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Abstract 

Piezoelectricity is the characteristic of some materials 

due to which they generate electricity when subjected to 

mechanical load. There exist many materials (natural and 

man-made) that possess piezoelectric properties. For 

example, cane sugar, quartz, berlinite, Rochelle salt, topaz 

and bone are naturally occurring piezoelectric materials, 

and lead zirconate titanate, and barium titanate are man- 

made piezoelectric materials. In this paper we are discuss-

ing the analytic solution of creep stresses in thin rotating 

disc composed of piezoelectric material subjected to internal 

pressure. Creep stresses in the rotating disc are calculated 

by applying the concept of Seth’s transition theory. A non-

linear differential equation governing this physical problem 

is obtained by substituting the resultant relations into the 

equilibrium equation. The solution of nonlinear differential 

equation with applied boundary conditions gives the creep 

stresses and pressure. The obtained results are discussed 

numerically and presented graphically. With the help of 

mathematical calculations and numerical discussions we 

observed that creep stresses show significant increase with 

the increasing value of pressure and angular velocity. 

Ključne reči 

• puzanje 

• pijezoelektrični materijal 

• naponi 

• unutrašnji pritisak 

• rotirajući disk 

Izvod 

Pijezoeletrične karakteristike nekih materijala potiču od 

generisanja elektriciteta kada se mehanički opterete. Postoji 

više vrsta materijala (prirodni i veštački) koji poseduju 

pijezoelektrične osobine. Na primer, šećerna trska, kvarc, 

berlinit, Rošelova so, topaz i kost su prirodni pijezoelektrič-

ni materijali, a olovo cirkonat titanat, ili barijum titanat su 

veštački pijezoelektrični materijali. U radu je navedena 

diskusija analitičkog rešenja napona puzanja u tankom 

rotirajućem disku od pijezoelektričnog materijala, koji je 

opterećen unutrašnjim pritiskom. Naponi puzanja u rotira-

jućem disku se izračunavaju primenom koncepta Setove 

teorije prelaznih napona. Nelinearna diferencijalna jedna-

čina, kojom se opisuje ovaj fizički problem, dobijena je 

smenom rezultujućih relacija u jednačinu ravnoteže. Reše-

nja nelinearne diferencijalne jednačine sa primenom granič-

nih uslova daju napone puzanja i pritisak. Diskusija obuh-

vata rezultate dobijene numerički i predstavljene grafički. 

Iz matematičkih proračuna i numeričke diskusije, primeću-

jemo da naponi puzanja pokazuju značajan porast sa poras-

tom pritiska i ugaone brzine. 

 

INTRODUCTION  

Creep deformation in materials is a time dependent defor-

mation which occurs due to long term exposure of materials 

to high temperature and pressure. Failure of materials due 

to high temperature, creep, fatigue, and fracture, is an 

unavoidable issue in the safety production of structures in 

modern industries. During the past few years, a significant 

number of research works has been done in order to esti-

mate the strength of structures working under high tempera-

ture. Piezoelectric materials generate an electric current 

when they are subjected to some external load. There exist 

a number of materials that possess piezoelectric properties, 

for example bone, quartz, proteins, and ceramics. These 

materials have numerous applications in sonar, generation 

of high-voltage and sound detection. Piezoelectric materials 

are also used in cigarette lighter and barbecue-grill igniters. 

Man-made piezoelectric materials are used in aviation and 

filters for radios and television. Due to electric and magnetic 

properties of piezoelectric materials, researchers are more 

interested in this area. Many authors have done significant 

work on creep deformations in piezoelectric materials. 

Ali Ghorbanpour Arani et.al. /1/ applied the method of 

successive approximation to evaluate the stresses in func-

tionally graded sphere of piezoelectric material and found 

that major part of electric potential is redistribution along 

the thickness. A. A. Mohammed et al. /2/ have discussed 
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about the role of piezoelectric elements in finding the 

mechanical properties of solid structures used in industries. 

Their research has reviewed emerging technology and the 

role of piezoelectric elements in tests for various mechanical 

properties, such as creep, fracture toughness, hardness, and 

toughness, etc. 

Successive approximation method for creep deformation 

of a piezoelectric cylinder made of functionally graded mate-

rial has been applied by Ali Ghorbanpour Arani and Reza 

Kolahchi, /3/. R. Pramanik and A. Arockiarajan /4/ 

performed experimental and theoretical studies on creep 

deformations of piezo- composites, and found that experi-

mental results are conceding with theoretical results. Jiayu 

Chena et al. /5/ studied piezoelectric materials for sustainable 

building structures and their industrial applications. They 

also discussed the latest techniques of using piezoelectric 

materials in energy harvesters, actuators and sensors for 

various building structures. Atrian et al. /6/ discussed the 

solution of functionally graded piezoelectric thick cylinder 

under the influence of electric field and mechanical loads 

by separation of variable method. Renato Caliò and others 

/7/ reviewed the state of art in harvesting of piezoelectric 

energy. Their work emphasizes on operating modes of mate-

rial and configurations of devices. Elio /8/ described the 

phenomenon of forces in piezoelectric materials subjected 

to electric fields and showed that these materials have capa-

bility of producing nonlocal forces of induction. All the 

above mentioned authors applied the classical theory of 

deformation for solving these problems in the elastic region 

only. Borah /9/ has used the concept of transition theory by 

employing the concept of generalized finite strain measures. 

Many authors /10-25/ have applied this theory to solve the 

problems of different solid structures such as shells, cylinders 

and rotating disc, etc. In example, the stresses in circular 

cylinder composed of functionally graded material are eval-

uated by Aggarwal et al. /12/ and concluded that functionally 

graded material is better for constructing cylinders as com-

pared to isotropic material. Sharma et al. /17/ evaluated the 

thermal shear stresses in torsion of functionally graded 

cylinder under pressure at inner and outer surface. Sharma 

and Panchal /18/, and Sharma et al. /19/, have evaluated the 

stresses in spherical shells and cylinder made of transversely 

isotropic material by applying the concept of transition 

theory. Sharma et al. /20/ calculated creep torsion in thick 

cylinder subjected to pressure at inner and outer surface and 

concluded that composite materials are better than isotropic 

materials for design. 

In the present paper, creep stresses are evaluated in thin 

rotating disc composed of piezoelectric material under inter-

nal pressure by applying the concept of transition theory. 

GOVERNING MATHEMATICAL EQUATIONS 

A thin rotating disc having inner and outer radii, r1 and 

r2, respectively, is considered. The angular velocity of the 

disc is taken as . The thin disc considered here is effectively 

in a state of plane stress i.e. (Tzz = 0). The displacement co-

ordinates in polar form are taken as 

 (1 );   0   and   u r F v w dz= − = = , (1) 

where: F is a function of r = (x2 + y2); and d is constant. 

By using generalized strain measure, the components of 

strains are given by 
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where: n is the strain measure; and F′ = dF/dr. 

Stress-strain relations for this problem are: 

 11( 2 )[ ] ( )rr rr zz rT e e e e E   = + + + + − , 
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The electric displacement equation is 

11 12 13 11 ,   0r rr zz r zD e e e E D D = + + + = = , (4) 

where:  and  are Lame’s constants; ϵ11, ϵ12, ϵ13 are piezo-

electric coefficients; and 11 is dielectric constant. 

From free charge equation we have 
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By using Eqs.(3), (4) and (5), stresses are given as 
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where: rF′ = FP; and C = 2 /( + 1). 

The equation of equilibrium for rotating disc is given as 
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Using Eqs.(6) and (7), the governing differential equation 

is obtained as 
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The boundary conditions which are to be applied at inner 

and outer surfaces of the disc are taken as 

 2 10   at      and      at   rr rrT r r T p r r= = = − = . (9) 

TRANSITION FROM ELASTIC TO CREEP 

According to transition theory /10-25/, material in elastic 

state changes to creep at critical point P → –1. For calculat-

ing the creep stresses, the transition function is taken as 
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Taking logarithmic differentiation of Eq.(10) and using 

Eq.(8) and then applying P → –1 we get, 
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With the help of Eqs.(11) and (7), creep stresses are 

obtained as follows 
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On converting all the components in non-dimensional 

form we have 
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From Eq.(12), transitional stresses are given as 
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NUMERICAL DISCUSSION 

Figures 1a, 1b and 1c represent circumferential and radial 

creep stresses in thin rotating disc with angular velocity 

 = 10 with internal pressure 5, 10 and 15 for piezoelectric 

material PZT 4 at different radii ratios. It can be seen in 

Fig. 1a that radial and circumferential creep stresses are 

tensile in nature. It is also observed that radial stress shows 

significant increase with increasing radii ratios and attains 

its maximal value at outer surface of the disc. Circumferen-

tial creep stresses reach maximum at inner surface and 

decrease with the increase in ratios. It is noticed from 

Fig. 1b and 1c that as we increase the value of internal 

pressure, the creep stresses increase significantly, but the 

behaviour of stresses is the same as in Fig. 1a. 

With the increase in angular velocity ( = 20) of the disc, 

values of circumferential and radial stresses increase signifi-

cantly with internal pressure 5, 10 and 15, respectively, as 

can be observed from Figs. 2a, 2b and 2c. In Fig. 3a, 3b and 
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3c, it is observed that circumferential and radial creep 

stresses show significant increase with the incremented value 

of angular velocity ( = 30) and internal pressure of the disc. 
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Figure 1. Circumfer. and radial creep stresses for piezoelectric material 

with angular velocity 10 and inter. pressure 5, 10, 15 in respect. 
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Figure 2. Circumfer. and radial creep stresses for piezoelectric material 

with angular velocity 20 and internal pressure 5, 10, 15 in respect. 
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Figure 3. Circumfer. and radial creep stresses for piezoelectric material 

with angular velocity 30 and internal pressure 5, 10, 15 in respect. 

CONCLUSION 

The analytical solution is obtained for creep stresses in 

piezoelectric material using transition theory for different 

angular speeds and pressure at internal surface. With the 

help of mathematical calculations and numerical discussions 

we observed that creep stresses show significant increase 

with the increasing value of pressure and angular velocity. 
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