of energy. 

Owing to the reticence of shear-thinning rheological in per-

formance of blood, we are concerned with Maxwell model 

seeing as blood behaves in view of the fact that a viscoelas-

tic liquid is connected to shear charge. Maxwell model is 

the simplest rate type of fluid model or uniformly as an 

integral depiction of stress that represents the properties of 

relaxation-time which cannot be concluded in the differen-

tial type of viscoelasitc fluids (see, Bland /2/). The examples 

of viscoelastic fluids are polymer liquids, paints, certain oils, 

lubricants, colloidal and suspension solutions, clay coating 

and find applications in electronic chips, movement of bio-

logical fluids, food processing paper productions, nuclear 

waste repository, grain storage, mantle convection, geother-

mal energy utilization and oil reservoir modelling etc. /3-

10/. The activities of blood manifesting its shear-thinning 

are payable to stress-relaxation properties of stress, which 

has four autonomous unique accounting parameters, namely, 

elasticity, plasma viscosity, the formed rouleaus and their 

outcome in the viscosity of blood, and how does the shear-

thinning take place in the flow motion. 

A comprehensive study of thermal convection in a hori-

zontal layer of viscous fluid saturating a porous medium is 

largely studied by Ingham and Pop /11-12/, Vafai /13-14/, 

Nield and Bejan /15/ etc. During last few years, convective 

instability of a horizontal nanofluid layer saturating a porous 

layer by means of Buongiorno /16/ model has been largely 

examined by different authors /17-24/. But the study of ther-

mal convection of viscoelastic nanofluids in porous media 

is very limited. The thermal instability in a porous layer 

saturated with viscoelastic nanofluid fluid is analysed by 

Rana and Chand /25/, Chand and Rana /26-27/, Umavathi et 

al. /28/, and Chand et al. /29/. 

In recent times, attention has been given to the electro-

hydodynamics in the study of thermal instability of visco-

elastic nanofluid in a porous medium. The functional electric 

force of fluid motion is a very effectual technique in receiv-

ing extremely supportive motivating consequences in the 
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cooling of laptops and strategy of the flight in space dis-

cretely, ionization, prepared on nanoscale being used at a 

huge level in the current epoch. The effect of electrohydro-

dynamic in thermal instability of differnet types of an elas-

tico-viscous fluid has been analysed by different authors 

/30-35/. They found that the vertical AC electric field desta-

bilized the stationary convection. Sharma et al. /36/ have 

deliberated electro-thermal convection in dielectric Maxwel-

lian nanofluid layer and observed that viscoelasticity hastens 

the existence of oscillatory modes and the thermal Prandtl 

number delayed the existence of oscillatory modes. 

In the present chapter we examine the influence of 

rheological behaviour and a vertical AC electric field on the 

stationary and oscillatory convection of non-Newtonian 

nanofluid in a porous medium. The Maxwell fluid model is 

applied to depict the rheological behaviour of the nanofluid 

sheet of restricted depth d, for the stress-free margins. We 

analyse the solidity by using a Galerkin approximation and 

numerical computations have been approved with the soft-

ware MATHEMATICA® version-11.3. 

FORMULATION OF THE PROBLEM AND MATHE-

MATICAL MODEL 

Consider an infinitely horizontal layer of Maxwellian 

electrically conducting nanofluid in a porous medium heated 

from below of thickness d acted upon the vertical gravity 

force g(0,0,-g) (Fig. 1). This nanofluid layer is bounded 

between two parallel planes z = 0 and z = d, which are 

controlled at temperatures and nanoparticle volume fraction 

T0, 0 of lower fluid layer and T1, 1 of upper fluid layer, 

T0 > T1. 

 

Figure 1. Physical configuration of the problem. 

GOVERNING EQUATIONS 

The governing conservation equations for Darcy-Maxwell 

nanfluid under the influence of vertical AC electric field 

leading to the physical system under study by means of 

Boussinesq approximation (Maxwel /1/, Buongiorno /16/, 

Nield and Kuznetsov /19/, Rana and Chand /25/ and Sharma 

et al. /36/) are 

 0 =Dq , (1) 
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where: qD is the velocity of nanofluid; bf is fluid density; p 

is fluid pressure; T is fluid temperature;  is fluid viscosity; 

k1 is medium permeability;  is porosity; and  is stress relax-

ation parameter (accounting for viscoelasticity); fe is the 

electrical origin force given by 
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where: e is density of charge; K is electric constant; E is 

electric field. The term eE is the force produced due to a 

free charge after the name of Coulomb and the second term 

-E2K/2 depends on the gradient of K. The bulk of the die-

lectric fluid remains uninfluenced with the electrical force 

fe. Due to the dielectric constant K and electrical conductiv-

ity , the built up free charge is prevented for a long-time 

due to the sufficient relaxation appearing in the presence of 

electric field in most dielectric fluids at standard power-line 

frequencies. Thus, dielectric loss produced at these frequen-

cies becomes very low so as to make the temperature field 

unchanged at the same time. Therefore, the first term eE is 

neglected as compared to the di-electrophoretic force term 

-E2K/2 for most dielectric fluids. 

It is also assumed that the dielectric constant, K can be 

expressed (Yadav et al. /31/) as  

 0 0 0[1 ( )]K K T T= − − , (4) 

where: 0 > 0 is the coefficient of dielectric constant with 

temperature relative variations, assumed to be small 0 < 

0T << 1. 

The modified pressure term, using Eq.(3) yields  

 21

2
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Assuming free charge density to be very small, the rele-

vant Maxwell equations are 

 .( ) 0K =E , (6) 

 0 =E . (7) 

In view of Eq.(7), E can be expressed as E = -. 

The conservation equation for the nanoparticles is 
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Here,  is the nanoparticle volumetric fraction, p is the 

density of nanoparticles and jp, the nanoparticles diffusion 

mass flux, given by 
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where: DB (Brownian diffusion coefficient) and DT (ther-

mophoretic diffusion coefficient ) are given as 

 
3

B
B

nf np

k T
D

d
= , 

0.26

(2 )

bf nf
T

nf bf np

k
D

k k





=

+
, (10) 

where: kB is Boltzmans constant; bf is base fluid viscosity; 

dnp is the diameter of nanoparticle; bf is base fluid density; 

kbf and knp are thermal conductivities of base fluid and 

nanoparticles, respectively. Using the value of jp from 

Eq.(9) into Eqs.(8), the conservation equation of nanoparti-

cles yields 
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The heat energy equation is 
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where: c is specific heat of the material constituting the nano-

particles; (nfc)bm is effective capacity; (nfc)bf is the heat 

capacity of the nanofluid. 

Here both bounding surfaces of the fluid are assumed to 

be stress-free and the medium adjoining the nanofluid is a 

perfect conductor, the appropriate boundary conditions are 
2
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BASIC SOLUTIONS 

Primary flow representing the basic state is assumed to 

be quicsent /2, 7, 9, 12/, no settling of suspended nanoparti-

cles and is assumed to be stationary. Initially, no motions 

are present in the nanofluid flow and the physical quantities 

vary in the vertical direction z-axis only. Therefore, the 

velocity, pressure, temperature, dielectric constant, electric 

field, electric potential and nanoparticle volume fraction are 

given by 
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where: subscript ‘b’ denotes the basic state and k̂  is the 

unit vector along z-axis. 

Also we have  
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 is the root mean square value 

of the electric field at z = 0. 

PERTURBATION SOLUTIONS 

Let the primary flow be slightly disturbed from the equi-

librium position so as to examine the stability of the per-

turbed modes with respect to the involved, physical variables 

by superimposing infinitesimal disturbances to the basic 

state flow. It is assumed that 
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where: qD
*, T*, K*

, P*, E*, and V* are perturbations superim-

posed into the physical quantities of the equilibrium state. 

On substituting these perturbations and using the solutions 

of primary flow Eq.(14) the Eqs.(2), (7), (11) and (12) in 

the non-dimensional linearized perturbed form using linear 

theory (neglecting the products and higher orders of 

perturbed quantities) and Boussinesq approximation yields 
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are non-dimensional variables. These are defined as: 
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Boundary conditions Eq.(13), in non-dimensional form 
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Normal mode analysis 

Now an arbitrary perturbation is analysed into a complete 

set of normal modes and then the stability of each of these 

modes is examined individually. For the system of Eqs. 

(16)-(19), the analysis can be made in terms of two-dimen-

sional periodic wave numbers. Thus, we ascribe to the quan-

tities describing the dependence on x, y and t of the form 

exp(ilx + t), where l, m are the wave numbers in the x and 

y-direction, respectively; and  is the growth rate of the 

disturbances, which in general is a complex constant. 

Above consideration allows to suppose that the perturba-

tions quantities w*, T*, * and V* are of the form 
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With the help of Eq.(33) and boundary conditions 

Eq.(32), the non-dimensional differential Eqs.(16)-(19) 

after linearization turn into 
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By employing the Eq.(34), the boundary conditions Eq.(33) 

transform to 

2 0W D W D= =  =  =  =    at   0z =    and   1z = . (38) 

The set of differential Eqs.(34)-(37) in addition to the 

boundary conditions Eq.(38) comprise a characteristic-value 

problem for Rayleigh number Ra and known values of the 

supplementary parameters 1, Rn, Rea, , Le, NA, whose solu-

tions ought to be obtained. 

Linear stability analysis and dispersion relation 

The precise logical solutions for the set of ordinary differ-

ential Eqs.(34)-(37) using one-term Galerkin approximation 

of lowest mode satisfying boundary conditions Eq.(38) yields, 
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where: A, B, C and D are constants. 

Prevailing the solutions, conferred by Eqs.(39) into Eqs. 

(34)-(37), through the orthogonality of trial functions and 

boundary conditions Eqs.(33), a structure of linear consistent 

equations is drafted as: 
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The non-trivial solution of the matrix Eqs.(40) is obtained 

by equating the determinant of the coefficient matrix to zero 

and after some algebraic simplifications gives the value of 

the thermal Rayleigh number, Ra as: 

  ( )
( )

( )
2 2

2 2 2 2
2 2 2 2 2 2

1 1(1 ) ( )(1 )
A

n a ea
e e

a Na a
a a R a a R R

L L

   
     

 

 +  + + +   
− + + + − + + + + +   

    
 
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( )( ) ( )
( ) ( )2 2 2 2

2 2 12 2 2 2 2 2 2 2
1

(1 )
(1 ) 0ea

e a e

a aa
a a a a R

L V L

      
      

 

   + + + +    
+ + + + + + + + + + =    

     
   

, (41) 

Equation (41) is the dispersion relation representing the 

effect of Lewis number, kinematic visco-elasticity parameter, 

AC electric Rayleigh number, nanoparticle Rayleigh number, 

modified diffusivity ratio on thermal electro instability in a 

layer of Maxwell nanofluid in a porous medium under the 

influence of vertical AC electric field. 

STATIONARY CONVECTION 

The stationary motion is identified by putting  = 0 in 

Eq.(41), we get the thermal Rayleigh number of stationary 

modes as: 

( )
( )

2
2 2

2

2 2 2

S e
a ea A n

a La
R R N R

a a





+  
= − − + 

 +
. (42) 

It is obvious from Eq.(42) that stationary Rayleigh number 

(Ra
S) is independent of stress-relaxation time (1), Vadasz 

number (Va) and ratio of specific heat () for stationary 

modes, since these vanish with the vanishing of . 

The minimum value of stationary Rayleigh number (Ra
S) 

is stated by putting Ra
S/a2 = 0, which reveals 

 

3
2 2

4 2

2 2
1 1 eaa R

a a

 


   
+ − =   

   
   

. (43) 

It is noted from Eq.(43) that the values of the critical 

wave number do not confide in the parameters secretarial 

for nanoparicles, though depend upon eaR  only. 

Therefore, the effects of various non-dimensional param-

eters namely, electric field (Rea), nanofluid Lewis number 

(Le), modified diffusivity ratio (NA), and the concentration 

Rayleigh number (Rn) on the stability of stationary modes 

have been investigated analytically by examining the behav-

iour of 
S
a

ea

R

R




, 

S
a

e

R

L




, 

S
a
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R
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


, 

S
a

n

R

R




 and 

S
aR






. 

It is depicted from Eq.(42) that, 

 

( )

2

2 2

S
a

ea

R a

R a 


= −

 +
, (44) 

which is always negative for all wave numbers, thereby 

lessening the Darcy Rayleigh number with increment in Rea  

(electric Rayleigh number). Thus, Rea has always a desta-

bilizing effect on the system. 

Equation (42), shows that 

 
S
a n

e

R R

L 


= −


, (45) 

and 
S
a

n
A

R
R

N


= −


. (46) 

It is noteworthy from Eqs.(45) and (46) for bottom-heavy 

particles (i.e. for negative value of Rn) both the nanofluid 

Lewis Le and the modified diffusivity ratio NA stabilize the 

system. 

Equation (42) moreover gives that 

 
S
a e

A
n

R L
N

R 

  
= − + 

  
, (47) 

which is always negative for 0e
A

L
N



 
+  

 
, since the 

value of NA is taken in the range of -1 to -25 and Le in the 

range of 100-400. Thus, thermophoresis reduces with an 

increase in negative values of NA which means that thermo-

phoresis push the heavier nanoparticles upwards, which 

strengthens the stabilizing effects of particle distributions, 

 
2

S
a e nR L R

 


=


. (48) 

If Rn > 0, the right hand side of Eq.(48) is positive and it 

is negative if Rn < 0. Thus, medium porosity has stabilizing/ 

destabilizing effect. These results are in good accord with 

the results derived by Nield and Kuznetsov /19/, Rana et al. 

/30, 35/, and Chand et al. /28/. 

OSCILLATORY MOTION 

Now, the growth rate,  = r + ii, where: r and i are 

real. For oscillatory convection,   0 and r = 0, i.e.,  = 

ii  0. Here, the critical Darcy Rayleigh number for the 

onset of instability is examined via a state of pure oscilla-

tions of growing amplitude by putting  = ii in Eq.(41) 

and after some arithmetical simplifications, we find 

 1 2a iR i=  +  . (49) 

where: 1 and 2 are framed as follows 
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( )

( )
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( )
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,  (50) 

and 
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( ) ( ) ( ) ( ) ( )( )  ( )
3

2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2
2 1 1 1 11a i e a a n i a a i a ea V a L a V a V R V a V a V L a              = + − + + + + + + − + − +   

( ) ( ) ( )( ) ( ) ( )( )
3

2 2 2 2 2 2 2 2 2 2 2 2 3 2
11a a e n A i i a ea V a a V L R N a a V L a           − + − − + − + + + +   

( ) ( ) ( )( ) 2 2 2 2 2
a a e n Aa V a a V L R N     − + − − + − .  (51) 

On comparing real and imaginary parts of Eq.(41), we have, Ra = 1, which is implicit on simplication of Darcy Rayleigh 

number of oscillatory modes as: 
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+ + + 

 
−
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,  (52) 

and 2 0ii  = . (53) 

Since for oscillatory modes, ii  0, therefore Eq.(41) gives that 2 = 0, which subscribes a dispersion relation (relation 

between growth rate   and wave number a) of the form 

 2 2 2
1 2 3( ) ( ) 0i ia a a + + = ,   3

1

0
a

a
 , (54) 

where, 2 2 2 2 2
1 1 ( )ea L a = + , (55) 

2 2 2 2 2 2 2 2 2 2 2 2 2
2 1 1( )[ ( )] ( ) ( )[1 ( )]a e n e A e a ea V L R a a L N L a V L a a          = + − − + + + + − + +  

 2 2 2 2 4
1 ( )a  + + , (56)  

2 2 2 2 2 2 3 2 2
3 ( )[ ( )] ( ) [ ( )]a e n e A aa V L R a a L N a V a      = + − − + + + + −  

 2 2 2 4
1 ( )aV a   − + . (57) 

Equations (52) and (54) have to be satisfied for the 

occurance of oscillatory modes for a wave number corre-

sponding to various non-dimensional parameters Le, Va, 1, 

Rn, Rea, , NA and  . 

For oscillatory motion,   is real and so there must be 

one variation of sign in Eq.(53) implying thereby that the 

Eq.(54) has at most one positive root for which the critical 

Darcy Rayleigh number for oscillatory modes is attained 

for different values of non-dimensional wave number from 

Eq.(52). 

Since  is real, the values of i
2 have to be positive. 

Furthermore, there will be no change of sign in Eq.(54) for 

 > NA and 1(a2 + 2) > 1. Therefore, for  < NA and 

1(a2 + 2) < 1, oscillatory modes can occur, the violation 

of which necessarily implies non-occurrence of oscillatory 

motion. 

It is observed from Eq.(54) that existence of oscillatory 

modes is uninfluenced due to the presence of vertical AC 

electric field. However, these modes depend on other non-

dimensional parameters accounting for nanoparticles, porous 

medium and viscoelasticity. 

Validation of results 

In the deficiency of electric field that is, Rea = 0, the Eqs. 

(52) and (42) diminish to 

2 2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2

( )( ) {( ) }

(1 ) {( ) }

osc i n e e i
a

i i e i

a a R L a L
R

a a L

      

     

+ + + + +
= − −

+ + +
 

 

2 2 2 3 2
2 2

2 2 2 2 2 2 2

( )
( )

( )

i A n

a e i

a N R
a

V a a L

  


  

+
− + −

+ +
, (58) 

and  
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 
, (59) 

which are in an excellent concurrence with the earlier results 

given by Umavathi et al. /29/ for the limiting case of stress-

free boundaries. 

When simultaneously, the stress-relaxation-time parameter 

and the nanoparticles are not embedded, that is 1, Rn = 0, 

and NA = 0, the Eqs.(58) and (59) reduce to 
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a V a


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+
= − + , (60) 

and

 

2 2 2

2

( )S
a

a
R

a

+
= , (61) 

which are in good agreement with the prior results of Chand 

et al. /28/. 

It is praiseworthy to depict that instability sets in through 

bottom-heavy pattern of nanoparticles. Since for bottom-

heavy nanoparticle configuration, the convection in rheo-

logical nanofluids is through oscillatory modes. Hence, for 
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small negative values of both Rn and NA, oscillatory Rayleigh 

number Ra
osc takes negative values, however, the stationary 

Rayleigh number Ra
S gains negative values only for varia-

tions in Rea. 

NUMERICAL RESULTS AND DISCUSSIONS 

To probe the outcome of different parameters on linear 

thermal instability in a porous layer saturating a nanofluid 

in the existence of electric field, the Eq.(42) for stationary 

and Eq.(52) satisfying Eq.(54) for oscillatory convection are 

analysed numerically with the software Mathematica® v.11.3 

for bottom-heavy configuration. The linear stability theory 

exposes the criterion of stability in the form of critical Darcy- 

Rayleigh number under which the system is stable and 

unstable above. 

The tentative values and fixed acceptable values of the 

dimensionless parameters are alike as those used by Buon-

giorno /16/, Yadav /34/, and Sharma et al. /36/, which are 

given as: 1 = 0.6; Va = 3; Rn = -0.1; NA = -5; Le = 200, 

Rea = 100;  = 0.6;  and  = 1.5. 

 

Figure 2. Variation of oscillatory Rayleigh number (Ra) with respect 

to wave number (a) for diff. values of stress-relax. time parameter. 

 

Figure 3. Variation of oscillatory Rayleigh number (Ra) with respect 

to wave number (a) for diff. values of capacity ratio parameter . 

From Figs. 2 and 3 it is noted that the oscillatory thermal 

Rayleigh (Ra
osc) increases with the decrease in capacity 

ratio parameter () and stress-relaxation time parameter 

(1) depicting thereby that  and 1 advances the onset of 

oscillatory motion. It is also clear from the graphs that the 

critical wave number does not change with the variation 

in, that is ac = 6.11, whereas it increases with increase in 

1, that is, ac = 5.01, 6.10, 6.14.  

 

Figure 4. Variation of oscillatory and stationary Rayleigh number 

(Ra) with respect to wave number (a) for diff. values of nanoparti-

cles Rayleigh number (Rn). 

Figure 4 displays the variation of Darcy Rayleigh number 

(Ra) for both stationary and oscillatory modes vs. wave 

number a for different values of nanoparticles Rn = 0, -0.5, 

-0.7 (bottom-heavy case). 

It is depicted from the figure that Ra for stationary mode 

decreases as Rn increases, which advances the onset of con-

vection, whereas a slight stabilizing effect is observed for 

oscillatory mode. This happens so because strengthening of 

volumetric fraction of nanoparticles, the Brownian motion 

of nanoparticles increases, implying thereby the destabiliz-

ing effect on the stability of the system, which is in confir-

mation with the analytical result. 

 

Figure 5. Variation of stationary Rayleigh number (Ra) with respect 

to wave number (a) for different values of modified diffusivity 

ratio (NA) and NA = -5, -45, -85 (bottom-heavy case) respectively. 

Figure 5 asseses the variation of Darcy Rayleigh number 

(Ra) for stationary modes vs. wave number a for different 

values of nanoparticles NA = -5, -45, -85 (bottom-heavy 

case). From the figure, it is noticed that NA has slightly 

stabilizing influence on stationary modes, thereby delaying 

the onset of stationary convection. 

The effect of medium porosity on the stability of station-

ary and oscillatory modes is displayed in Fig. 6. The ther-

mal Rayleigh number, Ra, decreases with increase in poros-

ity for stationary modes, implying thereby, it has destabiliz-

ing effect of medium porosity. It is also depicted from the 

graph that the critical wave number increases with increase 

in medium porosity for oscillatory modes. It transpires so as 

the volume engaged by the solid matrix increases with 

increase in the value of medium porosity, which in turn has 

a tendency to expidite the fluid flow. 
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Figure 6. Variation of stationary and oscill. Rayleigh num. (Ra) with 

respect to wave number (a) for diff. values of medium porosity (). 

 

Figure 7. Variation of stationary and oscill. Rayleigh num. (Ra) with 

respect to wave number (a) for diff. values of Lewis number (Le). 

The plot of Ra against wave number a for various values 

of Lewis number, Le = 0, 200, 400 is illustrated in Fig. 7. 

Figure 7 reveals that Ra increases with increase in Lewis 

number for stationary modes. However, the value of Ra 

decreases with increase in Le depicting thereby the destabi-

lizing effect on the oscillatory modes. This situation occurs 

so for the Brownian motion of the nanoparticles decreases 

with increase in Lewis number. 

 

Figure 8. Variation of oscill. Rayleigh number (Ra) with respect to 

wave number (a) for different values of Vadasz number (Va). 

Figure 8 illustrates the effect of Va on the Ra and it is 

observed that with increase in Va, Darcy Rayleigh number 

decreases, implying thereby the destabilizing effect of Vadasz 

number on the system. The critical wave numbers increase 

with decrease in Vadasz number that is, 6.14 and 7.01. 

 
Figure 9. Variation of stationary and oscill. Rayleigh num. (Ra) with 

respect to wave num. (a) for diff. values of elec. Rayleigh num. (Rea). 

The changes of Ra vs. wave number a for different value 

of electric Rayleigh number Rea = 0, 100, 200 are plotted in 

Fig. 9. It is depicted from the graphs that Ra (stationary) and 

Ra (oscillatory) decrease with increase in Rea. This appears 

so because the destabilizing electrostatic energy to the system 

enhances a less stable system because of higher electric field. 

It is worth mentioning that the effect of the variation in 

parameters: Lewis number; modified diffusivity ratio; concen-

tration Rayleigh number; and porosity is very small due to 

large value of Le and very small values of NA and Rn. To 

verify the numerical results derived to compute the critical 

wave number and corresponding critical Darcy Rayleigh 

number to discuss the stability of the system, the results are 

calculated under the limiting case of nanoparticle and electric 

field in Eq.(42) (i.e. Rn = NA = 0, Rea = 0). It is noted that in 

the absence of nanoparticles and electric field, the critical 

Darcy Rayleigh number is equal to 42 and the correspond-

ing critical wave number is  = 3.14 which is the precisely 

identical outcome by Lapwood, /3/. Thus, exactness of the 

numerical method applied is confirmed. 

It is observed from Figs.(2) to (9) that for bottom-heavy 

nanoparticle distribution (negative value of Rn), oscillatory 

convection sets earlier than stationary convection. Conse-

quently, oscillatory convection is possible only for negative 

value of Rn for a saturated porous medium. It is notable that 

Ra for stationary convection is always higher than that of 

oscillatory modes, which can be described as: the restoring 

forces motivated at the onset of convection due to preva-

lence of stationary motion, are not sufficient to inhibit the 

system from leaning away from steadiness. Therefore, the 

values of Rn and NA are taken to be negative. 

CONCLUSIONS 

Linear stability analysis in a horizontal porous medium 

saturated with a Maxwell dielectric nanofluid in a verticlal 

AC electric field heated from below is investigated. The 

modified Darcy-Maxwell model is used to incorporate the 

effect of Brownian motion along with thermophoresis. The 

normal mode technique and one-term Galerkin approxima-

tion are used to derive the thermal Rayleigh number for both 

the cases of stationary convection and oscillatory motion. 

The principal results drawn are as follows: 

• The concentration Rayleigh number, porosity and electric 

Rayleigh number tend to destabilize the system, whereas 

Lewis number stabilizes the system towards stationary 
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modes and it is independent of stress-relaxation time, 

capacity ratio and Vadasz number.  

• It is found that the size of convection cells depends only 

on AC electric Rayleigh number and decreases with increas-

ing electric Rayleigh number. 

• For oscillatory convection stress-relaxation time, capacity 

ratio, the Vadasz number, Lewis number, and electric 

Rayleigh number destabilize the system, whereas porosity 

stabilizes the system for bottom-heavy distribution. 

• The modified diffusivity ratio has no significant effect on 

the system for both stationary and oscillatory mode. 

• For oscillatory motions, it is found that the critical wave 

number increases with increase in stress-relaxation, poros-

ity, Vadasz number, and electric- Rayleigh number, whereas 

the critical wave number remains uninfluenced with the 

increase in capacity ratio, concentration Rayleigh, modi-

fied diffusivity ratio, and Lewis number. 
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