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Abstract 

The presented problem is based on the study of elastic 

plastic axi-symmetrical bending of functionally graded rec-

tangular wide plates. The concept of classical theory is 

applied in the problem and by using the Tresca’s yield 

criterion, a second order differential equation is obtained 

as a governing equation of the problem. The method of 

infinite series solution is applied to solve the governing 

differential equation. On the basis of the numerical values 

and graphs it is concluded that the bending of axi-symmet-

rical wide plates with non-homogeneity parameter is safe 

for designing as compared to wide plates, because circum-

ferential stresses are lesser for bending plate. 

Ključne reči 

• osnosimetrično 

• funkcionalni materijali (FGM) 

• pravougaona ploča 

Izvod 

Problem koji je predstavljen je zasnovan na izučavanju 

elastoplastičnog osnosimetričnog savijanja širokih ploča od 

funkcionalnog materijala. Primenjen je koncept klasične 

teorije u problemu, korišćenjem kriterijuma tečenja Treska, 

i stoga se dobija diferencijalna jednačina drugog reda kao 

osnovna jednačina za rešavanje problema. Primenjuje se 

metoda rešenja oblika beskonačnog reda za rešavanje polaz-

ne diferencijalne jednačine. Na osnovu numeričkih rezulta-

ta i dijagrama, zaključuje se da je savijanje osnosimetričnih 

širokih ploča sa parametrom nehomogenosti u domenu 

bezbednog projektovanja, u poređenju sa savijanjem širo-

kih ploča, zbog manjih obimskih napona pri savijanju. 

INTRODUCTION 

The concept of functionally graded materials was first 

discovered in Japan in 1984 during the project of a space 

plane. Functionally Graded materials (FGM’s) are the 

materials whose properties are changed by varying the 

composition of the functions. The demand of the FGM is 

increasing due to their ability of working under high 

pressure and temperature. The FGM’s has applications in so 

many areas like aerospace, nuclear reactors, medicines and 

so forth. In present days, rectangular plates under pressure 

have attracted the interest of researchers due to their wide 

range of industrial applications. In general, the rectangular 

plates which works under high temperature and pressure 

conditions require a strict analysis of stresses for an opti-

mum design thus efforts are continuously made to increase 

the reliability of such structures. The problems on defor-

mations of plates and shells can be found in textbooks /1-5/. 

Sharma /6/ analysed the creep stresses in bending of trans-

versely isotropic rectangular plates made of functionally 

graded materials and observed that transversely isotropic 

cylinder of high functionally graded material with internal 

pressure and nonlinear strain measure is a better alternate 

for designing purpose. Sharma and Yadav /7/ investigated 

the stresses in a rotating cylinder made of FGM material 

subjected to temperature and pressure by applying finite 

difference method and observed that composite cylinder of 

FGM is better as compared to homogeneous cylin-

ders. Sharma and Yadav /8/ analysed thermal stresses and 

strains in rotating annular disk by applying finite difference 

method with von-Mises' yield criterion and non-linear strain 

hardening measure and found that disk made of function-

ally graded material reduces the risk of fractures in the 

structures. Creep stresses were analysed by Sharma and 

Panchal /9/ in pressurized thick-walled rotating spherical 

shell of FGM with temperature. Shahriari et al. /10/ studied 

vibrations in rotating disk by using generalized differential 

quadrature method and analysed that use of functionally 

graded material could decrease the value of radial stresses 

and radial displacement. A computational model for the 

analysis of elastic-plastic and residual stresses in function-

ally graded rotating solid shafts has been discussed by 

Argeso and Eraslan /11/ using von-Mises’ yield criterion, 

total deformation theory and Swift’s nonlinear hardening 

law. Sharma and Radaković /12/ gave an analytic solution 

of plastic and transitional stresses in a thin rotating disc of 

piezo-electric material subjected to internal pressure and 

concluded that isotropic material is better than piezoelectric 

material. 

The objective of this study is to evaluate, stresses in 

Elastic and plastic state are calculated for thin rotating disk 

of FGM by using infinite series solution method with 

Tresca’s yield criteria.  
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MATHEMATICAL FORMULATION 

The plate is made of isotropic material with inner radius 

a and outer radius b. The plane stress condition is considered 

in the present problem. 

Equation of equilibrium is given by 
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Strain displacement relation is considered to be 
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where: u is the radial displacement. 

The compatibility equation is given by 

 0rde e e

dr r

  −
+ = . (3) 

The Tresca’s yield condition is given as 

 0.5( )ee rrT T T= + , (4) 

where: Trr is radial stress; and T is circumferential stress. 

The relationship between stresses and strains for isotropic 

materials in the elastic state are given by 
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where: er
e are elastic radial strains; e

 e are elastic circum-

ferential strains; and ez
e are elastic axial strains. 

The relationships between stresses and strains for iso-

tropic materials in the plastic state are given by 
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where: Tee is the equivalent stress; ee
 p, e

 p, er
 p, ez

 p are the 

plastic strains. 

The total radial, circumferential and axial strains are 

given by 

 e p
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The radial, circumferential and axial stresses in terms of 

Airy’s function are defined as 
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Substituting the values of er
 e, e

 e, ez
 e from Eq.(5) in 

Eq.(7) we have 

 p
r r

d

r dre e
E

 
−

= + ,   
p

d

dr re e
E

 

 
−

= + , 

 
p

z z

d

dr r
e e

E

  
+ 

 
= + . (9) 

Substituting these values of er and e from Eq.(9) in 

compatibility Eq.(3), we get 
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By putting the values of E and  in the Eq.(10), we get 
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Equation (11) is a differential equation of the second 

order that is solved by using infinite series solution method. 

Let the solution to Eq.(11) in terms of power series be 
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Differentiating Eq.(12) we have 
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Substituting the values of , ,  from Eqs.(12) and 

(13) into Eq.(11), we have 
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Equating to zero the coefficient of lowest degree term of 

r to zero, by putting n = 0, in Eq.(14) we have  

 2
08( 1) 0m a− = , 

that gives the roots of the equation as  m = 1. 

Roots of the equation are real and distinct, and differ by 

an integer, therefore by Frobenius method of series solution 

the complete solution of the Eq.(11) is given by 
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The complete solution  for compressibility parameter 

k = 1 is given by 
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The complete solution for k = 2 is given by 
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Using Eqs.(8) and (16) the radial and circumferential 

stresses for non-homogeneity parameter k = 1 are given by 
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Using Eqs.(8) and (17), the radial and circumferential 

stresses for non-homogeneity parameter k = 2 are given by 
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The boundary conditions are taken as 

1 2   at   ,   and      at   rr rrT p r a T p r b= − = = − = . (20) 

Bending moment M per unit length is given by formula 
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For non-homogeneity parameter k = 1 with radii a = 1 and 

b = 2, the bending moment M = 24.34. 

For non-homogeneity parameter k = 2 with radii a = 1 and 

b = 2, the bending moment M = 27.38. 

NUMERICAL DISCUSSION 

Figures 1 to 3 are drawn for radial and circumferential 

stresses with (k =1, 2), and internal and external pressures 

are taken as p1 = 5 and p2 = 10 for different radii ranging 

from r = 1 to 2. It has been noticed from Fig. 1 that for C0 = 

0.3, radial and circumferential stresses are compressible in 

nature and radial stresses attain their maximum value at 

external surface, but circumferential stresses attain their 

maximum value at internal surface for non-homogeneity 

parameters k =1 and k = 2. It is also observed from Fig. 2 

that radial and circumferential stresses are compressible but 

maximum at internal surface for k = 1. As non-homogeneity 

parameter increases (k = 2) circumferential stresses are on 

the higher side at internal surface, also these stresses increase 

for C0 = 0.4. Figure 3 shows that the value of radial and 

circumferential stresses increases for C0 = 0.5. 

Trr  for  k = 1  Trr  for  k = 2 

T  for  k = 1  T  for  k = 2 
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Figure 1. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.3. 
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Figure 2. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.4. 
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Figure 3. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.5. 

Tables 1, 2 and 3 are formulated for radial and circum-

ferential stresses for k = 1 and k = 2 with different values of 

C0. These tables show that the stresses are compressive and 

increase with the non-homogeneity parameters k = 1 and 

k = 2. The positive values of bending moment for k = 1 and 

k = 2 shows that stresses are compressive in nature which 

can also be observed by graphs and tables. 

Table 1. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.3. 

 k = 1 k = 2 

r Trr T Trr T 

1 -5.011 -23.4 -5.56 -25.87 

1.2 -6.57 -21.37 -7.35 -24.94 

1.4 -7.74 -20.36 -8.85 -25.33 

1.6 -8.6 -19.83 -10.2 -26.56 

1.8 -9.47 -19.65 -11.51 -28.44 

2 -10.16 -19.68 -12.8 -30.85 

Table 2. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.4. 

 k = 1 k = 2 

r Trr T Trr T 

1 -4.95 -24.14 -5.8 -27.53 

1.2 -6.5 -22.3 -7.8 -27.21 

1.4 -7.8 -21.46 -9.6 -28.33 

1.6 -8.9 -21.18 -11.35 -30.47 

1.8 -9.78 -21.26 -13.06 -33.39 

2 -10.58 -21.58 -14.82 -37.06 

Table 3. Radial and circumferential stresses for various radii with 

internal and external pressures as p1 = 5 and p2 = 10, and k = 1 and 

2, and C0 = 0.5. 

 k = 1 k = 2 

r Trr T Trr T 

1 -4.9 -24.94 -6.18 -29.27 

1.2 -6.64 -23.31 -8.49 -29.60 

1.4 -8.01 -22.72 -10.62 -31.54 

1.6 -9.16 -22.74 -12.73 -34.64 

1.8 -10.18 -23.18 -14.93 -38.71 

2 -11.12 -23.94 -17.26 -43.64 

CONCLUSION 

Stresses in elastic and plastic state have been evaluated 

for axi-symmetric FGM plate with bending moment M 

using the classical theory approach. On the basis of all the 

calculations and graphs leads to the conclusion that the 

bending of axi-symmetric wide plates with non-homogene-

ity parameter (k = 2) is safe for designing, as compared to 

wide plates for k = 1, and this is because of the reason that 

circumferential stresses are lesser for the plate bending with 

k = 2 and C0 = 0.5. 
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