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Abstract 

This study deals with the elastoplastic deformation of 

transversely isotropic rotating disc of variable density with 

shaft subjected to temperature gradient by using transition 

theory of Seth and generalized strain measure theory. Solv-

ing the problems in classical plasticity theory needs the 

empirical assumption such as the yield criterion. This results 

from the use of direct strain measures that ignore the non-

linear transition region where the yield occurs and the fact 

that plastic strains are never straight. The transition theory 

of Seth requires no ad-hoc assumptions such as yield condi-

tion, incompressibility condition, infinitesimal strains and 

creep strain laws. Therefore, generalized strain measure 

and transition theory are the general methods of solving a 

problem from which the classical theory assumptions can 

be obtained. The combined impacts of density, temperature, 

and angular speed have been displayed numerically and 

graphically. It is seen that the disc made of transversely 

isotropic material yields at the external surface of the disc, 

however, the disc of isotropic material yields at the internal 

surface of the disc as the density of the rotating disc 

increases from outer to inner surface with the increase of 

temperature and angular speed. The displacement of the 

isotropic rotating disc is higher than that of the trans-

versely isotropic rotating disc. 

Ključne reči 

• elastoplastičnost 

• rotirajući disk 

• transverzalno izotropno 

• naponi 

• pomeranje i deformacije 

• gradijent temperature 

Izvod 

U radu je primenom teorije prelaznih napona Seta i 

teorije mera generalisanih deformacija istražena elasto-

plastična deformacija transverzalnog izotropnog rotiraju-

ćeg diska, promenljive gustine, sa osovinom, koji je optere-

ćen gradijentom temperature. Rešavanje problema u klasič-

noj teoriji plastičnosti zahteva empirijsku pretpostavku kao 

što je kriterijum tečenja. Ovo je posledica primene direkt-

nih mera deformacije, kojima se zanemaruje nelinearna 

prelazna oblast, u kojoj se javlja tečenje, kao i činjenice da 

plastične deformacije nisu pravolinijske. Teorija prelaznih 

napona Seta ne zahteva ad-hoc pretpostavke, kao što su 

kriterijum tečenja, uslov nestišljivosti, infinitezimalne defor-

macije i zakone puzanja. Stoga su generalisana mera defor-

macija i teorija prelaznih napona opšte metode za rešava-

nje problema, preko kojih se ostvaruju pretpostavke klasične 

teorije. Kombinovani uticaji gustine, temperature i ugaone 

brzine su predstavljeni numerički i grafički. Uočava se 

pojava tečenja na spoljnjoj površini diska od transverzal-

nog izotropnog materijala, međutim, kod diska od izotrop-

nog materijala, tečenje se javlja na unutrašnjoj površini 

diska, pri povećanju gustine rotirajućeg diska u pravcu od 

spoljne ka unutrašnjoj površini, sa porastom temperature i 

ugaone brzine. Pomeranja kod izotropnog rotirajućeg diska 

su veća u odnosu na transverzalni izotropni disk. 

INTRODUCTION 

Rotating discs can be used in a variety of engineering 

applications such as flywheels, gas turbine engines, gears, 

compressors, computer disc drives, car disc brakes, shrink 

fits, circular saws, storage devices (hard disks, blue ray discs 

etc.). In these applications, the rotating disc is exposed to 

various loads and is additionally exposed to high tempera-

tures. Under these conditions, the theoretical study of stress 

distribution and strain in a disc at high speed is of great 

practical use as the lifetime of machine parts can be enhanced 

for a better understanding of the disc behaviour and an 

efficient rotational disc model for the task needed. The 

importance of rotating discs in engineering is significant in 

many problems and a long-standing field of study in the 

domain of mechanics of solids. The analytical elasticity-

plasticity of such rotating disc of isotropic materials can be 

found in many books, /1-3, 5, 8, 18/. Laszlo /6/ began the 

theoretical treatment of rotating disc in 1925 and interests 

in this problem have never stopped. Researchers are dedi-

cated to the study of rotating discs based on classical and 
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non-classical treatment to figure out the optimal design of 

structural components and not to confine themselves to the 

usual elastic regime, but to the elastoplastic regime due to 

the increasing material scarcity and higher material costs. In 

analysing the problem /4, 13-16/ by classical treatment in 

elastoplastic (or elastic-plastic) structural components and 

creep deformation, researchers used assumptions: the defor-

mation is small enough; incompressibility condition; yield 

criterion; etc. Starting from 1962, researchers used the tran-

sition theory of Seth /12/ and generalised strain measure 

theory (non-classical treatment) which does not include any 

simplification of empirical assumptions such as the yield 

criterion. Many researches on the analysis of stresses and 

strains in rotating disc have been performed with regard to 

elastoplastic and creep transition in classical treatment. 

However, the studies using the non-classical treatment of 

this structural component are rather limited as compared to 

classical treatment even though the real behaviour of the 

transition of the material is nonlinear and the method 

neglects the empirical assumptions. In view of this, there is 

a need to investigate elastoplastic and creep transitional 

stresses and strains for different material symmetries of the 

disc having different parameters under different loading. 

Transition theory of Seth uses the generalized strain measure 

theory and asymptotic approach. The transition function 

through the combination of principal stresses at transition 

points of the differential system describing the deformed 

medium is successfully applied to a more general and wider 

range of problems. Pankaj /7/ solved problems in elastic-

plastic stresses of an isotropic rotating disc of infinitesimal 

deformation under steady state temperature. 

The generalized principal strain measure is defined /12/ as 
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where: n is strain measure coefficient; eii
A is Almansi finite 

strain component; and i = 1, 2, 3. It gives n = –2, –1, 0, 1, 2 

respectively to Green, Cauchy, Hencky, Swainger and 

Almansi measures. 

In this research, we investigated the problem of elasto-

plastic deformation in a transversely isotropic rotating disc 

having variable density with shaft subjected to temperature 

gradient by using transition theory of Seth and generalized 

strain measure theory. Disc density  is assumed to vary 

across the radius as: 
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, (2) 

where: m is a parameter; and 0 is a constant at r = b. 

Results are presented numerically and graphically. 

MATHEMATICAL MODEL AND GOVERNING EQUA-

TION 

Consider a homogeneous disc mounted on a rigid shaft 

of transversely isotropic/isotropic material with density 

gradient due to Eq.(2) having central bore of inner radius a 

and outer radius b. As shown in Fig. 1, the disc rotates 

gradually increasing at angular speed  around an axis 

perpendicular to its plane and passes through the centre. It 

is assumed that the thickness of the disc is constant and 

sufficiently small to be effective in a state of plane stress 

(zz = 0), and the temperature 0 is applied to the central 

bore of the internal surface of the disc. 

 

Figure 1. Rotating disc with shaft subjected to temperature gradient. 

Boundary conditions 

It is assumed that the disc's internal surface is fixed to a 

shaft and the outer surface is free from mechanical load. So, 

the problem's boundary conditions are set by: 
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where: rr and u are stress and displacement along the 

radial direction, respectively. 

Displacement coordinates and strain measures 

Since the shaft is strained symmetrically we can take the 

components of displacement in cylindrical coordinates as: 

u = (1 – )r, v = 0, w = dz;  is a function of r = √(x2 + y2) 

only; d is a constant which is the allowance for uniform 

longitudinal extension. 

For finite deformation, the Almansi strain measures are: 
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where: u, v, w are the physical components of displacement 

ui and err
A, e

A, ezz
A, er

A, ez
A, ezr

A are the components of 

strain tensor eij
A; the superscript ‘A’ is Almansi and ′ = 

d/dr. 
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Using Eqs.(4) into Eq.(1), the generalized components of 

strain are given by: 
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Stress-strain relation for transversely isotopic material 

Thermoelastic constitutive equations are given by /17/: 
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where: 1 = 1C11 + 22C12; 2 = 1C12 + 2(C22 + C33); 1 

is the coefficient of linear thermal expansion across the axis 

of symmetry; 2 is the corresponding quantity orthogonal to 

axis of symmetry; Cij are elastic material parameters 

(constants); and  is the temperature change. 

From Eq.(6) and zz = 0, strain components are obtained 

in terms of stress as: 
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Using Eqs.(5) and (6), the stresses are obtained as 
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The temperature field satisfying Fourier heat equation 
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 and  = 0 at r = a,  = 0 at r = b, 

where 0 is a constant, from Seth: solving the heat equation 

using the given condition, we get: 
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All equilibrium stress equations are satisfied except: 
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where:  is the density of the material. 

Substituting Eqs.(10) and (11) into Eq.(12), we obtain a 

nonlinear differential equation in  as: 
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where: r′ = p. 

In Eq.(16) the transitional points of  are p → –1 and p → . 

ANALYTICAL SOLUTION OF THE PROBLEM 

The asymptotic solution leads from elastic to plastic state 

at the transition point p →  via the principal stress (see 

/7, 9-12/). We define the transition function  to find the 

plastic stress at the transition point as, 
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From Eq.(13) substitute the value of dp/d in Eq.(15), we get 

 

2 2
66 1 1 20 0

11 66

0

11

)

_ _
(2 1 (1 ) ( ) ln

(ln

)

2 (1 )

m
n

n

n

n r r
C p r

b b
d

dr r C C C p

      




− 
    − + − + − −   

    
 

=
 − + +
 

. (16) 

By taking asymptotic value of Eq.(16) as p → , we get 
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Let C1 = 2C66/C11. Then from Eq.(17) 
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where: A is an integration constant. 

Using Eq.(18) in Eq.(14), we get 
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Let 0 = 1̅0 and C3 = 2(C11 – C66)/n. Thus, Eq.(19) 
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Substituting Eq.(20) in Eq.(12), we get 
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To determine the displacement of the rotating disc, we 

use Eqs.(5), (9), (20) and (21), so we get: 
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To compute the constants A and C3, we use the boundary conditions Eq.(3) in Eqs.(20) and (22). Thus, 
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Using the value of A and C3 in Eq.(20), we get 
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Using Eq.(25) in Eq.(12), we get 
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From Eqs.(25) and (26), we get 

1 1 1

1

2 2 2 213
1 0 2 0 0 10

3

1

0
3

ln (1 ) 1 1 ln (1 ) 1

(1 )

_C m m C C

rr C

Cb a a a b b
a v C v

r b b C b b a a

b b
C v

a

r
C r

a



       

 

− −                             − − − − + + − − − −                                           
=

   
− − 

−

 
   

1

1

C 
 −
 
 

. (27) 



Modelling of elastoplastic deformation of transversely isotropic  Modeliranje elastoplastične deformacije transverzalnog  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 20, br. 2 (2020), str. 113–121 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 20, No 2 (2020), pp. 113–121 

 

117 

Using Eqs.(23) and (24) in Eq.(22), we get 
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Initial yielding 

For the discs made of transversely isotropic materials 

(magnesium and beryl), it has been found that the value of 
 is maximum at r = b, which means yielding will occur 

on the outer surface of the discs. Thus, 
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For the discs made of isotropic material (steel), it has 

been found that the value of  is maximum at r = b, 

which means yielding occurs at the outer surface of the 

discs depending on the value of m. Thus, 

m = –1, 0 
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where: Y is the yielding stress. 

Elastoplastic stresses and displacement 

The non-dimensional quantities are introduced as 
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Elastoplastic stresses and displacement from Eqs.(25), 

(26) and (28) in non-dimensional form become: 
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NUMERICAL ILLUSTRATION AND DISCUSSION 

Elastic stiffness constants Cij are given in Table 1 for 

transversely isotropic materials (magnesium and beryl) and 

isotropic material (steel). Based on the above analysis, the 

following values are taken into account for calculating 

elastic-plastic stresses and displacement: m = –1, 0, 1; 3 = 

0, 0.5, 0.75; 2/1 = 1 and 2 = 150, 250, 350. Curves are 

drawn for transversely isotropic/isotropic rotating disc 

between stresses and displacement along the radii ratio R. 

In Figs. 2, 3 and 4 we use sigma r instead of r, sigma theta 

instead of , displacement instead of u̅ and ^2 instead of 

2. 
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Table 1. Elastic stiffness constants Cij used in units of 1010 N/m2. 

Materials C11 C12 C13 C33 C44 

Transv. isotropic (C1 = 0.561, Mg) 5.97 2.62 2.17 6.17 1.64 

Transv. isotropic (C1 = 0.643, Be) 2.746 0.980 0.674 4.690 0.883 

Isotropic (C1 = 0.563, steel) 2.908 1.27 1.27 2.908 0.819 

It is observed from Fig. 2 that as the density decreases 

from external to internal rotating disc made of transversely 

isotropic materials, the isotropic material yields at the exter-

nal surface with the increase of angular speed and tempera-

ture. Furthermore, as the density decreases and the rotation 

speed increases, the circumferential stress values of the 

three materials: magnesium, beryl, and steel, are increased. 

The circumferential stress values of the transversely isotropic 

materials are higher than the isotropic material. The radial 

stresses of the three materials Mg, Be, and steel are very 

small as compared to the tangential stresses. The radial 

stress of isotropic material (steel) is greater than trans-

versely isotropic materials (Mg and Be). The displacement 

of the rotating disc made of an isotropic material is higher 

than the displacement of the disc made of transversely 

isotropic materials, especially the displacement of the rotat-

ing disc of Mg is much lower than Be. As the angular speed 

increases, the displacement of the rotating disc of both 

materials increases, but at a higher angular speed the 

displacement of steel and Be decrease after certain values 

of the radii ratio, so that the displacement of Mg is higher 

than for Be and steel. 

 

 

 

 

 

 
Figure 2. Distribution of elastic-plastic stresses and displacement 

in the disc having the parameter m = –1 under different rotating 

speed and temperature. 

In Fig. 3, the curves are drawn between stresses and the 

displacement along the radii ratio R for parameters m = 0; 

3 = 0, 0.5, 0.75 and 2 = 150, 250, 350. It is seen that as 

the density of the disc is constant, the transversely iso-

tropic/isotropic disc yields on the external surface at a higher 
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angular speed and temperature. In Fig. 3 the radial stresses 

are increased as compared to the radial stress in Fig. 2. The 

displacement of isotropic rotating disc is higher than the 

displacement of transversely isotropic rotating disc. As the 

angular speed increases, the displacement of rotating disc 

made of both materials increases, but at higher angular 

speed and near to external surface, the displacement of steel 

decreases and the displacement of beryl is constant. 

 

 

 

 

 

 

Figure 3. Distribution of elastic-plastic stresses and displacement 

in the disc having the parameter m = 0 under different rotating 

speed and temperature. 

It is observed from Fig. 4 that as the density increases 

from external to internal, transversely isotropic rotating disc 

yields at the external surface, but the isotropic rotating disc 

yields at the internal surface at higher angular speed and 

temperature. Further, as the rotational speed of the disc 

increases, the circumferential stresses increase, and radial 

stresses decrease. Circumferential stress values of the disc 

made of beryl are higher than for magnesium and the radial 

stress value of the disc of steel is greater than the case with 

magnesium and beryl. The displacement of the rotating disc 

made of an isotropic material is higher than in the case of 

disc made of transversely isotropic materials. As angular 

speed increases the displacement of the rotating disc made 

of both materials increases and the displacement of rotating 

disc made of magnesium material is smaller as compared to 

beryl and steel. The displacement of rotating disc made of 

materials magnesium, beryl, and steel increases from the 

internal to the external surface. 
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Figure 4. Distribution of elastic-plastic stresses and displacement 

in the disc with parameter m = 1 vs. rotating speed and temperature. 

CONCLUSION 

It is concluded that transversely isotropic/isotropic rotat-

ing disc yields at the external surface with the increase of 

angular speed and temperature as the disc density decreases 

or is constant from external to internal surface. Further, as 

the disc density decreases or is constant from external to 

internal surface, the displacement of steel and beryl near to 

the external surface decreases at high angular speed and 

temperature. It is also observed that as the density increases 

from external to internal surface, the rotating disc of trans-

versely isotropic materials yields at the external surface, but 

the isotropic material yields at the internal surface with the 

increase of angular speed and temperature. The radial stress 

of rotating disc made of an isotropic material is greater than 

the radial stress of transversely isotropic materials and the 

circumferential stresses of transversely isotropic materials 

are greater than in isotropic material. The displacement of 

isotropic rotating disc is higher than the displacement of the 

transversely isotropic rotating disc. The displacement of 

transversely isotropic/isotropic rotating disc increases with 

the increase of angular speed. 
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