
INTEGRITET I VEK KONSTRUKCIJA 

Vol. 20, br. 3 (2020), str. 319–327 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 20, No 3 (2020), pp. 319–327 

 

319 

Dahmane Mouloud1, Samir Zahaf2, Mohamed Benkhettab3, Mawhoub Soubih4, S.A. Slimane5, Djilali Boutchicha1 

VIBRATION STUDY INDUCED BY INTERNAL FLOW IN PIPELINES UNDER DIFFERENT 

PARAMETERS WITH A NUMERICAL ASPECT 

STUDIJA O VIBRACIJAMA NASTALIM USLED PROTOKA U CEVOVODIMA POD 

RAZLIČITIM PARAMETRIMA SA NUMERIČKIM ASPEKTOM 

 
Originalni naučni rad / Original scientific paper 

UDK /UDC:  

 

Rad primljen / Paper received: 26.06.2020 

Adresa autora / Author's address: 
1) LMA, Depart. of Mechanical Engineering, USTO-MB, 

BP 1055 El Menaour, Oran, Algeria 
2) Depart. of Technol., Univ. of Djilali Bounaama-Khamis 

Meliana, Ain Defla, Algeria 

email: zahafsamir1983@gmail.com 
3) Depart. of Mechanical Engineering, Mostaganem 

University-Abdelhamid Ibn Badis, Algeria 
4) Laboratory of Mechanics and Energy, Chlef University 

Hassiba Benbouali, Chlef, Algeria 
5) Depart. of Space Mech. Res., Satellites Devel. Centre, 

Algerian Space Agency, Oran, Algeria 
 
Keywords 

• fluid conveying pipe  

• foundation 

• FEM 

• Matlab 

• instability 

Abstract 

In this paper, the natural frequencies of a fluid conveying 

pipe and critical velocities are obtained using standard 

finite element method (FEM). Finite element beam type with 

two degrees of freedom per node was used. The natural 

frequencies of our system are calculated by using a program 

developed in MATLAB. The results are compared with those 

predicted by the differential transformation method (DTM), 

and with other results listed in the literature, where several 

examples are studied, for pipes with different boundary 

conditions: pinned-pinned and clamped-pinned. We deter-

mine the influence of the physical and geometrical parame-

ters of the proper frequencies and the critical velocity for 

fluid conveying pipe to study and analyse instability with its 

concepts. 

Ključne reči 

• cevovod za transport tečnosti 

• temelj 

• MKE 

• Matlab 

• nestabilnost 

Izvod 

U ovom radu prirodne frekvencije cevovoda za transport 

tečnosti i kritične brzine dobijene su standardnom metodom 

konačnih elemenata (MKE). Korišćen je tip snopa konačnih 

elemenata s dva stepena slobode po čvoru. Prirodne frek-

vencije ovog sistema izračunavaju se pomoću programa 

razvijenog u MATLAB-u. Rezultati se upoređuju s onima 

predviđenim metodom diferencijalne transformacije (MDT) 

i sa ostalim rezultatima navedenim u literaturi, gde je prou-

čavano nekoliko primera za cevi sa različitim graničnim 

uslovima: zakovane i zakovane-uklještene. Utvrđen je uticaj 

fizičkih i geometrijskih parametara odgovarajućih frekven-

cija i kritične brzine protoka cevovoda za transport tečnosti 

u cilju proučavanja i analize koncepta nestabilnosti. 

  

INTRODUCTION  

The pressure pulsations and mechanical vibrations in 

pipe systems may cause excessive noise and may even lead 

to damage of piping or machinery. The excitation mechanism 

can be hydraulic or mechanical /1/. In fluid-filled pipe 

systems pulsations and vibrations will be strongly coupled. 

The elastic fluid coupling forces depend on the relative 

movement of the structure, it gives coupling effects from 

mass, stiffness, damping, the coupling can cause dynamic 

instability by negative damping, and one then has a fluid-

elastic instability. We will be particularly interested in the 

case of a pipe with an internal flow, see /2-7/. The first 

works on the subject are however those of Bourrières /8/, 

who obtained the linear equations of motion and made exper-

imental observation of the oscillations of a cantilevered pipe. 

The effect of internal fluid on free vibration of a pipe 

was studied by /9/. Dahmane and al. /10/ have studied the 

effect of Coriolis force of the internal fluid of pipeline by 

analytical approach using Galerkin method. There are others 

who used analytical method to study dynamic of pipe with 

internal fluid under different parameters as, differential 

quadrature method /11/, differential transformation method 

/12/, and such a generalized integral transform technique 

/13/. Independently analytical methods, numerical methods 

are very effective and faster to treat a physical problem of 

vibration under internal flow, such as finite element method 

/14-17/.  

All these studies did not address the issue of the system 

stability, except what we find in Doaré’s studies /18-21/; 

they have calculated critical velocity of liquid under the 
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effect of physical and geometrical parameters of the system, 

and then study the two aspects of instability. Nevertheless, 

all these works do not take into account the fluid whether 

Newtonian or not, the effect of the parameter different on 

dynamic instability with different boundary conditions, study 

the margin (range) of static and dynamic instability by the 

numerical approach. 

In the present study calculation methods have been 

developed for the analysis of vibrations in fluid-filled pipe 

systems. The analytical model is based on the Newtonian 

approach. The practicability of the calculation model and 

the effects of fluid-structure interaction are illustrated by 

calculations for some simple systems, for pipes with differ-

ent boundary conditions pinned-pinned and clamped-pinned. 

The numerical methods were developed, modelling of solid-

fluid was conducted by the standard finite element method; 

finite element beam type with two degrees of freedom per 

node was used. The frequencies of the system are calcu-

lated using a program developed on MATLAB language. 

After studying the convergence and validated program with 

/12/, several examples were studied. The study of these 

examples enabled us to determine the influence of these 

physical and geometrical parameters of the natural frequen-

cies, and consequently their stability. 

DERIVATION OF GOVERNING DIFFERENTIAL 

EQUATION  

The problem to be considered is the vibration analysis of 

a fluid conveying pipe system on an elastic foundation. The 

derivation of the equation is based on Euler–Bernoulli 

elementary beam theory. The physical model of conveying 

pipe carrying fluid is shown in Fig. 1a. Figure 1b shows 

forces on fluid element while, Fig. 1c shows forces and 

moment of pipe element. 

The pipe is long and straight L conveying an incomepress-

ible fluid with steady speed U; the motions are small s.  

The pipe rests on an elastic foundation Winkler-model soil 

of modulus KX, ms and mf the masses per unit length of the 

pipe and the fluid, respectively. The boundary conditions are, 

(a) Pinned-Pinned Pipe 

 
2 2

X 0 X L X LX 0 2 2

Y Y
Y Y 0

X X
= = ==

 
= = = =
 

 (1) 

(b) Clamped-Pinned Pipe 

 
2

X 0 X 0 X 1 X 12

Y Y
Y Y 0

X X
= = = =

 
= = = =
 

 (2) 

The equation for conveying pipe-carrying fluid on a 

Winkler elastic foundation is given as /20/, 

( )
4 2 2 2

2
f f s f4 2 2

Y Y Y Y
EI m U 2m U m m KY 0

X TX X T

   
+ + + + + =

   
 (3) 

FINITE ELEMENT DISCRETIZATION 

The Eq.(3) is a fourth-order partial differential equation 

in two independent variables subject to various boundary 

conditions. It is not easy to get its analytical solution, but 

through the use of finite element method we get its numeri-

cal solution. The equation of element deflection for straight 

two dimensional beam elements could have the form /23/, 

 ( ) ( ) ( )
N

i i

i 1

W X,T N X W T

=

= , (4) 

where: [Ni] represent the shape function; Wi(T) is the 

function which represents the shape of the displacements 

and rotations at nodes (the generalized coordinates). 

(a) 

 

 

Figure 1. a) Representation of the pipe-conveying fluid resting on 

an elastic Winkler-type; b) forces on fluid element; c) forces and 

moments on pipe element s /22/. 

 
Figure 2. Pinned-pinned pipe. 

 
Figure 3. Clamped-Pinned Pipe 

 
Figure 4. Beam element nodal displacements. 

(b) (c) 

M 
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Therefore, Eq.(4) becomes 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 2 1

3 2 4 2

W X,T N X W T N X θ T

N X W T N X θ T

= + +

+ +
 (5) 

and 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 2 1

3 2 4 2

θ X,T N ' X W T N ' X θ T

N ' X W T N ' X θ T

= + +

+ +
 (6) 

Determination of the element matrices 

By using the energy principle. The potential (defor-

mation) energy and the kinetic energy of the solid element 

can be expressed by /24-26/, 

 

2L 2

s

0

1 d W
V EI dX

2 dX²

 
=  

 
 

 , (7) 

 

L 2

s s

0

1 d W
T m dX

2 dT²
=  . (8) 

The kinetic energy of the fluid element can be expressed 

by /15/, 

 

2

f f
1 dW dW

T m U dX
2 dX dT

 
= + 

 
 . (9) 

The potential energy over the length of elastic foundation 

can be expressed by /16/, 

 

L
' 2

0

1
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2
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The different elementary matrices can be represented as 

follows, 
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where: [Ks], [Kf], [M], [C] and [F], are respectively, the 

stiffness (structure and fluid), the masses, the damping, and 

the foundation matrices of the system, /17/. 

Analysis of dynamic eigenvalues 

Application of the Lagrange principle,  

 
i

d T T V
0

dT qi iq q

   
− + = 

   
. (16) 

The standard equation of motion in the finite element 

form is, 

          M C q ( K ) q 0q + + = , (17) 

where:            s f s fM M M ,  K K K= + = − .  

The governing equation of the system (structure plus 

fluid) can be transformed into its state-space coordinates, 

 Ez Gz 0+ = , (18) 

where the state variable is, 

 
q

z
q

 
=  
 

. (19) 

The matrices [E] and [G] are calculated through variable 

change as the following, 

 
M 0

E
0 K

 
=  
 

, (20) 

 
C K

G
K 0

 
=  

− 
. (21) 

Therefore, we can obtain the natural frequencies (eigen-

values) and mode shapes (eigenvectors) by solving the math-

ematically well-known characteristic equation of, 

 λI Hz 0− = , (22) 

where:  is eigenvalues of the system and I is a unity matrix 

and, 

 
1 1

0 I
H

M K M C− −

 
=  

− −  
. (23) 

The solution of Eq.(22) can be written in the following 

form, 

    q E .exp(λt)= , (24) 

 
 

 
 

E
z exp(λt) exp(λt)

E
E

  
= = 
  

. (25) 

We obtain a homogeneous equation, which corresponds 

to a generalized eigenvalue problem of our system, 

 
 

 1 1

0 I λ EI 0 0
λ

E0 I 0M K M C− −

        
− =      

− −         

. (26) 

We can compute the eigenvalues numerically from Eq.(26) 

and obtain the eigenfrequencies of conveying pipe carrying 

fluid for different various parameter values. The eigenvalues 

are complex, 

 m m mλ Re jω= + , (27) 

where: λm is the complex eigenvalue; Re is real part of 

eigenfrequencies; and the imaginary part of these roots repre-

sents the natural frequencies of damped system and m = 1, 

2, ….N; j = √(-1). The critical flow velocity ucr is character-

ized by max (Rem = 0), 
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The characteristic roots m are obtained here by using the 

(eigen) function of MATLAB. Using the non-dimensional 

parameters /22/, we obtain, 

 

1/24
2s f s

f s

1/2
2f

m m mKL
β ,k ,Ω ωL

m m EI EI

m
u UL

EI

,
+ 

= = =  
+  

 
=  
   

RESULTS AND DISCUSSION 

In the current work, we rely on calculating the critical 

fluid velocity to study and analyse instability with its 

concepts. Results will be discussed for various values of , 

length L, elastic foundation k (Winkler type) for pipes with 

different boundary conditions. Because the problem is very 

ramified, we use incompressible fluid, and the physical 

parameters as,  

- Elastic modulus of pipe (211 GPa); 

- Pipe length (1-2 m); 

- Fluid density (1000 kg/m3); 

- Pipe density (7850 kg/m3); 

- Pipe thickness ( = 0.1- 0.5); 

- Outer diameter of the pipe (0.03 m). 

Pinned-pinned pipe with internal flow 

The object of this section is the determination of proper 

frequencies for fluid conveying pipe without foundation. 

First, the validation of our program was made by doing a 

convergence study, convergence was performed for a veloc-

ity U = 100 m/s, see Fig. 5a, another study for critical 

velocity, where U = 175 m/s, the results obtained are shown 

in Fig. 5b. 

Figure 5a shows that there is very fast convergence for 

the first two modes according to the number of elements 

and that for two different fluid velocities. Convergence is 

obtained for the third mode with 13 elements. On the other 

hand, the numerical results are given and compared with 

those obtained by DTM /12/ for pinned-pinned pipe with 

internal flow; the results obtained numerically are similar to 

those obtained by the analytical approach /12/. 

Figures 7 and 8 represent the first eigen-modes of pipe 

on simple supports for different mass ratios: a) dimension-

less frequencies; b) natural frequencies (Hz). It appears 

clearly on these figures that the mass ratio influences the 

first modes and consequently on the critical velocity and the 

stability of our system, these figures clearly show the 

distinction between the eigen-modes and the combined 

modes. We notice that the third critical speed is 9.44; this is 

not what we found in the previous literatures. 

Figure 9 (physical results) and Fig. 10 (non-dimensional 

frequency) show the natural frequencies as a function of the 

fluid velocity for different length with two mass ratio. We 

observe in Fig. 9 that the critical speed is 170.27 m/s for a 

length of 1 m and 110 m/s for 2 m, we also note that the 

previous studies have not addressed the effects of these 

parameters; obviously, the length of the pipe has destabiliz-

ing effect on the vibration of the system.  

Figure 10 shows the field of instability, where the flow 

velocity is critical or rather the pulsation of the system is 

zero, as we note that this instability margin changes accord-

ing to length, which affects the stability of both types, we 

will explain in what follows this development in detail. 

(a)

 

(b)

 

Figure 5. Convergence of the first three natural frequencies of 

pinned-pinned pipe: a) U = 100 m/s; b) U = 175 m/s,  = 0.5. 

 

Figure 6. Dimensionless frequency for various values of u, for the 

lowest three modes of a pinned-pinned pipe conveying fluid, 

comparison DTM /12/ (xxx) and FEM (----),  = 0.1. 

/12/ 
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Figure 7. Three proper modes on fluid velocity function of pinned-

pinned pipe conveying fluid, β = 0.3: a) dimensionless frequen-

cies; b) naturel frequencies (Hz). 

 

Figure 8. Three proper modes on fluid velocity function of pinned-

pinned pipe conveying fluid,  = 0.5: a) dimensionless frequen-

cies; b) naturel frequencies (Hz). 

 

Figure 9. Effect of length on the natural frequency of the pinned-

pinned pipe at different fluid velocities,  = 0.5 
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Figure 10. Effect of length on the natural frequency of the pinned-

pinned pipe at different fluid velocities: a) for  = 0.3 and L = 1, 

b) for  = 0.5 and L = 1; c) for  = 0.3 and L = 1.5; d) for  = 0.3 

and L = 2; e) for  = 0.5 and L = 1.5; f) for  = 0.5 and L = 2. 

Clamped-pinned pipe with internal flow 

In this section, the determinations of parameters frequen-

cies for fluid conveying pipe, without and with foundation 

are calculated using the FEM. Beginning, the convergence 

was performed for a velocity U = 150 m/s, the results 

obtained are shown in Fig. 11, convergence is obtained for 

the three modes with 13 elements.  

Figure 12 presents the natural frequency of the pipe at 

different fluid velocities for  = 0.3 and  = 0.5. Over an 

interval [0 12], we notice almost same result and same 

instability range. 

Figure 13 shows the evaluation of these modes as a func-

tion of the speed of the fluid for different lengths L for two 

. It appears in this figure that the increase in  implies a 

reduction in the thickness, that is to say a gain in the mass 

of the empty pipe, this increase has no great influence on the 

first mode while its influence the higher modes. For low veloc-

ity it is a gain, but at high velocity its effect is destabilizing. 

 

Figure 11. Convergence of the first three natural frequencies of 

clamped-pinned pipe, U = 150 m/s,  = 0.5. 

 

 

Figure 12. Three proper modes on fluid velocity function of 

clamped-pinned pipe conveying fluid: a)  = 0.3; b)  = 0.5. 
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Figure 13. Effect of length on the natural frequency of clamped-

pinned pipe at different fluid velocities: a) for  = 0.3 and L = 1; 

b) for  = 0.3 and L = 1.5; c) for  = 0.3 and L = 2; d) for  = 0.5 

and L = 1; e) for β = 0.5 and L = 1.5; f) for  = 0.5 and L = 2. 
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Figure 14. Effect of foundation stiffness on the natural frequency 

of the clamped-pinned pipe at different fluid velocities,  = 0.3. 

The length has an effect of reducing the rigidity, which 

lowers the frequencies of the system according to the speed 

of fluid and consequently quickly reach the first critical 

velocity of static instability. For L = 1 m, the instability 

range is equal 3.55, is reduced to 1.96 for L = 2 m. The 

effect of the elastic is stabilizing for the system, as shown 

in Fig. 14, and the length weakens the rigidity of the system 

and therefore, has a destabilizing effect. In addition we note 

that the instability range of the first mode is reduced as a 

function of the stiffness. For the parameter k = 1, and L = 1, 

the instability range is equal to 3.11, the range is 1.33 for 

the parameter k = 1000, see Fig. 14. 

CONCLUSIONS 

We have studied in this work the free vibration of pipe 

transporting a fluid for different boundary conditions. The 

numerical aspect with the finite method gives solutions in a 

complex plane by determining the eigen modes, the numeri-

cal results are finally combined with the semi-analytic results 

to determine the different characteristics of instability of each 

system. The first observation that we can make that the 

natural frequencies of the system weight the velocity of the 

fluid. We observe that instability appears when the velocity 

exceeds a threshold called critical velocity of instability, 

when the first frequency is zero. According to the first two 

cases, we note the distinction between eigen modes and 

combined modes (first mode, combination between the first 

and second, second mode, combination between the second 

and third, third mode. We have noticed that increasing  

slightly decreases the rigidity of the system (loss of rigidity) 

and the system consequently decreases their natural frequen-

cies. The typical elastic foundation of Winkler increases the 

rigidity of the system and consequently the natural frequen-

cies and the critical velocity. What distinguishes most of 

this research from others is its discussion of the axis of 

instability and what it means in this field that is why we did 

some analysis and calculation in this research, hoping to 

continue with other work in the same field. 
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