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Abstract 

The paper deals with longitudinal fracture analysis of an 

inhomogeneous beam of linearly varying height of cross-

section along the beam length. The beam is under three-

point bending. The beam height increases linearly from the 

two ends towards the mid-span. A longitudinal crack is 

located arbitrary along the beam height. The beam exhibits 

continuous (smooth) material inhomogeneity along its height 

and length. The material is nonlinear elastic. Longitudinal 

fracture behaviour of the beam is studied in terms of strain 

energy release rate. Energy balance is analysed in order to 

derive a solution to the strain energy release rate. The solu-

tion is verified by applying the J-integral approach. The 

solution is used to investigate influences of linearly varying 

beam height in length direction; material inhomogeneity 

along the beam height and length; location of crack along 

beam height and crack length on longitudinal fracture 

behaviour. Longitudinal fracture analysis developed here 

can be used in the preliminary design of load-bearing inho-

mogeneous nonlinear elastic beam structures with continu-

ously varying height in the length direction. 

Ključne reči 

• nehomogeni nosač 

• podužni lom 

• nelinearan materijal 

• savijanje 

Izvod 

U radu je obrađena analiza podužnog loma nehomoge-

nog nosača, linearno promenljive visine poprečnog preseka 

po dužini nosača. Nosač je opterećen savijanjem u tri tačke. 

Visina nosača se povećava linearno, od njegovih krajeva ka 

sredini. Podužna prslina je locirana proizvoljno po visini 

nosača. Nosač ispoljava kontinualno (glatko) nehomogeno 

ponašanje materijala po visini i dužini. Materijal se ponaša 

nelinearno elastično. Podužni lom nosača je razmotren 

preko brzine oslobađanja deformacione energije. Analizom 

balansa energije je dobijeno rešenje za brzinu oslobađanja 

deformacione energije. Rešenje je provereno primenom 

koncepta J integrala. Rešenje se koristi za istraživanje 

uticaja linearne promene visine nosača u pravcu dužine; 

nehomogenost materijala po visini i dužini nosača; položa-

ju prsline po visini nosača i dužini prsline na ponašanje 

podužnog loma. Analiza podužnog loma predstavljena u 

radu se može primeniti u pretproračunu konstrukcija sa 

opterećenim nehomogenim nelinearno elastičnim nosačima, 

kod kojih se kontinualno menja visina u pravcu dužine. 

 

INTRODUCTION 

The usage of beams of varying height of the cross-section 

along beam length is wide-spread in various advanced load-

bearing structures in modern civil and mechanical engineer-

ing. This is due mainly to the fact that the beams of varying 

height can provide a very efficient distribution of strength 

and stiffness in engineering structures. Thus, the beams of 

varying height are very suitable for increasing the strength 

and stiffness and for improving the stability of structures. 

At the same time, by using beams of varying height, one 

can significantly reduce the weight of structures. 

Beam structures of varying height can be manufactured 

by inhomogeneous materials. The most important feature of 

inhomogeneous materials is the continuous variation of 

their properties along one or more spatial coordinates in the 

volume of the structural member. Therefore, the material 

properties of inhomogeneous materials are continuous 

(smooth) functions of coordinates. Typical kind of inhomo-

geneous structural materials are functionally graded materi-

als which have been used extensively in aeronautics, nuclear 

reactors, chemical engineering, electronics, mechanical engi-

neering and biomedicine /1-4/. Functionally graded materi-

als are new inhomogeneous composites manufactured by 

mixing two or more constituent materials. Graded distribu-

tion of the material properties of functionally graded 

materials is formed technologically so as to satisfy the 

requirements for different parts of a structural member. 

Fracture behaviour of inhomogeneous materials is of great 

importance for structural integrity of inhomogeneous load-

bearing structures. Therefore, considerable attention has 

been payed by the research community to analyse the 

fracture behaviour of inhomogeneous (functionally graded) 

materials and structures, /5-7/. 

Various problems of fracture mechanics of functionally 

graded materials have been analysed in /5/. Methods for 

solving crack problems in functionally graded materials are 
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developed by applying linear-elastic fracture mechanics, i.e. 

the assumption for linear-elastic behaviour has been used. 

Solutions of some benchmark problems have been derived 

and discussed in detail. It has been shown that the results 

obtained can provide technical support for design engineers 

and material scientists working in the field of graded 

materials. 

Various publications in the area of fracture behaviour of 

functionally graded composite materials have been consid-

ered in /6/. Both static and fatigue crack problems have 

been discussed. Solutions of different crack problems 

obtained assuming linear-elastic mechanical behaviour of 

the graded material have been presented. Investigations of 

fracture behaviour under thermal loading and under contact 

loading have been carried out. Different mathematical 

descriptions of the material gradient have been considered 

and analysed. 

Analyses of cracks in functionally graded materials have 

been performed in /7/. Methods of linear-elastic fracture 

mechanics have been applied. Fracture behaviour has been 

studied as a function of crack length. Comparisons between 

results obtained by using linear law for variation of the 

modulus of elasticity and results derived assuming discrete 

approximation in a multi-layered beam configuration have 

been carried out. 

The above publications are focused on fracture analyses 

of inhomogeneous (functionally graded) materials which 

are carried out assuming linear elastic behaviour. Recently, 

works on longitudinal fracture of functionally graded beam 

structures which exhibit nonlinear mechanical behaviour of 

the material have also been published /8-10/. These works, 

however, are concerned with beams of constant cross-section 

along the beam length, /8-10/. 

Therefore, the purpose of the present paper is to develop 

a longitudinal fracture analysis of an inhomogeneous beam 

of linearly varying height. The beam is loaded in three-

point bending. The material of the beam has nonlinear elas-

tic behaviour. Fracture is studied in terms of strain energy 

release rate by considering the balance of energy. The J-

integral approach is applied for verification. 

LONGITUDINAL FRACTURE ANALYSIS 

The simply supported inhomogeneous beam shown in 

Fig. 1 is loaded by one vertical force, F, applied in the mid-

span, i.e. the beam is subjected to three-point bending. The 

length of the beam is denoted by 2l. 

 
Figure 1. Geometry and loading of an inhomogeneous beam 

configuration of linearly varying height along beam length. 

The beam exhibits continuous (smooth) material inhomo-

geneity in both height and length directions. Besides, the 

material has nonlinear elastic mechanical behaviour. The 

cross-section of the beam is a rectangle of width b, and 

height h. The height varies linearly from h0 in the two ends 

of the beam to H in the mid-span (Fig. 1). Thus, the varia-

tion of h in beam portion, D1D3, is written as 

 0
0 4

H h
h h x

l

−
= + , (1) 

where  

 40 x l  . (2) 

The longitudinal axis, x4, is shown in Fig. 1. In the beam 

portion, D3D4, the variation of h is expressed as (Fig. 1) 

 0
4( )

H h
h H x l

l

−
= − − , (3) 

where 

 4 2l x l  . (4) 

Thus, the beam geometry is symmetrical with respect to 

the mid-span. 

A longitudinal crack of length a, is located in the beam 

as shown in Fig. 1 (it should be mentioned that the present 

fracture study is motivated also by the fact that certain kinds 

of inhomogeneous materials, such as functionally graded 

materials, can be built-up layer-by-layer /11/ which is a 

premise for the appearance of a longitudinal crack between 

layers). The heights of the lower and upper crack arms in 

the left-hand end of the beam are denoted by h1 and h2, 

respectively. Besides, the height of the lower crack arm h1t, 

increases linearly along the crack length 

 0
1 1 4t

H h
h h x

l

−
= + , (5) 

where 

 40 x a  . (6) 

The height of the upper crack arm is constant (Fig. 1). 

Apparently, the lower crack arm is free of stresses (Fig. 1). 

The mechanical behaviour of the material is treated by 

applying the following nonlinear stress-strain relation /12/: 

 1 1

m

S
R




  
 = − − 
   

, (7) 

where: S, R and m are material properties. The distribution 

of S along the height of the beam cross-section is described 

by the following power law: 

 5
2

n
d g

g n

S S h
S S z

h

−  
= + + 

 
, (8) 

where 

 5
2 2

h h
z−   . (9) 

In Eq.(8), Sg and Sd are the values of S in the upper and 

lower surface of the beam, respectively; n is a material 

property that controls the material inhomogeneity along the 

beam height; z5 is the vertical centroidal axis of the beam 

cross-section. Material properties, Sg and Sd, vary in the 

length direction in beam portion D1D3, according to the 

following power laws: 
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 4
gH gh r

g gh r

S S
S S x

l

−
= + , (10) 

 
4
fdH dh

d dh f

S S
S S x

l

−
= + , (11) 

where 

 40 x l  . (12) 

In Eq.(10), Sgh and SgH are the values of Sg in the left-

hand end of the beam and the mid-span, respectively; r is a 

material property that controls the material inhomogeneity 

in the length direction at the upper surface of the beam. In 

Eq.(11), Sdh and SdH are the values of Sd in the left-hand end 

of the beam and mid-span, respectively; material property f, 

controls the material gradient along the length of the beam 

at the lower surface of the beam. The variation of Sg and Sd 

in the beam portion D3D4, is written as 

 4( )
gH gh r

g gH r

S S
S S x l

l

−
= − − , (13) 

 4( ) fdH dh
d dH f

S S
S S x l

l

−
= − − , (14) 

where 

 4 2l x l  . (15)  

The longitudinal fracture behaviour is studied in terms of 

strain energy release rate, G. The balance of energy is 

considered in order to derive the strain energy release rate. 

For this purpose, assuming a small increase a, of the crack 

length, the energy balance is expressed as 

 
U

F w a Gb a
a

  


= +


, (16) 

where: U is strain energy in the beam; w is the increase in 

vertical displacement of the external force application point 

F. From Eq.(16), the strain energy release rate is derived as 

 
1F w U

G
b a b a

 
= −

 
. (17) 

Vertical displacement of force application point, F, is 

obtained by applying Maxwell-Mohr integrals. The result is 

(Fig. 1), 

 
2

4
4 1 4 4 2 4 3 4

0

1 1

2 2 2

a l l

a l

x
w x dx x dx l dx  

 
= + + − 

 
   , (18) 

where: 1, 2 and 3 are curvatures of upper crack arm and 

beam portions D2D3 and D3D4, respectively. 

 

Figure 2. Cross-section of upper crack arm (n-n is the position of 

neutral axis). 

Curvature of the upper crack arm is obtained by using 

the equations for equilibrium of elementary forces in the 

cross-section of the upper crack arm, 

 

2

2

2

1 1

2

h

h

N b dz

−

=  , (19) 

and  

 

2

1

2

2

1 1

2

h

y
h

M b z dz

−

=  , (20)  

where: N1 and My1 are the axial force and bending moment 

in the cross-section;  is the normal stress; z1 is the vertical 

centroidal axis of cross-section (Fig. 2). It is obvious that 

(Fig. 1), 

 1 0N = , (21) 

 
1 4

2
y

F
M x= , (22) 

where  

 40 x l  . (23) 

The normal stress involved in Eqs.(19) and (20) is 

expressed as a function of strain by Eq.(7). The distribution 

of strains along the height of the upper crack arm is treated 

by applying Bernoulli’s hypothesis for plane sections, since 

a beam of a high length-to-height ratio is under considera-

tion here. Thus,  is written as 

 1 1 1( )nz z = − , (24) 

where  

 2 2
1

2 2

h h
z−   . (25) 

In Eq.(24), 1 and z1n are the curvature and coordinate of 

the neutral axis. It should be mentioned that the neutral axis 

shifts from the centroid since the beam exhibits material 

inhomogeneity in the height direction (Fig. 2). By using 

Eq.(8), the variation of S along the height of the upper crack 

arm is expressed as 

 2
1

2

n
d g

g n

S S h
S S z

h

−  
= + + 

 
, (26) 

where: z1 changes within interval Eq.(25). After substituting 

Eqs.(7), (21), (22), (24) and (26) in Eqs.(19) and (20), the 

two equations for equilibrium are solved with respect to 1 

and z1n by applying the MatLab® computer program. 

The curvature of the beam in portion D2D3, is obtained 

by using Eqs.(19) and (20). For this purpose, , h2 and z1 

are replaced with D2D3, h and z2, respectively. The normal 

stress D2D3, in the cross-section of the beam in portion 

D2D3, is obtained by replacing  with D2D3 in Eq.(7). The 

distribution of strains D2D3, along the height of the beam in 

portion D2D3, is found by replacing 1, z1n and z1 with 2, 

z2n and z2 in Eq.(24). 

In order to determine the beam curvature in portion 

D3D4, the quantities, , h2 and z1 are replaced, respectively, 

with D3D4, h and z3 in Eqs.(19) and (20). The strain, , is 
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replaced with D3D4 in Eq.(7) to obtain the normal stress 

D3D4, in the cross-section of beam portion D3D4. Equation 

(24) is used to express distribution of strain D3D4, along the 

height of beam portion D3D4. For this purpose, 1, z1n and z1 

are replaced with 3, z3n and z3, respectively. 

Since the lower crack arm is free of stresses, the strain 

energy stored in the beam is written as (Fig. 1) 

 1 2 3U U U U= + + , (27) 

where: U1, U2 and U3 are strain energies in the upper crack 

arm in portions D2D3 and D3D4, of the beam, respectively. 

The strain energy in the upper crack arm is expressed as 

 

2

2

2 2

1 01 4 1 1
0

2 2

hb

a

b h

U u dx dy dz

− −

=    , (28) 

where: u01 is the strain energy density, determined by using 

the following formula: 

 01
0

( )u d


  =  . (29) 

By substituting Eq.(7) in Eq.(29), one obtains 

 

1

01 1
1 1

m
SR SR

u S
m R m




+
 

= + − − 
+ + 

. (30) 

The strain energy in portion D2D3 of the beam is written as 

 
2 2

2 02 4 2 2

2 2

b h

l

b ha

U u dx dy dz

− −

=    , (31) 

where the strain energy density u02, is obtained by applying 

Eq.(30). For this purpose,  is replaced with D2D3. 

In beam portion D3D4, the strain energy is found as 

 
2 2 2

3 03 4 3 3

2 2

b h

l

b hl

U u dx dy dz

− −

=    , (32) 

where: u03 is the strain energy density. Equation (30) is 

used to calculate u03 by replacing  with D3D4. 

Finally, by substituting Eqs.(18), (27), (28), (31) and 

Eq.(32) in Eq.(17), one derives the following expression for 

the strain energy release rate: 

2

2

2 2 2 2

1 2 01 1 1 02 2 2

2 2 22

1 1 1

2 2

hb b h

b h b h

F
G a a u dy dz u dy dz

b b
 

− − −−

 
  

= − − −  
   

 
 

     (33) 

Integration in Eq.(33) is performed by using the MatLab 

computer program. It should be mentioned that h, 1, 2, u01 

and u03 involved in Eq.(33) are obtained by Eqs.(1), (19), 

(20) and Eq.(30) at x4 = a. 

In order to verify the solution of the strain energy release 

rate Eq.(33), the longitudinal fracture behaviour of the beam 

is analysed also by applying the J-integral approach, /13/. 

The J-integral is solved along the contour of integration, B, 

shown by a dashed line in Fig. 1. Since the lower crack arm 

is free of stresses, the solution of the J-integral is written as 

 
1 2B BJ J J= + , (34) 

where: JB1 and JB2 are the J-integral values in segments B1 

and B2 of the integration contour, respectively. It should be 

noted that segments B1 and B2, coincide with cross-sections 

of the upper crack arm and the beam portion D2D3, respec-

tively. 

In segment B1 of the integration contour, the J-integral is 

expressed as 

1 1 1 11
1 11

01 cos
B BB B x y B

B BB

u v
J u p p ds

x x


   
  = − +

     

 , (35)  

where the angle between the outwards normal vector to the 

contour of integration and the crack direction is marked by 

B1; the components of the stress vector are marked by pxB1 

and pyB1; the components of the displacement vector with 

respect to the coordinate system, xy, are marked by u and v; 

and dsB1 is a differential element along the contour of inte-

gration. 

The components of JB1 are obtained as (Fig. 1) 

 
1Bxp =− , (36) 

 
1

0
Byp = , (37) 

 
1 1Bds dz= , (38)  

 

1B

u

x



=


, (39) 

 
1

cos 1B = − . (40) 

Equations (7) and (24) are used to determine  and , in 

respect. The strain energy density u01, involved in Eq.(35) is 

found by Eq.(30). The coordinate z1, changes in the interval 

[-h2/2; h2/2]. By substituting Eqs.(36)-(40) in Eq.(35), one 

obtains 

 

2

1 2

2
01 1

2

( )

h

B h
J u dz

−

= − + . (41) 

The J-integral in segment B2, of the integration contour 

is written as (Fig. 1) 

2 2 22 2
2 22

02 cos
B BB B x y B

B BB

u v
J u p p ds

x x


   
  = − +

     

 , (42) 

where 

 
2 32Bx D Dp = , (43) 

 
2

0
Byp = , (44) 

 
2 2Bds dz= − , (45)  

 
2 3

2

D D
B

u

x



=


, (46) 

 
2

cos 1B = . (47) 

By substituting Eqs.(43)-(47) into Eq.(42), one derives 

 
2 2 3 2 3

2
02 2

2

( )

h

B D D D Dh
J u dz 

−

= − . (48) 
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By substituting Eq.(41) and Eq.(48) into Eq.(34), one 

obtains the following expression for the J-integral: 

2

2 3 2 32

2 2
01 1 02 2

22

( ) ( )

h h

D D D Dh h
J u dz u dz  

−−

= − + + −  , (49) 

where: h, , D2D3, , D2D3, u01 and u03 are obtained by 

Eqs.(1), (7), (24) and Eq.(30) at x4 = a. The integration in 

Eq.(49) is carried out by using MatLab®. The J-integral 

value obtained by Eq.(49) matches exactly the strain energy 

release rate found by Eq.(33). This fact is a verification of 

the longitudinal fracture analysis performed here. 

NUMERICAL RESULTS 

The solution to the strain energy release rate, Eq.(33), is 

used to investigate the influences of linearly varying height 

of the cross-section along the beam length, the continuous 

material inhomogeneity in the length and height directions, 

the crack location along the beam height and the crack 

length on the longitudinal fracture behaviour of the beam 

(Fig. 1). The strain energy release rate is presented in non-

dimensional form by using the formula GN = G/(Sghb). It is 

assumed that: l = 0.080 m; h0 = 0.004 m, b = 0.008 m and 

F = 4 N. The variation of beam height in the length direc-

tion is characterized by h/h0 ratio. The crack length and 

location along the beam height are characterized by a/l and 

h2/h0 ratios, in respect. Continuous material inhomogeneity 

in the height direction of the beam is characterized by 

Sdh/Sgh ratio. The continuous material inhomogeneity in the 

length direction at upper and lower surfaces of the beam is 

characterized by SgH/Sgh and SdH/Sdh ratios, respectively. 

 

Figure 3. Strain energy release rate in non-dimensional form as a 

function of H/h0 ratio (curve 1 at h2/h0 = 0.2, curve 2 at h2/h0 = 0.5 

and curve 3 at h2/h0 = 0.8). 

In order to evaluate the influences of varying beam height 

in longitudinal direction and crack location along beam 

height - on fracture behaviour, the strain energy release rate 

in non-dimensional form is presented as a function of H/h0 

ratio in Fig. 3 at three h2/h0 ratios for SgH/Sgh = 0.5, Sdh/Sgh = 

0.6, SdH/Sdh = 0.5, n = 0.6, r = 0.6, f = 0.6, m = 1.3, R = 0.1 

and a/l = 0.7. The curves in Fig. 3 indicate that the strain 

energy release rate decreases with increasing of H/h0 ratio 

(this finding is attributed to the increase of beam stiffness). 

One can observe also in Fig. 3 that the strain energy release 

rate decreases with increasing of h2/h0 ratio (this behaviour 

is due to the increase of the stiffness of the upper crack arm). 

The influence of material inhomogeneity in the beam 

height direction and crack length on the fracture behaviour 

is illustrated in Fig. 4, where the strain energy release rate 

in non-dimensional form is presented as a function Sdh/Sgh 

ratio at three a/l ratios. It can be observed in Fig. 4 that the 

strain energy release rate decreases with increasing of 

Sdh/Sgh ratio. The increase of a/l ratio leads to the increase 

of strain energy release rate. 

 

Figure 4. Strain energy release rate in non-dimensional form as a 

function of Sdh/Sgh ratio (curve 1 at a/l = 0.3, curve 2 at a/l = 0.5 

and curve 3 at a/l = 0.7). 

In order to evaluate the influence of continuous material 

inhomogeneity in the length direction at the upper and lower 

surfaces of the beam on the fracture behaviour, the strain 

energy release rate in non-dimensional form is presented as 

a function of SgH/Sgh ratio in Fig. 5 at three SdH/Sdh ratios. 

The curves in Fig. 5 show that the strain energy release rate 

decreases with increasing of SgH/Sgh and SdH/Sdh ratios, 

which is due from the increase in beam stiffness. 

 

Figure 5. Strain energy release rate in non-dimensional form as a 

function of SgH/Sgh ratio (curve 1 at SgH/Sgh = 0.5, curve 2 at 

SdH/Sdh = 1.0 and curve 3 at SdH/Sdh = 2.0). 

The influence of material property R, and width b, of the 

beam cross-section on the longitudinal fracture behaviour is 

also evaluated. For this purpose, calculations of strain 

energy release rate are carried out at various values of R. 

The results obtained are shown in Fig. 6, where the strain 

energy release rate in non-dimensional form is presented as 

a function of R at three values of b. One can observe in 

Fig. 6 that strain energy release rate decreases with increas-

ing R. The analysis reveals that the increase in b leads also 

to the decrease of strain energy release rate (Fig. 6).  
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Figure 6. Strain energy release rate in non-dimensional form as a 

function of R (curve 1 at b = 0.008 m, curve 2 at b = 0.009 m and 

curve 3 at b = 0.010 m). 

CONCLUSIONS 

Longitudinal fracture behaviour of an inhomogeneous 

beam configuration with linearly varying height of the cross-

section along beam length is analysed. 

The beam is subjected to three-point bending. The cross-

section of the beam is a rectangle. A longitudinal crack is 

located arbitrary along the beam height. Thus, cross-sections 

of the two crack arms have different heights. Besides, the 

height of the lower crack arm varies linearly in the length 

direction. The beam under consideration exhibits continuous 

material inhomogeneity in both height and length directions. 

The analysis is performed assuming nonlinear elastic 

mechanical behaviour of the material. The longitudinal 

fracture behaviour is studied in terms of strain energy 

release rate. For this purpose, a solution to the strain energy 

release rate is derived by considering the balance of energy. 

In order to verify the solution, longitudinal fracture is also 

analysed by applying the J-integral approach. The solution 

to the strain energy release rate is used to investigate the 

influences of various factors, such as the linearly varying 

height of the beam cross-section along the beam length, the 

crack location along beam height, the continuous material 

inhomogeneity along the height and length of the beam, the 

crack length and the width of the beam cross-section on 

longitudinal fracture behaviour. The investigation reveals 

that the strain energy release rate decreases with increasing 

of H/h0 ratio. Concerning the influence of crack location 

along the beam height, it is found that the strain energy 

release rate decreases with increasing of h2/h0 ratio. It is 

found also that strain energy release rate increases with the 

increase of a/l. With respect to the influence of material 

inhomogeneity on fracture behaviour, the analysis shows 

that the strain energy release rate decreases with increasing 

of Sdh/Sgh, SgH/Sgh, and SdH/Sdh ratios. The analysis also 

reveals that strain energy release rate decreases with 

increasing of R and the beam width. 

The analysis developed in the present paper can be used 

in preliminary structural design of inhomogeneous nonlinear 

elastic load-bearing beam structures of smoothly varying 

height of the cross-section along the beam length for eval-

uating the effects of longitudinal fracture. 

REFERENCES 

1. Hirai, T., Chen, L. (1999), Recent and prospective development 

of functionally graded materials in Japan, Mater Sci. Forum, 

308-311(2): 509-514. doi: 10.4028/www.scientific.net/MSF.30 

8-311.509 

2. Gasik, M. (2010), Functionally graded materials: bulk pro-

cessing techniques, Int. J Mater. Prod. Techn. 39(1-2):20-29.     

doi: 10.1504/IJMPT.2010.034257 

3. Yan, W., et al. (2016), Multi-scale modelling of electron beam 

melting of functionally graded materials. Acta Mater. 115: 403 

-412. doi: 10.1016/j.actamat.2016.06.022 

4. Saiyathibrahim, A., Subramaniyan, R., Dhanapal, P. (2016), 

Centrifugally cast functionally graded materials - a review. In: 

Int. Conf. on Systems, Science, Control, Communications, Engi-

neering and Technology (ICSSCCET 2016), Vol.02: 68-73. 

5. Erdogan, F. (1995), Fracture mechanics of functionally graded 

materials, Comp. Eng. 5(7): 753-770. doi: 10.1016/0961-9526 

(95)00029-M 

6. Tilbrook, M.T., Moon, R.J., Hoffman, M. (2005), Crack prop-

agation in graded composites, Comp. Sci. Technol. 65(2): 201-

220. doi: 10.1016/j.compscitech.2004.07.004 

7. Carpinteri, A., Paggi, M., Pugno, N. (2006), An analytical 

approach for fracture and fatigue in functionally graded mate-

rials, Int. J Fract. 141(3-4): 535-547. doi: 10.1007/s10704-006-

9012-y 

8. Rizov, V.I. (2017), Analytical study of elastic-plastic longitudi-

nal fracture in a functionally graded beam, Strength, Fract. 

Complexity, 10(1): 11-22. doi: 10.3233/SFC-170197 

9. Rizov, V.I. (2018), Delamination in multi-layered functionally 

graded beams – an analytical study by using the Ramberg-Osgood 

equation, Struct. Integ. and Life, 18(1): 70-76.  

10.  Rizov, V.I. (2018), Delamination in nonlinear elastic multi-

layered beams of triple graded materials, Struct. Integ. and 

Life, 18(3): 163-170. 

11.  Mahamood, R.M., Akinlabi, E.T., Functionally Graded Mate-

rials, Springer Int. Publ., 2017. doi: 10.1007/978-3-319-53756-6 

12.  Lukash, P.A., Fundamentals of Nonlinear Structural Mechanics, 

Stroizdat, Moscow, 1978. (in Russian) 

13.  Broek, D., Elementary Engineering Fracture Mechanics, Springer 

Netherlands, 1982. doi: 10.1007/978-94-009-4333-9 

 

© 2020 The Author. Structural Integrity and Life, Published by DIVK 

(The Society for Structural Integrity and Life ‘Prof. Dr Stojan Sedmak’) 

(http://divk.inovacionicentar.rs/ivk/home.html). This is an open access 

article distributed under the terms and conditions of the Creative Commons 

Attribution-NonCommercial-NoDerivatives 4.0 International License 

http://divk.inovacionicentar.rs/ivk/home.html

