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Abstract 

A thin rotating functionally graded disk whose thickness 

and density varies exponentially has been investigated. 

Angular speed, radial stresses and circumferential stresses 

at initial yielding and fully plastic state have been obtained 

using transition theory which helps to eliminate the assump-

tion of yield condition. On the basis of numerical and graph-

ical analysis of angular speed and circumferential stresses, 

it has been found that for designing purposes, functionally 

graded disk made up of isotropic material (steel) with non-

homogeneity parameter is a better option than functionally 

graded orthotropic disk (topaz and barite) as the disk of 

isotropic material with non-homogeneity parameter has less 

circumferential stress than that of orthotropic material. 

Ključne reči 

• elastičan, plastičan 

• eksponencijalna promenljiva 

• debljina, gustina 

• rotirajući disk od funkcionalnog materijala 

• ortotropni materijal 

Izvod 

Istražen je tanki rotirajući disk od funkcionalnog materi-

jala sa eksponencijalno promenljivom debljinom i gustinom. 

Teorijom prelaznih napona, čime je olakšano zanemariva-

nje stanja tečenja, dobijeni su: ugaona brzina, radijalni i 

obimski naponi pri tečenju i u stanju potpune plastičnosti. 

Na osnovu numeričke analize i grafičkog predstavljanja 

ugaone brzine i obimskih napona, za potrebe projektovanja 

dobija se da je izotropni disk (čelik) od funkcionalnog mate-

rijala, sa parametrom nehomogenosti bolji izbor u odnosu 

na ortotropni disk (topaz ili barit) od funkcionalnog materi-

jala, jer se kod izotropnog diska sa parametrom nehomoge-

nosti javljaju manji obimski naponi u odnosu na ortotropni 

disk. 

INTRODUCTION 

Evaluation of the analytical and numerical solutions of 

rotating disks is always an important topic for research 

purposes as it has wide applications in fields of engineering 

design, aerospace industry, etc. Every material has some 

extent of elasticity. With the help of material elasticity, 

Sadd /1/ and Timoshenko et al. /2/ analysed the stress, dis-

placement, strength and stiffness of the material. For the 

plastic state, these properties have been discussed by Chakra-

barty, /3/. When composition or structure of the material 

changes which results in change of properties of that mate-

rial then the material is said to be functionally graded. 

Suresh et al. /4/ have discussed the structure, properties and 

fundamentals of these functionally graded materials. You et 

al. /5/ applied numerical method to evaluate the stresses and 

deformations in an elastic-plastic rotating disk and said that 

their results and those obtained from finite element analysis 

have a good agreement. Heterogeneous materials are compo-

sites made up of different materials having different proper-

ties but same volume compositions. Negi et al. /6/ evaluated 

the transitional deformations in heterogeneous materials 

with results in the large triaxiality values for low strain 

hardening materials. Sharma et al. /7-8/ applied classical 

theory for obtaining the stresses and strains using finite 

difference method and concluded that functionally graded 

material is better alternative than homogeneous material as 

hoop stresses are less for functionally graded material than 

for the homogeneous material. Micro polar theory has been 

used by Yadav et al. /9/ to obtain numerical stresses in 

hollow thick-walled circular cylinder. The power-law distri-

bution has been used by Bayat et al. /10/ to calculate the 

analytical and semi-analytical solutions for the hollow and 

solid disk by varying material properties and thickness 

profile. From the discussion, the author concludes that non-

uniform thickness profile gives more efficient result than 

the uniform thickness profile for the functionally graded 

disk. Zheng et al. /11/ derived the constituent equation for 

the stress field and then evaluated the stresses for the disk 

with non-uniform thickness profile using finite difference 

method. They found that shear stress causes a change in 

location of principal stress. Dai et al. /12/ studied the effect 

of material properties for functionally graded magneto 

electro elastic disk and a semi-analytical method has been 

used to evaluate the numerical results. Generalized differ-
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ential quadrature method has been used by Zharfi et al. /13/ 

to analyse the creep stresses in thin functionally graded disk. 

Effect of disk material and geometry over mechanical 

responses for the functionally graded disk whose thickness 

varies with power law distribution has been investigated by 

Bayat et al. /14/ with the help of shear deformation theory. 

Seba et al. /15/ analysed the elasticity and plasticity in rein-

forced composite materials by discretizing the reinforced 

material. They considered von-Mises two-dimensional model 

with positive linear hardening to analyse the plasticity of the 

material. Asghari et al. /16/ evaluated a two-dimensional 

solution for a rotating functionally graded solid and hollow 

disk, and found that the two-dimensional solution does not 

provide appropriate results in case of thick disks. Hence, 

they introduced a three-dimensional solution for thick disks 

which is a generalization of the two-dimensional solution. 

Bayat et al. /17/ considered different thickness profiles using 

power-law distribution for a rotating functionally graded 

disk under thermal field and found that non-uniform thick-

ness profile gives smaller stresses and displacement which 

leads to better results. Dai et al. /18/ applied a semi-empiri-

cal method to evaluate the stresses and displacement compo-

nents in a hollow circular functionally graded disk under 

temperature field, whose material properties vary with 

volume fraction of the material. Zafarmand et al. /19/ 

obtained a solution using nonlinear graded finite element 

method for uniform and non-uniform distributions of the 

functionally graded disk made up of single-walled carbon 

nanotubes.  

All the above authors used classical theory to calculate 

the stress-strain and displacement fields in which they need 

to consider semi-empirical laws for the creation of the link 

between elastic and plastic states. While transition theory 

works in between fully elastic and fully plastic region, the 

fully elastic and fully plastic are the two extremes of the 

material. The state in between these two extreme points is 

known as transition state where the material shows some 

elasticity and some plasticity. Transition theory works in 

the transition region where no yield surface has been con-

sidered. 

Borah /20/ applied Seth’s transition theory in case of a 

shell to obtain the transitional and plastic stresses and strains. 

Sharma et al. /21-22/ evaluated the thermal transitional 

stresses for circular cylinder with internal and external pres-

sure to minimize the possibility of fracture. Sharma et al. 

/23/ evaluated creep stresses for functionally graded disk 

and concluded that isotropic material is a better alternative 

than orthotropic material for engineering design. Sharma et 

al. /24/ and Aggarwal et al. /25/ have discussed the transi-

tional stresses for pressurized circular cylinder and found 

that high functionally graded material is a better choice for 

engineering design. Sharma et al. /26/ discussed creep 

stresses for the functionally graded cylinder and found that 

higher the non-homogeneity and nonlinearity in material, 

better are the results. Safety analysis of a thick-walled circu-

lar cylinder with pressure at internal and external surface 

with thermal effects has been done by Sharma et al. /27-29/, 

and the same without the thermal effect has been done by 

Aggarwal et al. /30/ by using the concept of generalized 

principal strain measure. Sharma et al. /31/ discussed the 

effect of compressibility in a thick-walled cylinder with 

external pressure and found that highly compressible cylin-

ders are a better substitute in designing purposes, irrespective 

of the material to be homogeneous or non-homogeneous. 

Creep stresses in a pressurized cylinder whose thickness 

and density varies, have been obtained by Sharma et al. /32/ 

and found that in the field of engineering design, the highly 

non-homogeneous material is a more preferable material. 

Sharma et al. /33/ applied the analytical method to obtain 

thermal stresses for a pressurized circular cylinder and 

deduced that the pressurized thermal cylinder with less 

compressibility is a better alternative. 

In this paper, we have evaluated elastic-plastic stresses 

using transition theory in a thin rotating circular disk made 

up of orthotropic material whose thickness and density vary 

exponentially. The graphical results have been obtained for 

various non-homogeneous and nonlinear parameters. 

BASIC CONSTITUENTS OF THE PROBLEM 

Consider a functionally graded thin rotating disk with 

internal radius a and external radius b. The rotating disk with 

angular speed  is considered to have variable thickness 

and variable density. In cylindrical polar co-ordinates, the 

displacements are given by 

 (1 ),   0   and   = − = =r z     , (1) 

where:  =  (r); and  is a constant. 

The generalized principal strain measure /20/ is  

 21
1 (1 2 ) ,   ( 1,2,3) = − − =

 
A n

ii iie e i
n

, 

where: n is nonlinear measure; and eii
A be finite components 

of principal strain. 

The strain components obtained by above generalized 

principal strain measure are 

 
1

1 ( ) = − +
 

n
rre r

n
  ,  

1
1 = −

 
ne

n
  , 

  
1

1 (1 ) = − −
 

n
zze

n
 ,   0= = =r z zre e e  , (2) 

where: ′ = d /dr. 

Stress components for orthotropic materials are given by  

11 12 13[1 ( ) ] [1 ] [1 (1 ) ]= − + + − + − −n n n
rrT A r A A    , 

21 22 23[1 ( ) ] [1 ] [1 (1 ) ]= − + + − + − −n n nT A r A A     , (3) 

0=zzT . 

Non-homogeneity in orthotropic material is considered as 

 011 012 013
11 12 13, ,

     
= = =     

     

K K K
A A Ar r r

A A A
n b n b n b

, 

 021 022 023
21 22 23, ,

     
= = =     

     

K K K
A A Ar r r

A A A
n b n b n b

, 

where: a ≤ r ≤ b; A011, A012, A013, A021, A022, A023, A031, A032, 

A033 are material constants; and K ≥ 0 is non-homogeneity 

parameter. 

Using non-homogeneity of the materials in Eq.(3), we 

get 
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 011 012 013[1 ( ) ] [1 ] [1 (1 ) ]
     

= − + + − + − −     
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K K K
n n n

rr

A A Ar r r
T r

n b n b n b
    , 

 021 022 023[1 ( ) ] [1 ] [1 (1 ) ]
     

= − + + − + − −     
     

K K K
n n nA A Ar r r

T r
n b n b n b

     , (4) 

 0=zzT . 

Equation of equilibrium is given by 

 2 2( ) 0− + =rr
d

hrT hT h r
dr

  , (5) 

where: thickness and density of rotating disk vary as h = 
1( )

0
−

m
s r bh e , 

2( )
0=

m
t r be  , respectively with m1, m2 as 

thickness and density parameters. 

OBJECTIVE OF THE PROBLEM 

Substitution of Eq.(4) in Eq.(5) gives the following integro-differential equation, 
1

1 2 1

1
2 2

1 011 012 0 2 021 022 1( ' ) ( ' )

 
−       

+ − + −       
          − + − + − − + − =     

 

m
m m mr

s r r r KKb s t s
n n n nb b b

K

e r r
B A r A n e r dr e B A r A dr C

bb
          (6) 

where: B1 = [A011 + A012 + A013(1 – (1 -  )n)], B2 = [A021 + A022 + A023(1 – (1 -  )n)], and C1 is an integration constant. 

On further substitution of r = 1/z, and differentiating with respect to z, Eq.(6) becomes 

2
1 1 2 1 1 ( ) 2

1 2 3 4 5 6 011 012 7( ) ( ) 0
−− − − − − − −      − + − − + + + − − − =

  

mm m n n n n n t zb KD z D z D z D z D D z nA z zn A D e z         (7) 

where: D1 = B1sm1b–m1, D2 = m1sb–m1A011, D3 = (-K - 1)A011 + A021, D4 = sm1b–m1A012, D5 = (-K - 1)A012 + A022, D6 = B1(-K - 

1) + B2, D7 = n0Q2bK. 

Substitution of z = el and  = pel/2 in Eq.(7) yields, 

 ( ) ( )
1

1 1

1
2 1

1 2 3 4 5 012 011
2 2 2 4

   −− +  
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n nm l

m l m l n np p p p
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2 2

2
2/2 ( )

6 7 0
− −

  
− − + +  

− −   + − =
lm m

n
K l

nl t e bD e D e e , (8)  

where: p′ = dp/dt. 

On further substitution, 
2

+ =
p

p q  in Eq.(8), we get the following ordinary nonlinear differential equation, 

( ) ( )
12

1 1

2
2 2( ) /2

7 6 1 012 4 5 2 32 2 2 2 2 2 1
−−

      
− − + + − +      

− −− − −      

 
   
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  
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ml
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p p

 

 

1 1

011 011
1

1 2 1
2

− −     
+ − = − −     
     

n n
q q dp q q

nA nA
p p dq p p

. (9) 

By substituting q/p = F, 1/p = Q, Eq.(9) becomes 

( )

( )

2
1 1

1

1
011

( ( /2))( ) ( 2 ( /2)) /2
7 6 1 012 2 3

1 1
4 5 011 011

1
2 (1 )
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 
− − 

 
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  
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 
 
  
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ml

n

m n l m lt e b K n l nl n n
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nA Q F F
dQ

dF
D e e D e D e Q nA F D e D F

D e D nA F F nFA F F

. (10) 

The transition points in above equation are F → 1 and F → . 

The boundary conditions are given as 

 Trr = 0   at   r = a,   and (11a) 

 Trr = 0   at   r = b. (11b) 
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SOLUTION THROUGH PRINCIPAL STRESS 

For obtaining the stresses and angular speed at the transi-

tion point F → , the transition function R in terms of Trr 

can be defined
 
as 

2 2
*

011 012 013 011 012 0132

= − −
   

+ + + +         
   

rr

K K

nT n r
R B

r r
A A A A A A

b b


(12) 

The logarithmic differentiation with respect to r of Eq.(12) 

gives 

 

1
1

2 1*
2=

m
G r

mG
R C r e , (13) 

where: G1 = sm1b–m1, G2 = [(-K - 1)A011 + A021]/A011 and C2
* 

is the integration constant. 

Comparison on Eq.(12) and Eq.(13) gives 

21
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2 1 2 2**
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T

b n n b
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where: D = A011 + A012 + A013. 

Using Eq.(11a) in Eq.(14), we get 
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−
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m m
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Using Eq.(11b) and Eq.(15) in Eq.(14), we get 

1
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2 1
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12 2*
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2 2
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1 1 2
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Transitional stresses and angular speed at initial yielding are 

1 1 1 1 2
2

2 222 2*
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For fully plastic state, A011 = A012 = A013, A021 = A022 = A023. 

Hence, the stresses and angular speed at fully plastic state are 
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Now, we convert the above dimensional quantities in the following non-dimensional quantities as 
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where: Yi and Yf are yield stress at initial and fully plastic state, respectively. 

Transitional stresses and angular speed required for initial yielding from Eqs.(17-19) become 
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The stresses and angular speed at fully plastic state from Eqs.(20-22) become 
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NUMERICAL OUTCOMES AND DISCUSSION 

The numerical and graphical results of angular speed and 

circumferential stresses required for initial yielding and full 

plasticity have been obtained by substituting the following 

combinations of thickness and density parameters: s1 = 0.1, 

0.4; m1 = 0.2, 0.3; t = 0.2, 0.3; and m2 = 0.1, 0.4; 0 = 0.5. 

and B* = 5 in Eqs.(24), (25), (27) and (28). The relation 

between non-homogeneity parameter and angular speed 

required for initial yielding and full plasticity by varying the 

radii ratio can be seen in Figs. 1-4, while Figs. 5-8 show the 

graphical relation between circumferential stresses (for 

initial yielding and full plasticity) and radii ratio for various 

thickness and density parameters. The above discussion has 

been done for three different materials whose material prop-

erties are as follows. 
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Table 1: Values of material constants for different materials (in 

units of 1011 N/m2) 

Material A011 A012 A013 A021 A022 A023 

barite (orthotropic) 0.8941 0.4614 0.2691 0.4614 0.7842 0.2676 

steel (isotropic) 5.326 3.688 3.688 3.688 5.326 3.688 

topaz (orthotropic) 2.8145 1.2552 0.8433 1.2552 3.4911 0.8825 

The following numerical values and graphical results 

have been evaluated using data from Table 1. 

 

Table 2 shows angular speeds and percentage increase in 

angular speed required from initial yielding to full plasticity 

for the various functionally graded disk with thickness, 

density and nonlinearity parameters as: s = 0.1; m1 = 0.2; 

t = 0.3; m2 = 0.4; and n = 1/3 for different radii ratios and 

non-homogeneity parameters. From Table 2, it can also be 

analysed that as non-homogeneity of the disk increases, the 

angular speed increases, but percentage increase in angular 

speed required from initial yielding to full plasticity decreases. 

Table 2. Angular speed against radii ratios for functionally graded disk having exponentially variable thickness and density. 

n = 1/3; s = 0.1; m1 = 0.2; 

t = 0.3; and m2 = 0.4 

Angular speed Percentage increase in angular speed required from initial yielding to full plasticity 

R0 = 0.3 R0 = 0.5 R0 = 0.7 R0 = 0.3 R0 = 0.5 R0 = 0.7 

K = 1 

barite 
i

2 7.60407 22.417 39.9273 
173.898 49.55854 4.686884 

f
2 57.0458 50.1418 43.7577 

topaz 
i

2 9.33433 24.2068 42.3402 
150.0849 46.1452 3.750278 

f
2 58.3792 51.7019 45.5755 

steel 
i

2 5.54399 13.7129 23.6738 
216.5975 88.00761 33.92736 

f
2 55.5696 48.4708 42.4626 

K = 3 

barite 
i

2 9.575 33.3732 73.0123 
166.3514 46.79914 2.90112 

f
2 67.928 71.9192 77.3101 

topaz 
i

2 11.0757 34.1826 72.9775 
148.4042 45.38352 3.232799 

f
2 68.3422 72.2496 77.7722 

steel 
i

2 6.95041 20.9673 44.6796 
215.4924 87.54227 33.64595 

f
2 69.1812 73.7464 79.8033 

K = 5 

barite 
i

2 9.75238 36.1122 89.224 
165.8139 46.36639 2.505322 

f
2 68.9074 77.3636 93.7507 

topaz 
i

2 11.2324 36.6765 87.9899 
148.2783 45.25753 3.110344 

f
2 69.2389 77.3865 93.5486 

steel 
i

2 7.07699 22.7809 54.9724 
215.4144 87.47214 33.58651 

f
2 70.4063 80.0653 98.1002 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Angular speed required for initial yielding in a functionally 

graded rotating disk with: s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4. 
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Figure 2. Angular speed required for initial yielding in a functionally 

graded rotating disk with: s = 0.4; m1 = 0.3; t = 0.2; and m2 = 0.1. 

Figures 1-2 show the angular speed required for initial 

yielding in a functionally graded disk with variable thickness 

and density. It can be seen that the angular speed required 

for initial yielding in a functionally graded topaz is higher 

than functionally graded barite and steel. Also, it increases 

with increase in radii ratio and non-homogeneity parameter. 

Change in measure from linear to nonlinear and increase in 

nonlinearity gives an increase in angular speed for initial 

yielding. As the thickness and density decrease, the angular 

speed required for initial yielding increases which can be 

observed from Fig. 2. 

 

  

  

Figure 3. Angular speed required for full plasticity in a functionally 

graded rotating disk with: s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4. 

 

 

 

Figure 4. Angular speed required for full plasticity in a functionally 

graded rotating disk with: s = 0.4; m1 = 0.3; t = 0.2; and m2 = 0.1. 
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Graphical results of angular speed required for full plas-

ticity verses non-homogeneity parameter are evaluated in 

Figs. 3-4. The effect of radii ratio and non-homogeneity 

parameters is significant on angular speed required for fully 

plastic state i.e. angular speed is maximum for K =1, R0 = 

0.3; K = 5, R0 = 0.7. It can also be seen that angular speed 

required for full plasticity in functionally graded steel is on 

the higher side than the functionally graded barite and topaz. 

From Figs. 3 and 4, it can be noticed that angular speed 

required for full plasticity increases with decrease of thick-

ness and density of the functionally graded disk. 

Table 3 shows the circumferential stresses in the func-

tionally graded disk whose thickness and density parameters 

are fixed as s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4 for 

different radii ratios, nonlinearity, and non-homogeneity 

parameters. As the disk changes from linear to nonlinear, a 

drastic increase in stresses can be seen. Also, the stresses 

increase on increasing radii ratio and non-homogeneity 

parameter. 

Table 3. Transitional stresses against radii ratios for functionally graded disk having exponentially variable thickness and density. 

s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4 
n =1 n = 1/3 

R = 0.55 R = 0.75 R = 0.95 R = 0.55 R = 0.75 R = 0.95 

K = 1 

barite 
38.8842 62.3516 89.2798 133.533 217.168 315.963 

22.8815 37.333 54.5116 69.9145 114.265 167.156 

topaz 
44.0571 71.2659 103.464 137.415 223.226 325.515 

23.8405 38.7721 56.6051 71.9141 117.022 170.948 

steel 
24.705 40.8444 59.9971 75.4358 124.848 183.657 

21.9801 36.3852 53.5395 66.169 109.557 161.253 

K = 3 

barite 
40.8727 89.6453 166.383 139.498 299.049 547.272 

23.8695 50.8958 92.8257 72.8788 154.953 282.098 

topaz 
44.558 95.8071 175.552 138.922 296.858 541.794 

24.0992 51.4108 93.7286 72.6904 154.939 282.319 

steel 
28.1279 59.4411 107.951 85.7047 180.639 327.519 

24.9616 52.5838 95.3093 75.1136 158.152 286.563 

K = 5 

barite 
33.6861 87.153 210.773 117.939 291.572 680.444 

20.2984 49.6574 114.884 62.1653 151.238 348.274 

topaz 
37.2705 92.9565 217.816 117.055 288.297 668.571 

20.3457 49.9413 115.49 61.4298 150.53 347.602 

steel 
24.6002 58.7758 134.267 75.1215 178.643 406.467 

21.8888 52.0043 118.232 65.8952 156.414 355.33 

 

 

 

 

 
Figure 5. Transitional circumferential stress for functionally 

graded rotating disk with: s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4. 
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Figure 6. Transitional circumferential stresses for functionally 

graded rotating disk with: s = 0.4; m1 = 0.3; t = 0.2; and m2 = 0.1. 

 

 

 

Figure 7. Fully plastic circumferential stress for functionally 

graded rotating disk with: s = 0.1; m1 = 0.2; t = 0.3; and m2 = 0.4. 

It can be noticed from Figs. 5-6 that transitional circum-

ferential stresses are higher at external surface with K = 5. 

As the non-homogeneity and radii ratio increases, the 

required transitional stresses decrease. In case of disk with 

linear measure, functionally graded topaz gives maximum 

transitional stresses while in case of nonlinear measure, 

maximum transitional stresses are obtained in disk made up 

of functionally graded barite. Increase in thickness parameter 

and decrease in density parameter gives rise in transitional 

circumferential stresses for functionally graded disk as can 

be observed from Fig. 6.  

 

 

 

Figure 8: Fully plastic circumferential stress for functionally 

graded rotating disk with: s = 0.4; m1 = 0.3; t = 0.2; and m2 = 0.1. 

From Figs. 7-8, we have analysed that fully plastic 

circumferential stresses increase on decreasing the thickness 

and density of the disk. It can be seen from figures that at 

external surface of the disk, functionally graded steel with 

K = 5 give higher circumferential stresses, while that with 

K = 1 give lower circumferential stresses. As the nonlinear-

ity of the disk increases, the transitional stress for full plas-

ticity also increases. 

CONCLUSION 

It has been analysed from the above numerical discussion 

of angular speed that functionally graded steel shows the 

higher percentage increase in angular speed required from 

initial yielding to full plasticity than functionally graded 

barite and functionally graded topaz. Also, as analysed 

from the graphical discussion of circumferential stresses 

that circumferential stresses obtained for functionally graded 
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steel with non-homogeneity parameter K = 1 are less than 

for functionally graded barite and topaz. Hence, it can be 

concluded that functionally graded steel with non-homoge-

neity parameter K = 1 is the best appropriate material for 

engineering design. Also, functionally graded barite with 

non-homogeneity parameter K = 1 is better choice than that 

of functionally graded topaz. 
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