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Abstract 

In this paper, the equations are discretized with standard 

finite element method (FEM), and are generalized to analyse 

the free vibration problem of clamped-clamped pipes carry-

ing fluid flow with several parameters. The flow circulating 

has the flexional motion as that of pipe structure. We devel-

oped a program under Matlab. The advantage of Matlab 

language by using standard functions is to present the first 

proper-modes of the system aspect interaction fluid-struc-

ture for different parameters in complex planes. The numer-

ical approach is based on some research and analytical 

models. Numerical results show the effect of mass ratio, 

length, pressure force and Winkler elastic foundation on 

instabilities regions and static instability range. 

Ključne reči 

• cevovod za transport tečnosti 

• prirodne frekvencije 

• elastičnost 

• MKE 

• Matlab 

• nestabilnost 

Izvod 

U radu se date jednačine diskretizuju standardnom 

metodom konačnih elemenata (MKE), a generalisane za 

analizu problema slobodnih vibracija obostrano uklještenih 

cevovoda za transport tečnosti sa nekoliko parametara. Tok 

strujanja ima oblik zavojnog kretanja, kao i sama konstruk-

cija cevovoda. Program je razvijen u Matlab. Prednost 

Matlab pri korišćenju standardnih funkcija je u zadavanju 

prvih pravilnih modova interakcije sistema sa aspekta fluid-

konstrukcija za različite parametre u kompleksnim ravnima. 

Numerički pristup se zasniva na istraživačkim i analitičkim 

modelima. Numerički rezultati pokazuju uticaj odnosa mase, 

dužine, sile pritiska i Vinkler elastične podloge na nestabil-

ne oblasti i opseg statičke nestabilnosti. 

INTRODUCTION 

The studies on the dynamic problem of pipe carrying 

fluid date back more than 60 years (Housner, 1952 /1/; 

Gregory and Païdoussis, 1966 /2/; Païdoussis 1966 /3/). Their 

studies were not extensive and in-depth; rather, limited to 

methods of solving this type of problem. Païdoussis’ 

research continued for successive years until he was able to 

derive the motion equation for vibration of fluid-conveying 

pipe, which was done in 1977, /4/. In this, he followed an 

approximate analytical method called the Galerkin method. 

The equation was developed according to the physical and 

geometrical parameters affecting the stability of such type 

of system. These axes and studies were collected in a book 

of an old /5/, and recent publication /6/. 

These articles and books are the starting point of many 

researchers. Chellapilla et al. /7/ studied the effect of a 

Pasternak foundation on the critical velocity of a fluid-

conveying pipe by Galerkin method. He repeated the same 

search using fundamental frequencies calculations of a pipe-

line resting on a two-parameter foundation with different 

boundary conditions, /8/. Some studies have dealt with the 

thermal effect on instability such as that found by Qian et 

al. /9/, who studied the static instability of pinned-pinned 

fluid-conveying pipe under thermal loads. The equation of 

motion is derived for the straight pipe under the effects of 

linear and nonlinear stress-temperature cases. In addition to 

the analytical methods, the numerical methods presented 

significant results in studying this behaviour, similar to the 
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method of spectral element modelling, /10/. Finite element 

analysis was used by Salah to analyse dynamically the 

stability of a pipe, stiffened by linear spring and conveying 

an internal flow of fluid, /11/. The same method was adopted 

in references /12-15/. This type of system was treated by 

numerical simulation, using the finite element method /16/. 

The results were similar to analytical results and a semi-

analytical result, when calculating the first natural frequen-

cies in terms of fluid velocity and for several parameters. 

In the present research, calculation methods are devel-

oped for the analysis of stability regions, instability regions, 

and instability range in fixed-fixed pipe carrying fluid. 

Numerical modelling of pipe structure-fluid was conducted 

by finite element method /17, 18/. The characteristics of 

static and dynamic instability, namely the disappearance of 

the first vibratory mode and the attainment of the critical 

velocities associated with it, are carried out using a program 

developed in Matlab®. After studying the numerical approach, 

several examples are studied. We performed several calcu-

lations to obtain the critical velocities under various param-

eters, taking into account: fluid velocity, mass ratio, length, 

elastic foundation, and pressure force. The results are pre-

sented by displaying natural frequencies in terms of flow 

velocity, which enables us to analyse the instabilities under 

these effects. 

DERIVATION OF GOVERNING DIFFERENTIAL EQUA-

TION 

The problem to be considered is the vibration analysis of 

a fluid conveying pipe system on an elastic foundation. The 
derivation of the equation is based on Euler-Bernoulli 

elementary beam theory. The physical model of conveying 

pipe carrying fluid is shown in Fig. 1a, Fig. 1b shows forces 

on fluid element, while Fig. 1c shows forces and moment of 

pipe element. 

The pipe is long and straight L conveying an incom-

pressible fluid with steady speed U; the motions are small s. 

The pipe rests on an elastic foundation Winkler-model 

soil of modulus KX, ms and mf are the masses per unit 

length of the pipe and the fluid, respectively. The boundary 

conditions for clamped-clamped pipe are, 

 
X 0 X L

X 0 X L

Y Y
Y Y 0

X X= =
= =

 
= = = =
 

. (1) 

The equation for conveying pipe-carrying fluid on a 

Winkler elastic foundation is given as /5/, 

 
4 2 2

2
f f4 2

Y Y Y
EI (m U PA) 2m U

X TX X

  
+ + + +

  
  

 
2

s f 2

Y
(m m ) KY 0

T


+ + + =


. (2) 

We use the same non-dimensional variables and parame-

ters as in reference /6, 19/, 
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Figure 1. a) Representation of pipe-conveying fluid resting on an 

elastic Winkler-type; b) forces on fluid element; c) forces and 

moments on pipe element, s, /6/. 

FINITE ELEMENT DISCRETIZATION 

The Eq.(2) is a fourth-order partial differential equation 

in two independent variables subject to various boundary 

conditions. It is not easy to get its analytical solution, but 

through the use of finite element method we get its numeri-

cal solution. The equation of element deflection for straight 

two-dimensional beam elements could have the form /20/, 

 N
i i(i 1)W(X,T) N (X)W (T)== , (3) 

where: [Ni] represent the shape function; Wi(T) is the func-

tion which represents the shape of the displacements and 

rotations at nodes (Fig. 2). 

 
Figure 2. Beam element nodal displacements. 

Therefore, Eq.(3) becomes 

1 1 2 1 3 2W(X,T) N (X)W (T) N (X) (T) N (X)W (T)= +  + +  

4 2N (X) (T)+  ,  (4)
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and 

1 1 2 1 3 2(X,T) N (X)W (T) N (X) (T) N (X)W (T)   = +  + +  

4 2N (X) (T)+  .  (5) 

Elementary matrices 

Potential energy of the solid element can be expressed,  

 

2
2

L
s 0 2

W1 d
V EI dx

2 dx

 
=  

 
 

 . (6) 

The kinetic energy of the solid element can be expressed,  

 
2

L
s s0 2

1 d W
T m dx

2 dt
=  . (7) 

The kinetic energy of the fluid element /13/ can be 

expressed, 

 f f

2
d1

T
t

m dx
2

dW W
U

dx d

 
 


= +


 . (8) 

The potential energy over the length of Winkler elastic 

foundation /15/ can be expressed, 

 
L 2
0

1
V KW dx

2
 =  . (9) 

Different elementary matrices are given in appendix A.  

After using the Lagrange principle, the equation of 

motion by finite element method is 

 [M]{q} [C]{q} ([K]){q} 0+ + = . (10) 

Analysis of dynamic eigenvalues 

The governing equation of the system (structure plus 

fluid) can be transformed into its state-space coordinates, 

 Ez Gz 0+ = , (11) 

where the state variable is 

 
q

z
q

 
=  
 

. (12) 

The matrices [E] and [G] are calculated through variable 

changeset as the following, 

 
M 0

E
0 K

 
=  
 

, (13) 

 
C K

G
K 0

 
=  

− 
. (14) 

Therefore, we can obtain the natural frequencies (eigen-

values) and mode shapes (eigen-vectors) by solving the 

mathematically well-known characteristic equation of 

 I Hz 0 − = , (15) 

where:  is eigen-value of the system; and I is a unity 

matrix, and 

 
1 1

0 I
H

M K M C− −

 
=  

− −  

. (16) 

The solution of Eq.(10) can be written in the form, 

 {q} {E}exp( t)=  , (17) 

 
{E}

z exp( t) {E}exp( t)
{E}

 
=  =  
 

. (18) 

We obtain a homogeneous equation, which corresponds 

to a generalized eigen-value problem of our system, 

 
1 1

0 I I 0 {E} 0

0 I {E} 0M K M C− −

         
− =       

− −          

. (19) 

We can compute the eigen-values numerically from Eq. 

(19) and obtain the eigen-frequencies of the conveying pipe 

carrying fluid for different various parameter values. The 

eigen-values are complex, 

 m m mRe j = +  , (20) 

where: m is the complex eigenvalue; Re is real part of 

eigen-frequencies; and the imaginary part of these roots 

represents the natural frequencies of damped system; and 

m = 1, 2 ….N. 

RESULTS AND DISCUSSION 

In the current research, results are discussed for various 

values of fluid velocity, mass ratio, length, elastic founda-

tion (Winkler type), and pressure force, calculating the 

frequency of the first three eigen-modes for fluid-conveying 

pipe, with finding the critical velocities of instabilities. 

The physical parameters are elastic modulus of structure 

is 211 GPa; incompressible fluid density is 1000 kg/m3; 

elastic structure density is 7850 kg/m3. The geometrical 

parameters are pipe length L belongs to [1, 2] m; the thick-

ness corresponds to  [0.3, 0.7]; outer diameter of the pipe 

is 0.03 m. The research in our hands has adopted a beam 

with clamped-clamped boundary conditions. The cases can 

be divided into four; according to the parameters effect 

mass ratio , length L, Winkler elastic foundation, and 

pressure effect. 

Effect of mass ratio 

In the case number one, firstly, the numerical results are 

obtained by differential transformation method (DTM) /22/, 

and FEM /17/ for mass ratio  = 0.1. The semi-analytical 

and numerical results are similar, see Fig. 3. We repeated 

the numerical calculations for different mass ratios,  = 0.3 

in Fig. 4;  = 0.5 in Fig. 5, and  = 0.7, see Fig. 6. 

 

Figure 3. Dimensionless frequency for various values of u, for the 

lowest three modes of a clamped-clamped pipe, DTM /11/ (xxx), 

and FEM (                         ),  = 0.1. 

In the same figures, part (a) presents the dimensionless 

results, and part (b) presents the dimensional results. The 

dimensional results show that there is a great variation in 

the natural frequency development, unlike what is found in 
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the dimensionless frequencies, and this is contrary to many 

researchers, like Chellapilla et al. /7/. For U = 0 (no fluid 

flow), the first frequency variation is 3 %. For U ≡ Ucr, 

where the first critical velocity corresponds to static insta-

bility (u = 2π), we find the variation between the two cases 

equals 45 %, while the dynamic critical velocity is reduced 

by 43.60 %, corresponding to flutter. The variation of insta-

bility static range is 40 %. So, an increase in the value of  

leads to a decrease in the stability region, critical velocities, 

as well as the instability range. 

 

 

Figure 4. Three proper modes on fluid velocity function of 

clamped-clamped pipe carrying fluid,  = 0.3: a) dimensionless 

frequencies; b) naturel frequencies (Hz). 

 

 
Figure 5. Three proper modes on fluid velocity function of 

clamped-clamped pipe carrying fluid,  = 0.5: a) dimensionless 

frequencies; b) naturel frequencies (Hz). 

 
Figure 6. Three proper modes on fluid velocity function of 

clamped-clamped pipe carrying fluid,  = 0.7. 

Effect of length and elastic foundation 

In this case, we carry out the same study with the addi-

tion of the effect of elastic foundation and length. For elas-

tic foundation Winkler-model we shall take two different 

values, a minimum value k = 10 and a maximum values k = 

1000. Figures 7 and 8 present the first three natural frequen-

cies as a function of the fluid velocity of clamped-clamped 

pipe on a weak elastic foundation Winkler-type, where k = 

10, for three different lengths (L = 1, 1.5, and 2), with  = 

0.3 and 0.5, respectively. For  = 0.3 and L = 1 (Fig. 7a), 

the largest change does not exceed 1 % for natural frequen-

cies. While it exceeds 4 % for the instability range, the first 

critical velocity is 2.03π. Figure 7b presents a large variation 

in the natural frequencies, so it is 16%. The critical velocity 

corresponding to the buckling decreases to a limit of 5.41, 

i.e., 15.33 %, while the instability range value decreases to 

36.8 %. When increasing the value of the length to double 

(L = 2), we find that the percentage of change in instability 

margin (range) diminishes to 40.9 % compared to the first 

case (L = 1). When we raise the value mass ratio to 0.5 as 

shown in Fig. 8. The instability range increases by 11 % 

with respect to the same length, see Fig. 8a, while the varia-

tion in the level of the first critical velocity and natural 

frequencies is almost non-existent. Figures 8b and 8c show 

the variations accompanying the increase in length. Figure 

9a, b and c show the variation in the natural frequencies and 

critical velocities when increasing the value of elastic 

foundation to 1000 and with different lengths for  = 0.3. 
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Figure 7. Effect of length on the natural frequency of the clamped-

clamped pipe on elastic foundation (k = 10) at different fluid 

velocities,  = 0.3. 

Figure 9a shows that the range of static instability 

deceased by 95 %, while the stability region expanded with 

the first critical velocity. We also note that the largest change 

in natural frequencies corresponds to the first natural fre-

quency with an affinity ratio 41%. Otherwise, according to 

Fig. 9b, the frequencies decrease when increasing the length 

by about 150 %, where the highest percentage decrease is in 

the third frequency by 16.66 %. 

 

 

 

Figure 8. Effect of length on the natural frequency of the clamped-

clamped pipe on elastic foundation (k = 10) at different fluid 

velocities, β = 0.5. 

Figures 9b and 9c show the disappearance of the insta-

bility range, which corresponds to the disappearance of 

dynamic instability. 
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Figure 9. Effect of length on the natural frequency of the clamped-

clamped pipe on elastic foundation (k = 1000) at different fluid 

velocities,  = 0.3. 

In the same manner, the static critical velocity decreased, 

reducing stability region. Figure 10 provides roughly the 

same results as the Fig. 9c, as the mass ratio is 0.5. 

 

Figure 10. Effect of length on the natural frequency of the 

clamped-clamped pipe on elastic foundation (k = 1000) at 

different fluid velocities,  = 0.5. 

Effect of pressure 

At zero pressure (Π = 0), Figs. 3 to 6 give the following 

values of critical velocities as 2 for any value of . As the 

pressure increases, the Figs. 11 to 14 show that the critical 

velocities decrease linearly. Excluding is the part of curve 

on domain [22 42] to Fig. 14, where the critical velocity 

takes a nonlinear curve. This is due to the effect of increas-

ing the compressive force exerted on pipe ends as the pres-

sure increases. 

 

Figure 11. Critical velocities of buckling at different pressures of 

clamped-clamped pipe,  = 0.1. 

 

Figure 12. Critical velocities of buckling at different pressures of 

clamped-clamped pipe,  = 0.3. 
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Figure 13. Critical velocities of buckling at different pressures of 

clamped-clamped pipe,  = 0.5. 

 

Figure 14. Critical velocities of buckling at different pressures of 

clamped-clamped pipe,  = 0.7. 

These developments are mainly due to the effect of 

increasing the pressure force exerted on the ends of the 

pipes according to . These are identical to the Euler load 

of buckling for the corresponding beams with compressive 

axial force. Figure 13 shows that the critical velocity is null 

when the pressure force reaches a value of 28, while its 

value approaches 42 with respect to  = 0.7, see Fig. 14. 

CONCLUSIONS 

In this work, we have studied the static and dynamic insta-

bility of clamped-clamped pipe under internal fluid. The 

numerical approach with the finite element method gives 

solutions in a complex plane by determining the proper-

modes; the numerical results are finally combined with the 

semi-analytical results (DTM) to determine the different 

characteristics of instability of each system. The numerical 

study allowed us to obtain a very good precision by using 

the element of beam; each node contains two degrees of 

freedom. Several examples have been treated for the study 

of the influence of different geometrical and physical param-

eters on the system instability. From the discussions of 

numerical results of vibration, parametric instability for pipes 

conveying fluid, the main conclusions are presented: 

1. we observe that instability appears when the velocity 

exceeds a threshold called critical velocity of instability, 

when the first natural pulse disappears; 

2. the results obtained numerically are similar to those 

obtained by semi-analytical method for the determination 

of the first natural frequencies; 

3. the natural frequencies decrease with increasing of fluid 

velocity; 

4. the critical fluid flow velocity varies as a function of the 

mass ratio, and reflects the stability region of the system; 

5. the Winkler type elastic foundation increases the rigidity 

of the system and therefore the critical instability veloci-

ties, while the range of static instability is decreasing; 

6. we have noticed that increasing length L slightly decreases 

the natural frequencies of the system and consequently 

decreases their critical velocities, and leads to an increase 

in the instability range; 

7. increasing the pressure decreases the critical velocities of 

buckling of conservative pipes. 
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APPENDIX 

The different elementary matrices for our system can be 

represented as follows, /17/, 

 

2 22
f

s

2 2

12 6L 12 6L

6L 4L 6L 2Lm U
[K ]

12 6L 12 6L30L

6L 2L 6L 4L

− 
 

− 
=  − − −

 
 − 

, (21) 

 

2 22
f

f

2 2

36 3L 36 3L

3L 4L 3L Lm U
[K ]

36 3L 36 3L30L

3L 3L 3L 4L

− 
 

− − 
=  − − −

 
 − 

, (22) 

2 2
s f

2 2

156 22L 54 13L

22L 4L 13L 3L(m m )L
[M]

54 13L 156 22L420

13L 3L 22L 4L

− 
 

−+  
=  −

 
 − − − 

, (23) 

 

2
f

2

30 6L 30 6L

6L 0 6L L2m U
[C]

30 6L 30 6L30

6L L 6L 0

− − 
 
− − 

=  − −
 
 − 

, (24) 

 

2 2

2 2

156 22L 54 13L

22L 4L 13L 3LKL
[F]

54 13L 156 22L420

13L 3L 22L 4L

− 
 

− 
=  −

 
 − − − 

, (25) 

 

2 2

p

2 2

36 3L 36 3L

3L 4L 3L LPA
[K ]

36 3L 36 3L30L

3L 3L 3L 4L

− 
 

− − 
=  − − −

 
 − 

. (26) 
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