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Abstract 

Reddy's third-order theory is adopted to analyse the free 

axisymmetric vibrations of thick circular sandwich plates 

with a relatively stiff uniform core and membrane facings. 

Hamilton's principle is used to develop the equations of 

motion and natural boundary conditions. Numerical solution 

for frequency equations of simply-supported, clamped and 

free edged plates are obtained using Chebyshev collocation 

method. The least three roots obtained are reported as the 

natural frequency parameters for the first three vibration 

modes. Validation of the results presented in the paper is 

done by making comparison with their counterparts accessi-

ble in available published works. Results are exhibited 

numerically and graphically for studying the influence of 

thicknesses of the core and facings on the natural frequen-

cies. The significance of the proposed model is established 

by showing that for the estimation of natural frequencies of 

thick cored circular sandwich plates, previously published 

models based on first-order shear deformation theory are 

not sufficient. Mode shapes of the initial three modes for 

each boundary condition have been plotted. 

Ključne reči 

• kružne sendvič ploče 

• osnosimetrične vibracije 

• Hamiltonov princip 

• metoda kolokacije Čebiševa 

• Redijeva teorija 

• oblici modova 

Izvod 

Redijeva teorija trećeg reda je usvojena za analizu 

slobodnih osnosimetričnih vibracija debelih kružnih sendvič 

ploča s relativno krutim uniformnim jezgrom i membran-

skim stranama. Hamiltonov princip je upotrebljen za izvođe-

nje jednačina kretanja i sopstvenih graničnih uslova. Dobi-

jena su numerička rešenja za frekvencijske jednačine prosto 

oslonjenih i uklještenih ploča sa slobodnim krajem, dobije-

na metodom kolokacije Čebiševa. Bar tri izračunata korena 

su dobijeni kao parametri sopstvenih frekvencija za prva tri 

moda vibracija. Provera rezultata prikazanih u radu izvede-

na je poređenjem sa rezultatima dostupnim u objavljenim 

radovima. Rezultati su prikazani numerički i grafički radi 

proučavanja uticaja debljina jezgra i strana na sopstvene 

frekvencije. Značaj predloženog modela opravdava se time 

što za procenu sopstvenih frekvencija kružnih sendvič ploča 

s debelim jezgrom, prethodni objavljeni modeli na osnovu 

teorije deformacije smicanja prvog reda nisu zadovolja-

vajući. Dati su dijagrami oblika modova za početna tri 

moda, za svaki granični uslov. 

 

INTRODUCTION 

The analysis of free vibration of circular/annular sandwich 

structures are of great importance in civil, mechanical, 

marine, aerospace and other various dimensions of engi-

neering as they have become widely adopted constructional 

elements due to their outstanding qualities such as good 

energy absorption, lightweight, high bending rigidity and 

cost effectiveness. A sandwich plate consists of two thin 

facings adhered to a core. Face sheets are usually stiff and 

strong enough to counter all the longitudinal loads while the 

core sustains the transverse shear. Efficient use of sandwich 

structures requires fairly exact knowledge of their vibra-

tional characteristics which has made the dynamic analysis 

of these structures essential. The recent trends of work in 

the field of vibration analysis of sandwich structures are 

given in the surveys articulated by Sayyad and Ghugal /1/ 

and Birman and Kardomateas /2/. 

For studying the vibrational characteristics of sandwich 

plates, numerous theories have appeared /3, 4/ for the past 

few decades. Various studies on dynamic analyses of these 

plates in the framework of classical plate theory (CPT) /5/ 

and first order-shear deformation theories (FSDT) /6-9/ are 

well documented by Habip /10, 11/ and Bert /12, 13/ in 

their review articles. Kao and Ross /14/ employed a varia-

tional theorem to study the fundamental natural frequencies 

of simply-supported and clamped circular sandwich plates. 

Mirza and Singh /15/ discussed the axisymmetric vibration 

of circular sandwich plate with honeycomb type core and 

isotropic facings. Prasad and Gupta /16/ solved the equations 

formed due to asymmetric vibration of sandwich plate of 

circular geometry by using Bessel functions. Jain et al. stud-

ied the radially symmetric vibration of sandwich circular 

plates with stiff core of linearly /17, 18/ and parabolically 

/18/ varying thickness using Chebyshev collocation method. 

Using the same method, results are computed for axisym-
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metric vibration of honeycomb cored sandwich plates of 

circular type with thickness varying linearly /18/. Guojun 

and Yingjie /19/ presented axisymmetric large amplitude 

vibration of circular sandwich plates by considering the 

flexural rigidity of the facings. Differential equations for 

axisymmetric large amplitude free vibration of circular sand-

wich plate under static loading has been analytically solved 

in /20/. Starovoitov et al. /21/ discussed the analytical solu-

tion for axisymmetric transverse vibration of circular sand-

wich plates under impulsive surface and linear loads by 

using Heaviside functions and Dirac delta function. Zhou 

and Stronge /22/ investigated axisymmetric and non-axi-

symmetric modes of vibration of circular sandwich panels 

using Mindlin-Reissner plate theory and solved by applying 

numerical finite element method. Using two stress func-

tions and two displacement functions, /23/ worked on free 

vibration of transversely isotropic laminated annular, circular 

and sectoral plates. Shariyat and Alipour /24/ analysed the 

free bending vibration of functionally graded viscoelastic 

circular sandwich plates by employing a global-local zigzag 

theory. The radially symmetric vibration of sandwich plate 

of circular geometry with parabolically /25/ and linearly 

/26/ varying core thicknesses are studied by Lal and Rani 

assuming facings as membranes. 

The above discussed works are either based on CPT or 

FSDT. We know that the effects of normal strains and 

transverse shear deformation is neglected by CPT due to 

which its adoptability is constrained only for the thin plates 

whereas FSDT assumes a constant transverse shear stress 

throughout the thickness of the plate which limits their 

acceptability only up to moderately thick plates. Moreover, 

in case of FSDT, the shear stresses do not vanish along the 

top and bottom surface of the plate which leads to inclusion 

of a shear correction factor. 

To remove these constraints and make them valid for 

thick plates, various higher-order shear deformation theories 

(HSDT) /27-33/ are developed. Among all the HSDT, the 

theories of Reddy /29, 30/ are most common as they are 

simple. Moreover, Rohwer in his work /34/ has stated that 

the Reddy's theory /30/ for the laminated, composite and 

sandwich plates is best among all the theories in context of 

many parameters. 

According to surveys /1, 2/ and the literature discussed 

above, it is found that the works available for analysis of 

vibrational behaviour of annular or circular plates in the 

framework of HSDTs are very few. The analysis of radially 

symmetric bending and buckling of functionally graded 

circular plates is studied by Ma and Wang /35/ on the basis 

of Reddy's HSDT /29/. In the paper they have also presented 

a relationship between the results obtained for isotropic 

circular plates and those obtained by CPT. The closed form 

solution for free vibration analysis of thick circular plate is 

presented by Hosseini-Hashemi et al. /36/ by employing 

Reddy's HSDT /29/. The unconstrained third-order theory 

/37/ is used in ref. /38/ to analyse the radially symmetric 

bending and buckling of functionally graded plates of circu-

lar dimension. A paper by Saharee and Saidi /39/ is a study 

on radially symmetric stretching and bending of a function-

ally graded circular plate loaded uniformly by a plate theory 

of fourth order. On the basis of the theory of Reddy /30/. 

Najafizadeh and Heydari /40/ solved the critical buckling 

problem of a circular functionally graded plate. Bisadi et al. 

/41/ have analytically solved the problem of free vibration 

of annular plate. In order to find the static, buckling and 

free vibration of composite sandwich plates, Nguyen-Xuan 

et al. /42/ used an isogeometric finite element method con-

sistent with a fifth order theory. The large amplitude free 

vibration analysis of annular sandwich plate resting on 

elastic foundation is presented in /43/. The face sheets 

considered in this paper are made up of functionally graded 

composite reinforced with carbon nanotube. The discussions 

mentioned above show that the analysis of free vibration of 

circular sandwich plates based on HSDT has not been 

attempted so far in the literature. 

The work discussed in this paper is an attempt to analyse 

the free radially symmetric vibrations of a sandwich plate 

of circular geometry and uniform thickness by adopting 

Reddy's HSDT /30/. The core is considered to be thick, and 

facings are treated as membranes. Derivation for equations 

of motion are on the basis of Hamilton's principle. Fre-

quency equations for free, simply-supported and clamped 

edged plates are obtained using Chebyshev collocation 

method. The initial three zeroes are obtained numerically 

and addressed as dimensionless parameter of frequency for 

initial three vibrational modes. The obtained results for 

various values of facing and core thicknesses are given along 

with graphical and numerical comparisons with the works 

available. 

MATHEMATICAL FORMULATION 

A uniform circular sandwich plate is considered here 

with radius a and total thickness (hc + 2hf), where hc is the 

core thickness and the thickness of membrane facings is 

denoted by hf (see Fig. 1). Let us consider the cylindrical 

coordinates (r,,z) into account to define the geometry of 

the plate. The origin is assumed to be at the centre of the 

horizontal mid-plane z = 0 with r = 0 taken as the axis of 

rotation. 

 

Figure 1. The mid-vertical cross section of a circular sandwich 

plate. 
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Strain- displacement relation 

Here we consider w(r,t) for the plate's displacement in 

the vertical direction, whereas the angle of rotation in radial 

direction is denoted by the symbol r(r,t). According to the 

theory of Reddy, the axisymmetric deformation in the core 

and lower face sheet of the plate are: 
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Stress-strain relations 

The stress values in terms of strain for homogeneous and 

isotropic core and facing may be written as 
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Expressions for energies and equations of motion 

The kinetic energy corresponding to the core and lower 

face sheet of the plate are expressed as 
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are the moments. 

According to Hamilton’s principle: 
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Putting the energy values in the given equation gives us 

equations of motion in dynamic form for the considered plate 
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Equations of motion in terms of displacement 

Equations (5) and (6) are reconstructed by putting stress 

values in terms of displacement. Resulting equations are: 
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Now, to obtain the non-dimensional equations, the follow-

ing dimensionless parameters are introduced:  = r/a, z = 

z/a, Hc = hc/a, Hf = hf /a, w = w/a, R = f /r, Rf = f /c, 

Rc = c /c, and assuming w (,t) = w ()sin(t) and r(,t) = 

r()sin(t), where the symbol ‘’ is used for the angular 

frequency of harmonic motion, Eqs.(7) and (8) get reduced to 
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the dimensionless frequency parameter. 

METHOD OF SOLUTION 

Chebyshev collocation technique is applied here for solv-

ing the obtained differential equation with variable coeffi-

cients. Since the range of applicability of this method is [-1, 

1], we introduce a new variable x such that x = [2 - 1]. 

Transforming Eqs.(9) and (10) within the applicability 

range and taking 
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where: m and n are chosen in such a way that one is even 

and the other is odd. Their successive integration gives us 
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and equations of motion finally get reduced to 
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where: Tk is k-th Chebyshev’s polynomial and Tk
j; 1 ≤ j ≤ 4 

denotes the j-th integral of k-th Chebyshev polynomial; and 
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Equations (11) and (12) satisfy (m+n-3)/2 collocation 

points given by 
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where: xi are the roots of Tk for k = (m+n-3)/2. 

Putting the values of xi in Eqs.(11) and (12), we obtain a 

set of (m+n-3) equations in (m+n) unknowns, denoted by aj 

and bk, where j ranges from 1 to m and k varies from 1 to n. 

The obtained system can also be expressed as: 

 2[ ][ ] 0G H X− = , (13) 

where: matrices H and G are of size (m+n-3)(m+n) and X 

is of order (m+n)1. 

CONDITIONS AT BOUNDARIES AND FREQUENCY 

EQUATIONS 

The edge conditions can be expressed mathematically as:  

1. w = 0, r = 0 and w/r = 0, for clamped edge 
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, for free edge. 

Here, each boundary conditions are applied at the edge 

of the plate, i.e. at x =1. We have three equations for each 

case itemized above, which together with Eq.(13) creates a 

full set of (m+n) equations in terms of (m+n) unknowns. 

The matrix equation for a clamped circular sandwich plate 

can be expressed as 

 2[ ] 0c cG H X− = , (14) 

with 
c

c
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, where c
GB  and c

HB  are 

matrices of order 3(m+n) which come from the boundary 

condition for the clamped edge. 

For the solution to be non-trivial, we must have 

 2 0c cG H− = . (15) 

Similarly, for simply-supported and clamped sandwich 

plates, we have 

 2 0s sG H− = , (16) 

and 2 0f fG H− = , (17) 

where: 
s
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 and 
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H

H
H

B

 
=  

  

. 

NUMERICAL RESULTS AND DISCUSSION 

Solutions for  are obtained from Eqs.(15), (16) and 

(17) for different plate parameter values by applying hybrid 

bisection-secant method. In order to analyse the effect of 

thickness of core thickness Hc and facing thickness Hf for 

all three boundary conditions, the first three zeroes of the 

system are obtained and recorded as least three natural 

frequencies. Material of the core is taken as polyvinyl chlo-

ride while facings are considered to be made up of alumin-

ium. The various elastic constants are: Rp = 2.76, Rf = 

1232.21, Rc = 2.85, f = 0.30 and c = 0.30. 

Table 1 exhibits the percentage error of the least three 

modal frequencies for each boundary case considered with 

Hc = 0.1 and Hf = 0.005. In the table, it is found that the 

percentage errors involved in the least three modal frequen-

cies diminish with increasing m and n values and become 

almost zero after m = 37 and n = 38. So, we fix m = 37 and 

n = 38 for evaluations involved in this work. 

In Table 2, the numerical results of discussed work with 

Hf = 0 are compared with the analytically obtained results 
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available in literature for thick circular plates based on 

Reddy’s HSDT. The frequency parameter considered here 

is  = a(cHc/D), where D = Eca3Hc
3/12(1-c

2). An excel-

lent agreement of frequencies is found in all the cases which 

validates and verifies the obtained results. 

Table 3 compares the results obtained by the proposed 

approach with the available works based on FSDT. Percent-

age difference is calculated using formula % diff. = [(HSDT - 

FSDT)/HSDT]100. 

Considerable improvement is observed in results obtained 

for HSDT which validates the significance of the proposed 

work. Results of the present HSDT based formulation for 

varying values of Hc and Hf are given in Tables 4 and 5. 

Figure 2 exhibits the effect of core thickness Hc on the 

percentage difference between the values of  obtained for 

HSDT (present) and FSDT for the initial three modes of 

vibrations of each considered boundary case. The graph’s 

pattern reveals that with the rising value of Hc, the percent-

age difference increases monotonically. It is noted that with 

an increase in the mode number, the percentage difference 

in all the three plates increases. 

Figure 3 shows the effect of core thickness Hc on the  

value for Hf = 0.0025, 0.0075. The range of Hc is taken 

from 0.1 to 0.5. Results for both FSDT and HSDT are plot-

ted for a better visual comparison. In the figure,  is found 

to rise monotonically with an increase in the Hc value. In all 

the three modes of vibration of each boundary case, the  

pattern is observed to be the same. The value of  for HSDT 

is also noted to be greater than its counterpart obtained for 

FSDT and the discrepancy between their values increases 

with the value of Hc increasing. As we shift into higher 

vibration modes in each boundary case, the effect appears 

to be more pronounced. It is observed that values of  for 

Hf = 0.0025 are more than the equivalent value measured 

for Hf = 0.0075. 

The influence of Hf on  is shown in Fig. 4. Curves of 

both FSDT and HSDT are plotted for the least three vibration 

modes taking Hc = 0.2, 0.4. Values of Hf is taken from 

0.0025 to 0.02. It is observed that Hf inversely affects the 

frequency parameter  in all the three boundary cases. It is 

also found that the curves for FSDT are lower in position as 

compared to that of HSDT. It is clear from the observation 

that for a particular mode of vibration, the discrepancy in  

values obtained for HSDT and FSDT remains almost the 

same with increasing value of Hf and hence the curves plot-

ted for them are equidistant at each point. This gap in 

between the corresponding curves of HSDT and FSDT 

increases when we move towards the higher modes of vibra-

tion in all the plates. The value of  for Hc = 0.4 is found to 

be more than that obtained for Hc = 0.2. 

Figure 5 is a three-dimensional surface plot of clamped, 

simply-supported and free plates for the first three modes of 

vibration for Hc = 0.2 and Hf = 0.005. 

Table 1. Percentage error under varying boundary conditions for first three modes of vibration. Hc = 0.1 and Hf = 0.005. Percentage error 

= [i
(j,k)- i

(37,38)/i
(37,38)]100, where i

(j,k) is the i-th mode of frequency for j = m and k = n.  

 

 

m 

 

 

n 

Percentage error* 

Clamped  Simply supported  Free 

           

28 29 0.2687 0.1838 0.1477  0.0000 0.0185 0.0208  0.0109 0.0148 0.0287 

29 30 0.1598 0.1115 0.0878  0.0739 0.0618 0.1023  0.0054 0.0074 0.0159 

30 31 0.0944 0.0663 0.0523  0.0000 0.0062 0.0076  0.0054 0.0049 0.0096 

31 32 0.0581 0.0392 0.0299  0.0277 0.0185 0.0265  0.0000 0.0025 0.0064 

32 33 0.0291 0.0211 0.0168  0.0000 0.0000 0.0019  0.0000 0.0025 0.0032 

33 34 0.0218 0.0120 0.0093  0.0092 0.0062 0.0076  0.0000 0.0000 0.0032 

34 35 0.0073 0.0060 0.0056  0.0000 0.0000 0.0000  0.0000 0.0025 0.0000 

35 36 0.0073 0.0030 0.0019  0.0000 0.0031 0.0019  0.0000 0.0000 0.0000 

36 37 0.0000 0.0000 0.0019  0.0000 0.0000 0.0000  0.0000 0.0025 0.0000 

37 38 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

38 39 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

39 40 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 

Table 2. Comparison with Hosseini-Hashemi et al. /36/ .   = a(cHc/D) where D = Eca3Hc
3/12(1-c

2). 

Boundary condition Hc     

 Present Benchmark  Present Benchmark 

 

Clamped 

0.2  9.2650 9.26503  30.4750 30.4749 

0.25  8.8464 8.84637  27.6223 27.6223 

0.3  8.4113 8.41130  25.1011 25.1011 

0.35  7.9783 7.97828  22.9183 22.9183 

 

Simply-Supported 

0.2  4.7787 4.77871  25.0414 25.0414 

0.25  4.6985 4.69853  23.3190 23.3190 

0.3  4.6070 4.60704  21.6757 21.6757 

0.35  5.5070 4.50697  20.1569 20.1569 

 

Free 

0.2  8.5084 8.50842  31.1748 31.1748 

0.25  8.2723 8.27233  28.6931 28.6931 

0.3  8.0151 8.01507  26.3883 26.3883 

0.35  7.7467 7.74669  24.2979 24.2979 
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Table 3. Percentage difference with respect to FSDT /18, 26/. Hf = 0.005. Asterisk (*) denotes the present result. 

% difference = [(HSDT - FSDT)/HSDT]100. 

Hc   % diff.   % diff.   % diff. 

 Clamped plate 

0.2 HSDT * 1.7876 9.56  4.2309 10.58  6.7764 11.44 

 FSDT 1.6166  3.7831  6.0013 

0.4 HSDT* 2.1677 11.83  5.1300 13.66  8.3079 15.91 

FSDT 1.9112  4.4291  6.9861 

  Simply - supported plate 

0.2 HSDT* 1.5250 6.09  4.1095 8.46  6.6208 9.44 

FSDT 1.4322  3.7619  5.9957 

0.4 HSDT* 1.9251 7.12  4.8901 9.67  7.9456 12.15 

FSDT 1.7881  4.4172  6.9830 

  Free plate 

0.2 HSDT* 2.5342 6.67  5.1769 8.62  7.7444 9.71 

FSDT 2.3651  4.7309  6.9925 

0.4 HSDT* 3.1582 7.99  6.2235 10.45  9.3730 12.94 

FSDT 2.9060  5.5730  8.1600 
 

Table 4. Influence of the thickness of core Hc on frequency 

parameter . 

 

 

Hc 

 Frequency parameter (Ω) 

 Hf = 0.0025  Hf = 0.0075 

        

  Clamped plate 

0.10  1.5589 3.9133 6.4260  1.2275 2.9155 4.6637 

0.15  1.8100 4.4352 7.2102  1.4570 3.4311 5.4720 

0.20  1.9735 4.7786 7.7365  1.6239 3.8122 6.0822 

0.25  2.0904 5.0298 8.1343  1.7538 4.1143 6.5787 

0.30  2.1796 5.2276 8.4606  1.8596 4.3656 7.0037 

0.35  2.2511 5.3921 8.7439  1.9484 4.5820 7.3811 

0.40  2.3106 5.5347 9.0003  2.0251 4.7736 7.7255 

0.45  2.3616 5.6623 9.2391  2.0926 4.9471 8.0463 

0.50  2.4065 5.7796 9.4659  2.1531 5.1070 8.3494 

  Simply - supported plate 

0.10  1.0954 3.7564 6.3187  1.0212 2.8563 4.6052 

0.15  1.3577 4.2782 7.0664  1.2638 3.3539 5.3768 

0.20  1.5429 4.6080 7.5486  1.4394 3.7117 5.9452 

0.25  1.6808 4.8385 7.8984  1.5735 3.9874 6.3958 

0.30  1.7874 5.0114 8.1738  1.6799 4.2097 6.7719 

0.35  1.8724 5.1480 8.4044  1.7665 4.3954 7.0979 

0.40  1.9418 5.2608 8.6065  1.8387 4.5549 7.3887 

0.45  1.9996 5.3571 8.7901  1.8999 4.6948 7.6540 

0.50  2.0485 5.4418 8.9609  1.9526 4.8201 7.9004 

  Free plate 

0.10  1.8998 4.6941 7.3180  1.7124 3.5879 5.3701 

0.15  2.3221 5.3486 8.1991  2.0942 4.2266 6.2899 

0.20  2.6129 5.7700 8.7747  2.3689 4.6910 6.9744 

0.25  2.8260 6.0708 9.1959  2.5787 5.0528 7.5228 

0.30  2.9896 6.3014 9.5274  2.7458 5.3482 7.9841 

0.35  3.1197 6.4877 9.7992  2.8829 5.5978 8.3859 

0.40  3.2263 6.6446 10.0217  2.9983 5.8142 8.7445 

0.45  3.3156 6.7809 10.1809  3.0971 6.0057 9.0701 

0.50  3.3920 6.9022 10.1984  3.1832 6.1779 9.3692 

Table 5. Influence of the thicknesses of face sheets Hf on 

frequency parameter . 

 

 

Hf 

Frequency parameter  

Hc = 0.2  Hc = 0.4 

       

 Clamped plate 

0.0025 1.9735 4.7786 7.7365  2.3106 5.5347 9.0003 

0.0050 1.7876 4.2309 6.7764  2.1677 5.1300 8.3079 

0.0075 1.6239 3.8122 6.0822  2.0251 4.7736 7.7255 

0.0100 1.4939 3.4925 5.5612  1.9025 4.4763 7.2447 

0.0125 1.3895 3.2402 5.1534  1.7980 4.2263 6.8417 

0.0150 1.3037 3.0350 4.8233  1.7084 4.0131 6.4984 

0.0175 1.2318 2.8641 4.5492  1.6305 3.8288 6.2017 

0.0200 1.1705 2.7190 4.3170  1.5622 3.6675 5.9420 

 Simply - supported plate 

0.0025 1.5429 4.6080 7.5486  1.9418 5.2608 8.6065 

0.0050 1.5250 4.1095 6.6208  1.9251 4.8901 7.9456 

0.0075 1.4394 3.7117 5.9452  1.8387 4.5549 7.3887 

0.0100 1.3531 3.4046 5.4371  1.7480 4.2733 6.9287 

0.0125 1.2760 3.1609 5.0390  1.6644 4.0359 6.5431 

0.0150 1.2088 2.9621 4.7167  1.5895 3.8330 6.2147 

0.0175 1.1503 2.7963 4.4489  1.5227 3.6575 5.9308 

0.0200 1.0990 2.6553 4.2220  1.4631 3.5038 5.6823 

 Free plate 

0.0025 2.6129 5.7700 8.7747  3.2263 6.6446 10.0217 

0.0050 2.5342 5.1769 7.7444  3.1582 6.2235 9.3730 

0.0075 2.3689 4.6910 6.9744  2.9983 5.8142 8.7445 

0.0100 2.2136 4.3112 6.3891  2.8407 5.4640 8.2140 

0.0125 2.0792 4.0078 5.9276  2.6989 5.1661 7.7656 

0.0150 1.9641 3.7593 5.5526  2.5735 4.9104 7.3818 

0.0175 1.8650 3.5514 5.2403  2.4626 4.6884 7.0490 

0.0200 1.7788 3.3741 4.9751  2.3642 4.4936 6.7571 

CONCLUSIONS 

Free axisymmetric vibrations of thick sandwich plates of 

circular geometry with clamped, simply-supported and free 

edges are studied in this article. The plate’s core is assumed 

to be solid as well as of uniform thickness. Face sheets are 

taken as membranes. Reddy’s HSDT is used to define the 

displacement field. Chebyshev collocation method is adopted 

to get the frequency equations. From the results obtained in 

the previous section, the following conclusions are drawn: 

• frequency parameter increases monotonically with increas-

ing value of Hc for all boundary conditions keeping Hf 

constant, 

• with an increase in Hf keeping Hc fixed, the frequency 

parameter  decreases monotonically, 

• the frequency value computed for HSDT exceeds its cor-

responding value computed for FSDT in all the three plates 

keeping the plate parameters same, 

• the difference between frequency values computed for 

FSDT and HSDT increase while moving towards higher 

modes of vibration keeping the values of Hc and Hf constant, 
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• increasing the value of Hc keeping Hf constant increases 

the difference between the numerical value of  computed 

for HSDT and FSDT. This effect is more pronounced 

when we move towards higher modes of vibration, 

• the difference in frequency values obtained for FSDT and 

HSDT for a particular mode of vibration remains almost 

the same with increase in Hf for a fixed Hc, 

• the analyses of references /18, 26/ are not suitable for the 

analysis of axisymmetric vibration of thick sandwich plates 

of circular geometry. 

 

 

Figure 2. Effect of core thickness Hc on percentage difference and frequency parameter , Hf = 0.0075. % diff. = [(HSDT-

 FSDT)/HSDT]100. 

 

Figure 3. Effect of varying core thickness Hc on frequency parameter . Darker lines: HSDT (present), faded lines: FSDT /18, 26/. Hf = 

0.0025 (), 0.0075 (). — First mode, - - - Second mode, ..... Third mode 
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Figure 4. Effect of varying facing thickness Hf on frequency parameter . Darker lines: HSDT (present), Faded lines: FSDT /18, 26/. Hc = 

0.2 (), 0.4 (). —— First mode, - - - Second mode, ...... Third mode

 

Figure 5. Three-dimensional mode shapes for initial three vibrational modes. Hc = 0.2, Hf = 0.005. 
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