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Abstract

This paper is concerned with elastodynamical interactions
of ultra-laser heat source with homogeneous microstretch-
thermoelastic mass diffusion medium. The medium is sub-
jected to application of various sources. Normal mode anal-
ysis technique has been applied to the basis equations to
solve the problem. Expressions have been obtained for
normal and tangential stress, microstress, and temperature
distribution. The numerically computed results are shown
graphically. The analyses of various stress quantities have
been studied in the given model. Some special cases are
also deduced from the present investigation.

INTRODUCTION

Eringen /1/ developed the theory of thermo-microstretch
elastic solids. Microstretch continuum is a model for Bravais
lattice with basis on the atomic level and two-phase dipolar
solids with a core on the macroscopic level. Composite
materials reinforced with chopped elastic fibers, porous
media whose pores are filled with gas or inviscid liquid,
asphalt, or other elastic inclusions and solid-liquid crystals
etc., are examples of microstretch solids. The concept of
thermal relaxation is described by Ezzat et al. /2, 3/. Various
problems in micropolar thermoelasticity and microstretch
thermoelasticity are investigated by Marin /4, 5/.

Diffusion is defined as the spontaneous movement of the
particles from a high concentration region to the low-concen-
tration region, and it occurs in response to a concentration
gradient expressed as the change in the concentration due to
change in position. Thermal diffusion utilizes the transfer of
heat across a thin liquid or gas to accomplish isotope sepa-
ration. Simply, concentration is calculated using Fick’s law.
This law does not consider the mutual interaction between
the introduced substance and the medium into which it is
introduced, or the effect of temperature on these interactions.
The thermodiffusion in elasticity is caused by coupling of
temperature, mass diffusion, and that of strain in addition to
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Kljuéne reci

« difuzija

» mikrozatezna termoelasti¢nost
« laserski izvor toplote

« analiza rezima normalnog moda
* normalno optere¢enje

lzvod

U radu su opisane elastodinamicke interakcije laserskog
izvora toplote sa homogenom mikrozateznom termoelastic-
nom difuznom sredinom. Ova sredina je izloZena raznim
vrstama opterecenja. Za dobijanje reSenja, primenjena je
metoda analize u reZimu normalnog moda na osnovne jedna-
c¢ine. Dobijeni su izrazi za normalni i tangencijalni napon,
mikronapon, kao i za raspodelu temperature. Rezultati dobi-
Jjeni numerickim racunom su predstavijeni graficki. Pojedi-
ne vrednosti napona su analizirane u predstavljenom mode-
lu. Izdvojeni su i izvesni specijalni slucajevi u predstavlje-
nom istrazivanju.

heat and mass exchange with the environment. Nowacki /6-
9/ developed the theory of thermoelastic diffusion by using
coupled thermoelastic model. Dudziak and Kowalski /10/
and Olesiak and Pyryev /11/, respectively, discussed the
theory of thermodiffusion and coupled quasi-stationary prob-
lems of thermal diffusion for an elastic layer.

Thermal shock due to exposure to an ultra-short laser
pulse are interesting from the standpoint of thermoelastic-
ity, since they require a coupled analysis of the temperature
and deformation fields. A thermal shock induces very rapid
movement in the structural elements, giving the rise to very
significant inertial forces, and thereby, an increase in vibra-
tion. In irradiation of ultra-short pulsed laser, the high inten-
sity energy flux and ultra-short duration lead to a very large
thermal gradient. So, in these cases, Fourier law of heating
is no longer valid. Scruby et al. /12/ and Rose /13/ have
considered the point source model of lasers. Later, Mc-
Donald /14/ and Spicer /15/ proposed a new model known
as laser-generated ultrasound model by introducing the ther-
mal diffusion effect. Dubois /16/ experimentally demon-
strated that penetration depth plays a very important role in
the laser-ultrasound generation process. The thermoelastic
response of laser in context of four theories is discussed by
Youssef and Al-Bary, /17/. A problem for a thick plate under
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the effect of laser pulse thermal heating is studied by
Elhagary, /18/. Kumar et al. /19/ studied the thermo-mechan-
ical interactions of a laser pulse with microstretch thermo-
elastic medium.

This present research deals with disturbance in a homo-
geneous microstretch thermoelastic medium with mass diffu-
sion due to the effect of ultra-laser heat source. The normal
mode analysis technique is used to obtain the expressions
for the displacement of components, the couple stress,
temperature, mass concentration, and microstress distribu-
tion due to various sources.

BASIC EQUATIONS

Following Eringen /20/ and Al-Qahtani and Datta /21/,
the basic equations for homogeneous microstretch thermo-
elastic mass diffusion medium in the absence of body force,
body couple with laser heat source are given by:

Stress equation of motion:

A+ )V(V.U)+(u+ K)V2u+ KVx@+AgVe*—
0 10 .
=B 147y — |VT = 5| 1+ — |VC = pli. 1
ﬂl( 7 atj ﬂz( T atj p 1)
Couple stress equation of motion:

(PV2-2K)g+(a+BV(V.H)+KVxu=pij. (2)
Equation of balance of stress moments:

(agV2 = A)¢*—AgV.u+v (1+ o %}T +V, (1+ ot %)C =

_Plo ;.
=209 ©)

Equation of heat conduction:

. d o2 d 52
K*V2T = pe*| —+19— [T+ BT| —+e7g— |(V.u—Q) +
p [at Toatzj ﬁlo[at ToatzJ( Q)

0 0 o 0
+V1T0 [a+€‘[o ¥j¢*+aTo [E-F}/lat—z]c . (4)

Equation of mass diffusion is:

2
DB,V (V.U)+ Da(lﬂlﬁ Ea I
ot ot ot?

—Db(1+ z’lgjsz =0. (5)

The constitutive relations are:
tij = (Ao@*+AUr )i + ua(Ui j +Uj i)+ K(Uj i —&ijed) -

0 0
_ﬂl [14— 4 ajéu-r —ﬂz [14‘ Tl 5)5”(: ) (6)
Mij =ady (S + B j +19j,i +b05mji¢,’r€n : (7
% =aodi +osijndim- ®)
The plate surface is illuminated by laser pulse given by
the heat input
Q=1pf(1)g(q)h(x3) , 9)

where: |y is the energy absorbed. The temporal profile f(t) is
represented as
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_ Lj
ft)=—te [‘0 . (10)
12
0
Here, to is the pulse rise time. The pulse is also assumed
to have a Gaussian spatial profile in x:

1 ‘[2)
9(x) 2%79 , (11)

where: r is the beam radius; and as a function of the depth
X3, the heat deposition is due to the laser pulse, assumed to
decay exponentially within the solid,

h(xg)=y~e". (12)

Figures 1, 2 and 3 show the curve profiles of f(t), g(xu),
and h(xs), respectfully.

f(®)

t
Figure 1. Temporal profile of f(t).

9(x,)

Xl
Figure 2. Profile of g(x1).

h(x;)

X3

Figure 3. Profile of h(xa).
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Equation (9) with the aid of Egs.(10-11) and Eq.(12)
takes the form:

OAE]
Q= 'WZ Ste \0e e, (13)
27Z'r to

Here, the 4, u, o, 5 7 K, Ao, 41, an, bo are material
constants, p is mass density, u = (us, Uy, us) is the displace-
ment vector, and ¢ = (¢, ¢, ¢) is the microrotation vector,
¢ is the scalar microstretch function, T is temperature, and
To is the reference temperature of the body chosen, C is the
concentration of the diffusion material in the elastic body,
K" is the coefficient of thermal conductivity, ¢ is specific
heat at constant strain, D is the thermoelastic diffusion
constant, a is the coefficient describing the measure of ther-
mal diffusion, and b is the coefficient describing the meas-
ure of mass diffusion effects, j is the microinertia, /=
(BA+ 2u+ K)aw, o= B+ 2u+ K)o, vi= (31 + 2u+
K)aw, Vo= BA+ 2u+ K)ael, au, o are coefficients of
linear thermal expansion, and ac1, o are coefficients of
linear diffusion expansion, jo is the microinertia for the
microelements, tjj are components of stress, mjj are compo-
nents of couple stress, A" is the microstress tensor, ejj are
components of strain, ey is the dilatation, &; is Kronecker
delta function, ¢, ! are the diffusion relaxation times, and
o, 7o are thermal relaxation times, with > 7 > 0.

In the above equations the symbol °,” followed by a
suffix denotes differentiation with respect to spatial coordi-
nates and a superposed dot © * > denotes the derivative with
respect to time, respectively.

FORMULATION OF THE PROBLEM

We consider a microstretch thermoelastic mass diffusion
medium with rectangular Cartesian coordinate system Oxix2Xs
with xs-axis pointing vertically downward the medium.

laser pulse
X2

X1

X3=0 Microstretch thermoelastic
mass diffusion medium

0<xz<o0

X3
Figure 4. Geometry of the problem.

For two-dimensional problems, we take the displacement
vector and microrotation vector as:

u=(4,0,u3), ¢=(0,4,,0). (14)

For further consideration it is convenient to introduce in
Egs.(1)-(5) the dimensionless quantities defined by:

PG
' BT

’ a)* ! T
Ui, Xi:—Xi,t’:a)*t,T =—, Ti=a)*Tl,
G To
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2
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0 =0*70, n=0*n, 4 tij, o*= K*Cl ,
2
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2
2 7 2 20 77Ty o« 0*
C3 =—, C4= . ,52—, mij :—mij,
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According to Helmholtz, the representation of a vector
into scalar and vector potentials, the displacement compo-
nents u; and usz are related to non-dimensional potential
functions gand y as:

u :%—a—w, u3:%—a—w. (16)
6X1 6X3 8X3 6X1

Substituting the values of uy and us from Eq.(16) in
Egs.(1)-(5) and with the aid of Egs.(14) and (15), after
suppressing the primes, we obtain:

v2¢—¢'5+a4¢*—(1+r1ﬁjT—a5(1+11§j0=0, 17)
ot ot
V2 _ag-a i p*— V2¢+a (1+r 2jT+
84277 39 40 15
10

+aq1 1+7 E C=0, (18)
0 2, 0 2.
[E-‘rfoat—z—v jT +[1+6'Toa)(al3v ¢+a14¢ )+

+ay5 [1+ 71%}5 =Qof (g, )e 77, (19)

2
V4¢+316 1+T12 VZT +d17 E-FETO&— C-
ot ot ot?

—ayg (1+ 7t QJVZC =0, (20)
ot
a,V2y —yj+agh =0, (21)
V24, —2864, —agV 2y =275 . (22)
2 &
Here, V2 =—+t— is the Laplacian operator, f (x1, t) =
OX{ OX3
_[xﬁt]
2 | *
t+‘970(1—ij e \" %) and QO:QZO—SZ.
tO 27r|’ to

SOLUTION OF THE PROBLEM

The solution of the considered physical variables can be
decomposed in terms of the normal modes as in the follow-
ing form:

0. T b . CHox, X, ) ={0, 77, T, 6, 8%, CHxg)e' ®47)_ (23)

Here, w is the angular frequency, and k is wave number.
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Making use of Eq.(23), Egs.(17)-(22), after some simplifi-
cations yield:

[AD® +BD® +CD* +ED? +F1g = f, (7 x,)e 7™, (24)
[AD® +BD® +CD* + ED? + F]g*= f, (3 %, )e 7™, (25)

[AD® +BD® +CD* +ED? + FIT = f3 (3 x,t)e 78, (26)
[AD® +BD® +CD* +ED? + FIC = f, (7 x t)e 7™, (27)
[D*+GD? +H]y =0. (28)

where: D = d/dX3; A=ay - ass, B=az- 2k2a21 - dz1d39 - A3s,
C = ags + azk* - 2k%ag; - azase - asiduo + Azzdss + Azsdaz, H =
-(k?azas + assass)/az; E = agrk* - 2k%ass - s - asiaar, F =
a3sk4 - Azpas + azsd4s; G = azs + azas - asazs/ay. A|SO, ai, i=
19, ..., 44.

The solution of the above system of Egs.(24)-(28) satis-

fying the radiation conditions that (¢ ,i7 , T ,¢,,C) — 0 as
Xs — oo are given as following:

g=>1 ce ™" +:—;e_7 X, (29)
g*=Yiagcie ™ +:—Ze_7 s, (30)
T =Y agce ™ + :—ze‘y s, (31)
C=Y i agicie ™ + ;—:e_y s, (32)

7. ) =2 s(L.5)cie ™™ (33)

where: mi? (i = 1, 2, 3, 4) are the roots of Eq.(24); and m;?
(i=5, 6) are the roots of characteristic equation of Eq.(28),
and ai = -AzilAsi, oo = AsilAn, osi = -AsilAg, 1= 1, 2, 3, 4,
and & = as/(azmi? + ass), i =5, 6.

Here, A1, Azi, Asi, Adi.

Substituting the values of ¢,4*T,7,¢,,C from the Egs.
(29)-(33) in Egs.(6)-(8) and using Egs.(14)-(16) and Eqg.
(23), and then solving the resulting equations, we obtain:

g =20 Gy O —Me 7, (34)
T =304 Gyie " —Mpe 7, (35)
Mgy =30 1Ggie™™e —Mge e, (36)
Iy =38 Gyie™s —M e, (37)
T=30% Gsie ™8 —Mge 7, (38)
C=37,Ggie ™ ~Mge 70, (39)

where: Gmi = gmiCi, i,m=1,2,...,6; G, (r,s=1,2, ..., 6),
M, (r=1,2,...,6).

Boundary conditions

We consider that the normal force and thermal and mass
concentration sources are acting at the surface x; = 0 along
with vanishing of couple stress in addition to thermal and
mass concentration boundaries, considered at xs= 0 and
lo = 0. Mathematically this can be written as:

tyg=—Fe ) =0, mgy =0, 43 =0,
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oT oC

where: F; and F; are the magnitude of the applied force.

Substituting the expression of the variables considered
into these boundary conditions, we can obtain the following
system of equations:

3 01(Gyi»Goi . Gai . Gyi .M Gs;, MG ) =
=(-F,0,0,0-F,-F). (41)

The system of Eqgs.(41) is solved by using the matrix
method as follows:

er|(kxl—6()t) , Fgel(kxl—wt) , (40)

Yl 011 012 013 014 915 s |[-Fi]

C2 921 022 923 024 025 026 0

C3| | 931 9z 9 U O U | O 42)
C4| | 941 92 943 U4 Uss  Us || O

Cs| |MOsy M0 M0s3 MyQsy MsOss MgJse (| —F

Co| [MOer M0s2 M3be3 Msls Mses MeJes || —Fs |

SPECIAL CASES

(a) Microstretch thermoelastic solid

If we neglect the diffusion effect in Eq.(41), we obtain
the corresponding expressions of stresses, displacements,
and temperature for the microstretch thermoelastic solid.

(b) Micropolar thermoelastic diffusive solid

If we neglect the microstretch effect in Eq.(41), we
obtain the corresponding expressions of stresses, displace-
ments and temperature for the micropolar thermoelastic
diffusive solid.

Variation of temperature with respect to time is depicted
in Fig. 5.

10 —

*
E s —
()
Ei
= i
g
§ -
2 |
° | | | | |
0 0.002 0.004 0.006 0.008 0.01
time (t)
Figure 5. Variation of temperature w.r.t. time.
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CONCLUSIONS

The problem consists of investigating displacement com-
ponents, scalar microstretch, temperature distribution and
stress components in a microstretch thermoelastic mass diffu-
sion medium subjected to input laser heat source. Normal
mode analysis is employed to express the results.

— It is noticed that the laser heat source has no significant
role on mass concentration.

— The trend of variation of the physical quantities show
similarity with Elhagary /18/, although diffusion effect is
included.
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