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Abstract 

The problem of Stokes flow of a viscous fluid past a pair 

of separated solid spheres solved by Payne and Pell is revis-

ited in this paper. Payne and Pell worked on the peripolar 

coordinate system, whereas we consider a bipolar system in 

this work. One impressive result of this study is that we 

derived an expression for the drag experienced by the system 

of two-spheres by modifying the expression that Payne and 

Pell gave for a general axisymmetric body. Further, this 

study gave rise to some interesting observations. Though one 

sphere's presence affects the other, the drag on the system 

is found equal to the sum of the drag on individual spheres. 

For spheres of equal radius, we computed the drag on each 

sphere using the formulae given by Stimson and Jeffery and 

found that it is precisely half the drag computed on the 

system. If the spheres are of unequal radius, we arrive at an 

empirical formula to compute bounds for each sphere's drag. 

These bounds include values calculated by Jeffery and 

Stimson in their work on the motion of two spheres in a 

viscous fluid. We also observe that the drag on the sphere 

facing the fluid flow first gets saturated at a value that 

equals the drag on the system with decreasing radius of the 

other (latter) sphere. Another remarkable feature of our work 

is that, as a limiting case, we derive the individual spheres' 

drag, and the values are in excellent agreement with those 

computed by Stokes formula for drag on a single sphere. 

Further to these, we have also carried out numerical evalu-

ations for flow visualization and plots of pressure. 

Ključne reči 

• par odvojenih sfera 

• bipolarne koordinate 

• Gegenbauer funkcije 

• funkcija protoka 

• otpor 

Izvod 

U ovom radu je dat osvrt na problem Stoksovog struja-

nja viskoznog fluida preko para odvojenih čvrstih sfera, a 

koji su rešili Pejn i Pel. Pejn i Pel su koristili peripolarni 

koordinatni sistem, dok u našem radu koristimo bipolarni 

sistem. Jedan od zanimljivih rezultata u našem radu jeste 

izvođenje izraza za otpor sistema od dve sfere, modifikova-

njem izraza koji su Pejn i Pel dali za opšte osnosimetrično 

telo. Osim toga, u ovom radu su evidentna interesantna 

uočavanja. Iako prisustvo jedne sfere utiče na drugu, otpor 

u sistemu je jednak sumi otpora pojedinačnih sfera. Kod 

sfera istih poluprečnika, izračunali smo otpor za svaku od 

sfera koristeći formule Stimsona i Džefrija, pa smo otkrili 

da je jednak praktično polovini otpora izračunatog za ceo 

sistem. Ako su sfere različitog poluprečnika, dobijamo empi-

rijski obrazac za izračunavanje veza kod otpora za svaku 

od sfera. Ove veze sadrže vrednosti koje su izračunali Džef-

ri i Stimson u svom radu o kretanju dve sfere u viskoznom 

fluidu. Takođe uočavamo da se otpor na sferi, na koju prvo 

dolazi tok fluida, prvi dostiže kritičnu vrednost koja je 

jednaka otporu sistema sa smanjenjem poluprečnika druge 

sfere. Druga značajna karakteristika u našem radu je, u 

graničnom slučaju, dolazimo do rešenja za otpor za pojedi-

načne sfere, a dobijene vrednosti se izvanredno slažu sa 

vrednostima dobijenim prema formuli Stoksa za otpor poje-

dinačne sfere. Daljim numeričkim proračunom dobijamo 

rešenja za vizualizaciju strujanja i dijagrame pritiska. 

 

INTRODUCTION 

The present work aims to revisit the problem of Stokes' 

flow of viscous fluid past a pair of separated solid spheres 

solved by Payne and Pell, /1/. The formula for drag derived 

by them in terms of stream function is modified to calculate 

the drag experienced by the two-spheres system. It is for the 

reference of the readers that, in their work, Payne and Pell 

worked on the problem of viscous fluid flow past a pair of 

separated spheres in the peripolar coordinate system and 

determined stream function in terms of associated Legendre's 

polynomials. They also derived an expression for determin-

ing the drag experienced by a general axisymmetric body in 

terms of the stream function. However, they have not applied 

the same to derive the drag for separated spheres. Instead, 

they referred to Stimson and Jeffery, /2/, who solved an 

equivalent problem in the bipolar system and cited the 

expression from their earlier work for the drag on each 

sphere when the two spheres are of equal radius. It is to be 

noted that Stimson and Jeffery derived the expression for 

drag using the conventional formula that is in terms of the 

axial component of the stress tensor. Further, the expression 

for pressure experienced by the spheres is not mentioned 

explicitly in both of these papers. 
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Considering the above observations, we revisited the two-

sphere problem. As mentioned earlier, we formulated the 

problem in the bipolar coordinate system, and we computed 

an analytical expression for the stream and pressure functions 

and derived the drag experienced by the system of spheres 

by extending the formula given by Payne and Pell, /1/. 

Further, to depict the flow profile, numerical evaluation of 

stream function expression is carried out by developing 

MATHEMATICA® codes. We then presented the flow 

profiles and pressure distribution by varying the radii of the 

spheres. A notable aspect of this study is that our approach 

to compute drag using stream function gave the drag expe-

rienced by the system of spheres instead of an individual 

sphere. Furthermore, we derived empirical formulae for 

bounds for the drag on each sphere and compared them with 

those published in the literature, /2/. As a limiting case, we 

also computed the drag experienced by individual (single) 

spheres. The values obtained are in good agreement with 

those computed using the well-known Stokes formula for 

drag on a single sphere. 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider the flow of a viscous fluid (with a uniform 

velocity U at infinity in negative x-direction) past a pair of 

separated solid spheres that are fixed in the flow domain, as 

shown in Fig. 1. 

 

Figure 1. Schematic diagram of flow past separated spheres in 

bipolar coordinates. 

Corresponding scale factors are taken to describe the flow 

domain, where 
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with – <  < , 0 <  < . 

In this coordinate system, the equation  = c > 0 (where 

c is constant) represents a sphere with its centre on the posi-

tive x-axis placed at a distance a cothc from the origin (along 

the x-axis), and radius equals a cosechc. Whereas  = c < 0 

describes a sphere on the negative x-axis with its centre at a 

distance –a cothc from the origin (along the x-axis) with 

radius of a cosechc. 

Assuming that fluid flow is axisymmetric, the velocity 

vector takes the form ˆ ˆ( , ) ( , )q u e v e    = + , and the pres-

sure is p(,n). Further, considering the fluid to be incom-

pressible and the flow as steady, Navier-Stokes momentum 

equations under Stokesian approximation take the form /3/: 

 grad curlcurl( ) 0p q+ = . (3) 

Now, introducing the stream function through 
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in which the Stokes stream function operator E2 is given by 
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Using Eqs.(5) and (6), Eq.(3) takes the form 
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Eliminating p from Eq.(8) and Eq.(9) gives 

 4 0E  = , (10) 

which is the equation governing the fluid flow in the problem 

considered. 

The determination of the relevant flow field variables  

and p is subjected to the following boundary and regularity 

conditions. 

No-slip boundary condition, i.e. 

0 =    and   0





=


   on   1 =    and   2 = . (11) 

Velocities are regular on the axis, and far away from the 

spheres the flow is a uniform stream which means, at infinity 

 
21

2
Ur = − . (12) 

Solution to the Eq.(10) 

In view of the linearity of Eq.(10), we assume its solu-

tion in the form 

 0 1  = + , (13) 

where the function 0 in Eq.(13) represents the stream func-

tion due to a uniform stream of magnitude U parallel to the 

axis of symmetry, far away from the spheres. 

Thus, using Eq.(12), we get 

 

2

0
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2 cosh cos

a
U


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 

 
= −  

− 
. (14) 

It can be easily verified that E20 = 0, and hence, E40 = 0. 

Now, 1 has to be found such that it satisfies Eq.(10) 

together with conditions given in Eq.(11). 

For this, we consider Eq.(10) and re-write it as 

 4 4 4 2 2
0 1 1 1( ) ( ) 0E E E E E    = + = = =  (15) 

(from the reason mentioned above). 

Let  
2

1E f = , (16) 

then Eq.(15) can be written as 
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 2 0E f = . (17) 

We shall now solve Eq.(17) for f and then substitute it in 

Eq.(16) and again solve it for 1. 

Solution to Eq.(17) 

Using the expressions in Eqs.(1) and (2), Eq.(17) in the 

bipolar coordinate system takes the form, 
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Following /2/, let us denote cos = . Then Eq.(18) takes 

the form 
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We shall use the method of separation of variables to 

find the solution to Eq.(19). For this, let us assume its solu-

tion as 

 ( , ) (cosh ) ( , )nf g     = − . (20) 

Substituting the expression in Eq.(20) in Eq.(19) and 

after a straightforward calculation, we get 
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It can be clearly seen that n = –1/2 reduces Eq.(21) into a 

variable separable form. Thus, choosing n = –1/2, Eq.(21) 
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We further take 

 ( , ) ( ) ( )g X Y   = . (23) 

Then, Eq.(22) takes the form 
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This equation has a non-trivial solution for ( – 1)/4 = 

n(n + 1). 

Thus, for this choice of , we get Y() =  n+1(), which 

is the Gegenbaur function of degree -1/2 and of I kind /3/, 
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Legendre polynomials. Also, 
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where: An, Bn are arbitrary constants. 

Solution to Eq.(16) 

Using the Eq.(26), Eq.(16) takes the form, 

2
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Again, using the method of separation of variables, the 

solution of Eq.(27) is taken in the form 
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Substituting the above expression in Eq.(27), we now 

have to derive the equation governing Hn(). For this, we 

use the following relations in Gegenbaur functions as men-

tioned below, /4/: 
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DETERMINATION OF ARBITRARY CONSTANTS 
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4
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Now, to find the four sets of constants, we consider the 

relations from /5/ as shown below: 
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The orthogonality relation of Gegenbauer functions from /4/, 
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2
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x x
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Now, using relations Eq.(41) to Eq.(43), we see that 

Eqs.(37)-(40) take the form 

1 1 1
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where 
( 1)

2(2 1)(2 3)

n n
k U

n n

+
=

− +
. (48) 

Solving Eqs.(45) to (48) gives expressions for Cn, Dn, En, 

Fn, and hence the stream function is entirely determined. 

DETERMINATION OF DRAG 

To determine the spheres' drag, we use the formula given 

by Payne and Pell for a general axisymmetric body, /1/. For 

the present problem, it takes the form 
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 (50) 

(derived using Eq.(36)). 

Here, 

2 2
2 2 sin sinh

cosh cos
r x a

 


 

+
= + =

−
 (from Eq.(1)). (51)      (51) 

It is to be noted that this formula gives us the total drag 

experienced by the system of separated spheres instead of 

the drag on each sphere. We then compute the drag experi-
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enced by each sphere if the two spheres are of equal radius 

and derive bounds for each of the spheres' drag experienced 

when the spheres are of an unequal radius in Case (I) and 

Case (II) presented below. 

Case (I): Equal spheres. 1 2  = =  (say). 

Solving Eqs.(44)-(47), we get 

Dn = 0, Fn = 0   and 
1

1 1
sinh sinh

2 2

1 1 3 3
sinh sinh

2 2 2 2
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n
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n n n n

 

 

−
    

− +    
      =            

− − + +        
        

 

 

1 3

2 2

1 3

2 2

(2 3) (2 1)

(2 1)(2 3)
2

n n

n n

k n e n e

k
n n e e

 

 

   
− − − +   

   

   
− − − +   

   

  
  

+ − −  
   

 
  

  − − + −  
    

. (52) 

Now, using Eqs.(50) and (52), the drag on the system of 

spheres simplifies to 
1/2
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and the non-dimensional drag is taken as 
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, (54) 

where: D = Fz /aU. 

To understand the effect of  on drag, we evaluate the 

Eq.(54) using MATHEMATICA® and present the non-di-

mensional drag experienced by each sphere in Table 1, 

shown below. For the reader's reference, we also compute 

the non-dimensional radius r* = r/a = cosec h() and the 

centre's distance from the origin d* = d/a = coth() for each . 

Considering Table 1, we infer from columns 4 and 5 

that, in the case of equal spheres, the drag on the system of 

two spheres equals twice the drag on each sphere (com-

puted using the formula on drag given in /1/ and /2/). Thus, 

knowing the drag experienced by the system, we can deter-

mine the drag on individual spheres. 

Table 1. Values of non-dimensional drag for different . 

 

Radius 

(non-

dimen-

sional) 

r* 

Distance of the 

centre of each sphere 

from the origin (non-

dimensional) 

d 

Drag on 

the 

system 

D 

Drag on each 

sphere com-

puted using the 

formula given 

in /2/ 

0.05 19.9917 20.0167 73.735 36.8675 

0.1 9.983 10.033 73.1885 36.5943 

0.5 1.919 2.164 45.5071 22.7536 

1.0 0.8509 1.313 22.524 11.262 

2.0 0.2757 1.037 8.6918 4.3459 

5.0 0.0135 1.000 0.50297 0.2515 

A plot of the variation of drag vs  is as shown in Fig. 2. 

This plot shows that each sphere's drag experienced in the 

two-sphere problem is not a linear function of the sphere's 

radius, unlike the drag in the case of a single sphere. (It is to 

be noted that the drag on a single sphere is computed using 

the non-dimensional form of the Stokes formula given by 

F = 6r*. We also observe that in the two-sphere problem, 

the drag experienced by each sphere remains constant 

beyond a specific value of its radius, indicating that the 

presence of one sphere limits the drag on the other. 

We know from Stokes's formula that the drag experi-

enced by a sphere of radius r, fixed in the flow domain of a 

viscous fluid of viscosity , streaming with a uniform 

velocity –U at infinity is F = –6Ur. Let us define  as the 

ratio of the drag experienced by either sphere in the other's 

presence to the drag computed using Stokes's formula. 

 

Figure 2. Variation of non-dimensional drag with sphere radius. 

For each , we present the value of  in Table 2. We see 

that these values match those mentioned by Jeffery and 

Stimson in their work (equivalent to the present work) on 

finding the force necessary to maintain the sphere's motion 

in a viscous fluid, /2/. 

Table 2. Values of  for a given . 

  

0.05 0.1811 

0.1 0.3479 

0.5 0.6591 

1.0 0.7024 

2.0 0.8362 

5.0 0.9899 

Case (II): Two spheres are of an unequal radius. 

As discussed earlier, the expression for drag given in 

formulae in Eq.(50) gives the total drag experienced by the 
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two-spheres system. We compute the value of non-dimen-

sional drag for specific values of 1, 2 and the same is 

shown in column 3 of Table 3. 

To validate the formula, we compute the drag experi-

enced by each of the spheres using the formulae given in 

/2/. It is seen here again (as in Case I) that the sum of the 

drags presented in column 4 of Table 3 matches with the 

drag of the system (column 3). 

Table 3. Non-dimensional drag for different pairs (1, 2). 

  

Drag experienced by 

system of separated 

spheres (D) 

Drag computed using 

formulae in /2/ 

 = 1           = 2 

0.5 -1.0 38.2989 31.7176 6.59709 

1.5 -1.0 18.7752 5.2842 13.491 

2.0 -1.0 17.4197 2.80943 14.6102 

1.0 -0.5 38.2989 6.59709 31.7176 

1.0 -1.5 18.7752 13.491 5.2842 

1.0 -2.0 17.4197 14.6102 2.80943 

Now, we proceed to identify the bounds for the drag 

(non-dimensional) experienced by each of the spheres. 

As seen from Stokes's formula for drag, we understand 

that the drag experienced by a sphere is proportional to its 

radius. Thus, if D1, D2 and D are the drags experienced by 

spheres  = 1,  = 2, and the system of spheres, respec-

tively, then we have 

 1 2 1 2

1 2 1 2cosh cosh cosh cosh

D D D D D

   

+ =
= =

+
. (55) 

Since, in the two-sphere problem, the presence of one 

sphere affects the other, we get only the bounds for the drag 

experienced by each of them. Thus, we have 
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Further, for larger values of 2 , 1D D . (56) 

Similarly,   
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and for larger values of 1, D2  0. (57) 

We plot (Figs. 3 and 4) the drag on each sphere using the 

formula in /2/ and the bounds for the drag, using the formu-

lae given above. These plots show that the drag value lies 

well within the bounds (limits) derived in this work. 

Special case 

The formula for drag given in Eq.(50) can give the drag 

experienced by a single sphere in the limiting case as 1 → 

 or 2 → –. Table 4 presents the values of non-dimen-

sional drag computed using Eq.(50) for a given 1 with 

2 → – (in column 2), and drag computed using Stokes' 

formula (in column 3). These values agree with each other. 

It is found that by fixing 2 = –1 and letting 1 → , the 

drag computed is the same as the ones shown below. 

 
Figure 3. Plot of the drag on  = 1. 

 
Figure 4. Plot of the drag on  = 2. 

Table 4. Comparison of non-dimensional drag on a single sphere 

using Eq.(50) and Stokes formula. 

 
Drag computed using 

Eq.(50) 

Drag computed using Stokes 

formula 

0.5 36.173 36.173 

1.5 8.8525 8.8525 

2.0 5.1972 5.1972 

Expression for the pressure 

We now derive the expression for the pressure function 

from Eqs.(8) and (9). For this, let us consider Eqs.(8) and 

(9) and substitute the expressions for the scale factors from 

Eq.(2) to get 

 2(cosh )
( )

p
E

a

  


 

 − 
= −

 
, (58) 

 2

2

(cosh )
( )

(1 )

p
E

a

  


 

 − 
= −

 −
. (59) 

Eliminating  from these equations, we get 

1 1 2(cosh ) (cosh ) (1 ) 0
p p

    
   

− −     
− + − − =   

     
. (60) 

Let us assume its solution as 

 ( , ) (cosh ) ( , )np h     = − . (61) 

Substituting the expression for pressure in Eq.(61) into 

Eq.(60), we get 
2 2

2

2 2
(cosh )(1 ) (2 1)sinh (cosh )

h h h
n     

 

  
− − + − + − +

 
 

( ) ( )2 21 2 (1 ) 2 cosh ( 1)cosh 0
h

n n n n h     



+ + − − − + + − =


 (62) 
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Take n = 1/2 and h(, r) = X1()Y1() to reduce Eq.(62) 

into variable separable form given by 
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1 1 1

1 1

(1 ) 21

4

X Y Y
l

X Y

  − −
− = − = . (63) 

Choosing l = n(n + 1), we have 
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2
n
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p H n    


=

  
= − + +  

 
  

 
1

sinh ( )
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n nG n P 
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+ +  
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, (64) 

where: () are Legendre's polynomials. Now, using Eqs.(58) 

and (59), the Hn and () can be written in terms of Cn, Dn, 

En, and Fn, thus the pressure function is entirely determined. 

(Details are provided in the Appendix.) 

We now present the streamlines and pressure distribution 

in cases where spheres are of equal and unequal radius. 

Case (I): The case of equal spheres, 1 = 1 = . 

Plots for streamlines 

We develop a code in MATHEMATICA® to compute 

the coefficients Cn, Dn, En, and Fn, n = 1,2,3,  using the 

Eqs.(44) to (47) and evaluate the non-dimensional stream 

function * =  /Ua2 using Eq.(36). For plotting the stream-

lines, this expression is written in the Cartesian coordinate 

system using the inverse transformation of expressions 

shown in Eq.(1). 

 

Figure 5. Streamlines in the xy plane for  = 1.0. 

  

Figure 6. Streamlines in the xy plane for  = 2.0. 

Plots of streamlines for  = 1.0 and  = 2.0 are presented 

in Figs. 5 and 6, respectively. Figure 5 depicts the flow near 

the spheres shows disturbance when spheres are large rather 

than when they are small (Fig. 6).In Figs. 7 and 8 we 

present the non-dimensional pressure contours for  = 1.0 

and  = 2.0, respectively. 

As mentioned earlier, the disturbance in the flow around 

larger spheres (Fig. 5) is larger. It is mirrored evidently in 

the pressure distribution from Figs. 7 and 8. Moreover, the 

pressure scale is broader in spheres of larger radius than in 

smaller ones. 

 

Figure 7. Plot of the non-dimensional pressure function in the xy 

plane for  = 1.0. 

 

Figure 8. Plot of the non-dimensional pressure function in the xy 

plane for  = 2.0. 

Case (II): The case of two spheres of an unequal radius. 

Following the process detailed above in case (I), we plot 

streamlines to understand the flow profile in unequal spheres. 

Figure 9 presents the streamline pattern for 1 = 1.0 and 

2 = –2.0, and Fig. 10 presents that for 1 = 2.0, 2 = –1.0. 

From Figs. 8 and 9, we observe that the flow is more 

disturbed when the smaller sphere faces the flow stream, 

i.e. when the smaller sphere is on the positive x-axis. It is 

also revealed in the pressure contours presented in Figs. 11 

and 12. Further to this, we see from Fig. 12 that the region 

with higher pressure is larger (in area, blue shaded region) 

than the one in Fig. 11 (sea-blue shaded region). 
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Figure 9. Streamlines in the xy plane for 1 = 1.0, 2 = –2.0. 

 
Figure 11. Plot of the non-dimensional pressure function in the xy 

plane for 1 = 2.0, 2 = –1.0. 

 
Figure 10. Streamlines in the xy plane for 1 = 2.0, 2 = –1.0. 

 
Figure 12. Plot of the non-dimensional pressure function in the xy 

plane for 1 = 1.0, 2 = –2.0. 

CONCLUSION 

The problem of Stokes' flow of viscous fluid past a pair 

of separated solid spheres (two-sphere) solved by Payne 

and Pell has been revisited in the present work. The formula 

for drag derived in terms of stream function is extended to 

compute the drag experienced by a system of two spheres. 

We derived the solution in the bipolar coordinate system 

and obtained expressions for drag and pressure. Further, we 

carried out a numerical evaluation of the stream function 

and depicted the flow pattern, drag, and pressure by varying 

the spheres' radii. Knowing the drag on spheres' system, we 

worked on computing bounds for the drag on individual 

spheres. Also, as a limiting case, we derived the drag expe-

rienced by a single sphere. These values match precisely 

with the ones found in literature. 
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APPENDIX 

Substituting the expression for pressure from Eq.(54) in Eq.(8), 

we have 

1/2 1/2

0 0

1 1 1 1 1 1
(cosh ) sinh cosh sinh ( ) (cosh ) sinh cosh ( )

2 2 2 2 2 2
n n n n n n

n n
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2 2 2 2 2
n n n n n n

n n
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a
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 
−

+ +
= =

           
= − + + + + − + + +                       

   A.1 
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Multiplying on both sides by (cosh  – r)–1 and integrating the 

resulting equation with respect to  between the limits –1 and 1 gives, 

 

1 1

3/2 1/2
0 01 1

( ) ( )1 1 1 1 1 1
sinh cosh sinh sinh cosh

2 2 2 2 2 2(cosh ) (cosh )

n n
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a
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
+
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  . A.2 

Using the formulae given in Eqs.(40) and (41), integrals in the 

above expression can be evaluated to find the equation involving 

the constants Gn, Hn, An, Bn. 

 

Substituting the expression for pressure from Eq.(54) into 

Eq.(9), we have 
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. A.3 

Multiplying on both sides by (cosh – )–1 and integrating the 

resulting equation with respect to  between the limits –1 and 1 gives, 
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
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Using the relations in Eqs.(40), (41), and the recurrence 

relations in Legendre polynomials, /4/, we can derive the 

expressions for Gn and Hn in terms of An and Bn. Again using the 

relations given in Eq.(35), these can in turn be written in terms of 

Cn, Dn, En, and Fn. 
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