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Abstract 

In the present paper, creep analysis of spherical shell 

has been done under the influence of internal and external 

pressure. Creep stresses in a spherical shell are derived by 

using principal strain measure and Seth’s transition theory. 

A novel feature of the transition theory is its ability to give 

a uniform treatment of plastic and creep deformation without 

making ad hoc assumptions like yield criterion or creep 

laws. The expressions obtained are valid for compressible 

as well as incompressible materials. 

Ključne reči 

• puzanje 

• pritisak 

• sferna ljuska 

• napon 

Izvod 

U radu je data analiza puzanja sferne ljuske pod utica-

jem unutrašnjeg i spoljašnjeg pritiska. Naponi puzanja u 

sfernoj ljuski su izvedeni primenom mere glavne deforma-

cije i teorije prelaznih napona Seta. Novost u teoriji prelaz-

nih napona jeste mogućnost uniformnog pristupa plastične 

deformacije i deformacije puzanja bez uvođenja ad hoc pret-

postavki, kao što su kriterijum puzanja ili zakoni puzanja. 

Dobijeni izrazi važe za stišljiv kao i za nestišljiv materijal. 

 

INTRODUCTION 

The proposed creep modelling can be used for the simu-

lation of creep processes occurring in spherical shell struc-

tures under influence of internal and external pressure. It is 

clear that the use of the generalized creep laws is connected 

with great experimental efforts, so in many practical cases 

we have to work with creep equations containing a reduced 

number of parameters. On the other hand, the proposed 

creep-damage model is, in some situations, incomplete and 

does not reflect the real damage behaviour. The reason for 

this inaccuracy is that we deal only with one damage param-

eter. Many researchers have done creep modelling in spher-

ical and cylindrical shell under various conditions. Miller 

/1/ derived a solution for stresses and strains in a thick 

circular shell exposed to internal and external loads. In 

addition to plastic behaviour, the shell material is accepted 

to experience both wet creep and dimensional changes as 

the shell is pressurized. Zhang et al. /2/ presented an precise 

method to find out stresses in thick-walled spherical pres-

sure vessels under influence of uniform internal pressure. 

The impacts of Young's modulus of the external layer on 

the distortions and stresses in the vessels comprising of the 

three unique layers are inspected. A technique to get practi-

cally consistent circumferential stresses in the vessels 

comprising of the practically evaluated material just are 

researched. Gilbert et al. /3/ investigated nonlinear creep 

behaviour of spherical shells of revolution including domes 

subjected to sustained loads. A nonlinear axisymmetric 

hypothetical model, which represents the impacts of creep 

and shrinkage, is developed. The governing field equations 

are derived using variational principles, equilibrium require-

ments, and integral-type constitutive relations. Hansen et al. 

/4/ presented the new finite volume method for solving 

three-dimensional thermal convection in a spherical shell 

under strong temperature and pressure-dependent viscosity 

in which the spherical shell is divided into six cubes. The 

performing model is validated by taking parameters of 

steady-state cubic and tetrahedral convection with other 

published spherical models and a detailed convergence test 

on successively refined grids. Kashkoli et al. /5/ assumed 

that the thermo-creep response of the material is governed 

by Norton’s law, and an analytical solution of the problem 

is presented for determining time-dependent creep stresses 

and displacements of homogeneous thick-walled pressure 

vessels. The nonlinear behaviour of the material arises by 

taking into consideration creep behaviour at high tempera-

ture under quasi-static conditions. All the authors men-

tioned above have determined the solutions of the problems 

by considering assumptions of creep-strain laws like Norton 

and incompressibility condition, etc. These conditions are 

based on classical assumptions of creep transition. These 

conditions are no longer valid at transition state of the solid 

and this state is nonlinear in nature. Seth /6-9/ has devel-

oped the transition theory which is helpful to solve various 

problems related to plastic and creep deformations in solids. 

Seth’s transition theory can be applied to various problems 

mailto:gkdon85@gmail.com


Creep modelling of spherical shell under influence of internal and  Modeliranje puzanja sferne ljuske pod uticajem unutrašnjeg i  

 

INTEGRITET I VEK KONSTRUKCIJA 

Vol. 20, br. 2 (2020), str. 93–97 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 20, No 2 (2020), pp. 93–97 

 

94 

of creep transition. Neither the yield criterion, nor the asso-

ciated flow rule is assumed here. Sharma et al. /10-12/ 

investigated behaviour of transversely isotropic cylinder 

under internal and external pressure. The results are derived 

for plastic and creep stresses in cylinder by using the 

concept of generalized strain measures and transition 

theory. Pathania et al. /13, 14/ worked on the problem of 

elastic-plastic and thermal creep stresses under combined 

effect of internal and external pressure. In this paper, I shall 

derive the results for creep stresses under combined effect 

of internal and external pressure in a spherical shell without 

using semi-empirical laws. The results are derived and shown 

graphically. 

FORMULATION OF THE MATHEMATICAL PROBLEM 

Consider a thick-walled spherical shell, whose inward 

and outer radii are a and b respectively, subjected to uniform 

internal pressure p1 and external pressure p2. The compo-

nents of displacement in spherical co-ordinates (r, , ) are 

given as 

 (1 ),   0,   0u r g v w= − = = , (1) 

where: u, v, w (displacement components); and g = g(r).
 

Generalized components of strain are given by Seth /15-

16/ as 
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where: g′ = dg/dr.  

Stress-strain relation: the constitutive equation for stress-

strain relations for an isotropic material is given in /17/, 

 1 2ij ij ijT I e = + ,   (i,  j = 1, 2, 3), (3) 

where: Tij are the stress components;  and  are Lame’s 

constants; I1 = ekk is the first strain invariant; ij is the 

Kronecker delta. 

By using Eqs.(2) in Eq.(3), the stresses are obtained as: 
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Equation of equilibrium: the radial equilibrium of an 

element of the spherical shell requires: 

 
2( )

0rrrr T TdT
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 −− = , (5)  

where: Trr and T are the radial and circumferential stresses. 

Boundary conditions: boundary conditions of the problem 

are written as 

 Trr = –p1   at   r = a     and     Trr = –p2   at   r = b. (6) 

Critical points or turning points: using Eqs.(4) in Eq.(5), 

we get a nonlinear differential equation in g as: 
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where: c = 2/ + 2; and putting rg′ = gQ (Q is function 

of g, and g is function of r), we get 
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Transition points of g in Eq.(8) are Q → –1 and Q → 

. Here, we are only interested in finding creep stresses 

corresponding to Q → –1.

 TRANSITION FUNCTION AND CREEP LAW 

We define the transition function R through principal 

stress difference (see Thakur /18-21/, Sharma /22/, Gupta 

/23/, Verma /24-25/) at the transition point Q → –1. The 

transition function R is given as: 

 2
( ) (1 ) 1 ( 1)

m
n m n n

rr m
R T T g g Q

n
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  
= − = − − − + 

 
. (9) 

Taking the logarithmic differentiation of Eq.(9) with 

respect to g and substituting the value of dQ/dg from Eq.(8) 

and taking asymptotic value Q → –1, we get: 
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This gives  
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as Q → –1, where A0 is a constant of integration. Therefore, 

we have
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Since g → g0/r as Q → –1, where g0 is constant, we get 
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Equation (13) will lead to a very general form of solu-

tions in creep. For this problem, I shall take m = 1. Then 

Eq.(13) gives 

 3 2 ( 1)n c n
rrT T Ar

− + −− = , (14)
 

where: A is constant. Combining Eqs.(14) and (5), we have 
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where: B is an integration constant. 

From Eqs.(14) and (15), 
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By applying boundary conditions from Eq.(6) into Eqs. (15) and (16), we have 
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By using the values of constants A and B, we have creep stresses in the spherical shell as 
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where: t = –3n + 2c(n – 1). 

Equations (18) give creep stresses for the spherical shell 

under the combined load of internal and external pressure. 

We introduce the following non-dimensional components: 

R = r/b, R0 = a/b, rr = Trr/E,  = T/E, P1 – P2 = (p1 – 

p2)/E, where E = 2(3 – 2c)/(2 – c). Equations (18) in a non-

dimensional form become: 
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where: t = –3n + 2c(n – 1). 

NUMERICAL DISCUSSION ON CREEP STRESSES AND 

STRAIN RATES 

For calculating creep stresses based on the above analysis, 

the following values have been taken: incompressible 

material C = 0, and compressible material C = 0.25, 0.50, 

measure n = 1/7, 1/5, 1 (i.e. N = 7, 5, 1). In the classical 

theory, measure N is equal to 1/n. The creep stresses 

derived from Eqs.(19) are plotted in graphs along radii ratio 

R under different cases of internal and external pressure. In 

Fig. 1, creep curves are drawn by taking into consideration 

that internal pressure is higher than external pressure. Curves 

for radial, as well as circumferential stresses, are produced 

against radii ratio R for different value of measures. It is  

found that radial stresses have more impact on the internal 

surface of the sphere as compared to the external surface of 

the shell for different materials with compressibilities c = 0, 

0.25, 0.50. The values of creep stresses are negative due to 

compressive nature of pressure. It is also seen that values of 

creep stresses get lowered for n = 1/5 as compared to n = 

1/7. For linear measure n = 1, it is seen that radial stresses, 

as well as circumferential stresses, show same values for all 

types of compressible materials. Radial stresses are more 

effective at internal surface as compared to circumferential 

stresses. In Fig. 2, creep curves are drawn by taking into 

consideration that external pressure is higher than internal 

pressure. The effect of stresses gets reversed in this case. 

The circumferential stresses have more effect on outer 

boundary of shell as compared to the radial stresses. It is 

further seen that with increase in compressibility of the 

material, creep stresses have more influence on interior as 

well as the exterior part of the shell as compared to incom-

pressible material. It means that under effect of higher exter-

nal pressure, the spherical shell made up of high compressi-

ble material will face more damage. In Fig. 3, creep curves 

are drawn under effect of external pressure only. It is found 

that for nonlinear measure n = 1/7 and 1/5 creep stresses 

have more influence on exterior part of spherical shell in 

absence of internal pressure. The stress values are more in 

case of n = 1/7 as compared to n = 1/5. For linear measure 

n = 1, circumferential stresses are maximum, irrespective of  

compressible material nature. In Fig. 4, creep curves are 

drawn under effect of internal pressure only. It is observed 

that circumferential stresses are tensile in nature that will  

 

Figure 1. Creep stresses along radii ratio at P1 = 15 and P2 = 5. 
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Figure 2. Creep stresses along radii ratio at P1 = 5 and P2 = 15. 

 

Figure 3. Creep stresses along radii ratio at P1 = 0 and P2 = 20. 

 

Figure 4. Creep stresses along radii ratio at P1 = 20 and P2 = 0. 
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lead to expansion of spherical shell. Radial stresses are 

more effective inside the shell and they have no influence 

on the boundary of the shell for linear as well as nonlinear 

measure values. Incompressible material is under less influ-

ence of stresses as compared to the compressible material. 

CONCLUSION 

It can be concluded from above discussed results that 

spherical shell made up of incompressible material has a 

longer life as compared to the shell made up of compressi-

ble material, under internal and external pressure environ-

ments. The influence of nonlinear measure n =1/7 on creep 

stresses is maximum in the spherical shell, as compared to 

other values which leads to more damage in the shell. 
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