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Abstract 

The purpose of this paper is to present a study of elasto-

plastic density variation in a deformable disk by using 

Seth’s transition theory. It has been observed that the effect 

of density variation parameter in a rotating disk requires 

lesser values of angular speed for compressible material as 

well as incompressible materials. The hoop stress has a 

maximum at the inner surface for incompressible materials 

as compared to compressible materials. With increased 

values of density parameter, the ratio of angular velocity 

for the fully-plastic state with respect to initial plasticity is 

increased to large values. 

Ključne reči 

• disk 

• gustina 

• naponi 

• brzina 

• tečenje 

Izvod 

Cilj ovog rada je predstavljanje istraživanja elastoplas-

tične promene gustine kod deformabilnog diska, primenom 

teorije prelaznih napona Seta. Uočeno je da uticaj promene 

parametra gustine kod rotirajućeg diska ima manje vred-

nosti ugaone brzine za stišljiv materijal, kao i za nestišljiv 

materijal. Cirkularni napon ima maksimum na unutrašnjoj 

površini za nestišljiv materijal, u poređenju sa stišljivim 

materijalima. Sa porastom vrednosti parametra gustine, 

odnos ugaone brzine za stanje potpune plastičnosti prema 

vrednostima za početnu plastičnost raste do visokih vred-

nosti. 

INTRODUCTION 

Theoretical investigation of deformations in a disk 

induced by centrifugal forces is an important topic due to 

its various applications in engineering components such as 

gas turbine rotors, internal combustion engines, casting of 

ship propellers, turbojet engines, high-speed gears, flywheels, 

rotors, and compact disks, etc. Optimising the design of a 

rotating disk and also assessing the failure risk requires 

understanding its behaviour in the elasto-plastic regime. In 

this context, numerical investigations have been extensively 

used to predict the deformation, failure, and stress and 

strain fields in a uniform rotating disk under different load-

ing conditions. Elasto-plastic analysis in a rotating disk has 

always attracted a lot of research interest because of their 

importance in engineering applications. 

The stress field in a uniform rotating disk subjected to 

elasto-plastic loading condition is not uniform and maximal 

stress occurs at the centre of the disk. The non-uniform 

distribution of stresses is a key barrier in designing rotating 

disks with enhanced performance. The distribution of 

stresses and displacement in an elasto-plastic rotating disk 

is a classical problem in engineering design and can be 

found in many textbooks /1, 5, 6, 7/. Reddy and Srinath /8/ 

investigated the influence of material density on stresses 

and radial displacements in a rotating polar orthotropic disk. 

You et al. /9/ investigated elastic–plastic rotating disks with 

arbitrary variable thickness and density. Alexandrova et al. 

/10/ investigated the problems of elastic-plastic stress distri-

bution in a rotating annular disk. Gupta et al. /11/ analysed 

elastic-plastic transition in a thin rotating disk with inclu-

sion under thermal effect by using Seth’s transition theory. 

Mohammad et al. /12/ investigated the problems of linear 

thermo-elastic analysis of a functionally graded (FG) rotat-

ing disk with different boundary conditions using Adomian 

decomposition method. 

Methodology: Seth’s transition theory /3/ includes clas-

sical macroscopic solving problems in creep and relaxation, 

plasticity, and assumes semi-empirical yielding conditions. 

The nonlinear transition regions through which yielding 

occurs are neglected. Apparently, transition theory is used 

to solve problems in a general way, employing the concept 

of generalised strain measure and asymptotic solution at the 

transition points of differential equations, defining the 

deformed field and has been successfully applied to a large 

number of problems /3, 4, 11, 13-21/. The abstract measure 

theory has been highly developed; it has not been suitably 

exploited in the domain of nonlinear mechanics. In classical 

mechanics, the ordinary measures have found sufficient 

extensions but none of them have been generally made. If a 
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continuous phenomenon will be represented by a spectrum, 

nonlinearity exhibits itself at their end which corresponds to 

the transition states. In the current literature, such transition 

states require semi-empirical laws to match the solutions 

and thus a discontinuity arises where they do not exist. For 

the introduction of nonlinear measures, a continuum 

approach is necessary. Elastic-plastic deformation, creep, 

relaxation, fatigue and shocks are some of the well-known 

examples of such irreversible processes. Classical measures 

of deformation are totally inadequate to deal with such 

transitions and make constitutive equations of the medium 

very complicated. If for a very small interval, the number of 

fluctuations is very large, the Riemann integral concept for 

ordinary measure fails and the measures as those of 

Lebesgue have to be used. In the same manner, generalised 

measures given by weighted integral representations give 

very satisfactory results in problems like that of plasticity 

and creep. 

Weighted integral measures representations: the ordi-

nary uniaxial Cauchy measure is given by 

 

0

0

0 0

l

l

l ldl

l l

−
= , 

where l and l0 are deformed and undeformed lengths. The 

first weighted measure called Hencky measure can be 

written as 

 

0

0

0 0

ln
l

l
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l l l
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 
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and is widely used in plasticity problems. But for the creep 

problems, it is found useful only in secondary or stationary 

creep, not in the transient or fracture stages. The second 

weighted measure used by /2/ is 

 

0

2
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In finite elasticity, Almansi and Green measures, the 

deformed and undeformed states are taken as reference 

frameworks respectively, and are extensively used. The third 

weighted measures are 
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and in this case, the weighting functions are (l0/l)3 and (l/l0)3 

respectively. An obvious generalization of these measures 

is 
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in which the weighting function is (l0/l)n + 1. For n = –2, –1, 

0, 1, 2, it gives Green, Cauchy, Hencky, Swainger and 

Almansi measures, respectively. Thus, in the general case, 

if the principal Almansi and Green measures are denoted by 
A

ii  and 
G

ii , the generalized measures in Cartesian coordi-

nates may be written in the form: 

1
22
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1
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and 
1
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. 

The main objective of the present paper is to develop a 

consistent analytical model capable to resolve a class of 

control problems for rotating disk, due to the importance of 

the control problems in practical engineering design. On the 

other hand, the importance of material properties in the 

burst speed of disks is investigated. The novelty in the 

current research is to include three control factors such as 

rotating speed, density parameter and mechanical load in 

the consideration of the optimal performance of the disk. 

We assume that the density of disk varies along the radius 

in the form: 

 0 0( ) ( / ) mr r r  −= , (2) 

where: 0 is constant density at r = r0; and m is the density 

variation parameter. Results are obtained numerically and 

depicted graphically. 

MATHEMATICAL MODEL AND GOVERNING EQUA-

TIONS 

We consider a thin annular disk of variable density with 

central bore of inner radius ri and outer radius ro. The disk 

is rotating with angular speed  of gradually increasing 

magnitude about an axis perpendicular to its plane and 

passing through the centre. The thickness of the disk is 

assumed small so that the disk is effectively in a state of 

plane stress, i.e. the axial stress zz is zero. 

 

Figure 1. Geometry of isotropic rotating disk. 

Displacement coordinates: displacement components in 

cylindrical polar coordinate (r, , z) are given by /4/ as: 

 (1 )u r = − ,   v = 0,   w dz= , (3) 

where:  is position function, depending on r = (x2 + y2) 

only; and d is a constant. 

Finite strain components: the finitesimal components 

of strain are given by /3, 4/ as: 
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 0
A A A

r z zr   = = = , (4) 

where: ′ = d /dr. 

Generalized strain components: substituting Eq.(4) in 

Eq.(1), the components of generalized strain measure are 

given as: 

 
1

1 ( )n
rr r

n
   = − +

 
,   

1
1 n

n
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, 
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1 (1 )n
zz d

n
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 
,   0r z zr   = = = , (5) 

where: n is measure; rr,  and zz are strain components. 

Stress-strain relation: the stress-strain relations for an 

isotropic material are given /1/ as: 

 1 2ij ij ijI  = +    , 1, 2,3i j = , (6) 

where: ij and ij are stress and strain components respec-

tively; also  and  are Lame’s constants; I1 = kk is the first 

strain invariant; and ij is Kronecker’s delta. 

Equation (6) for this problem becomes 

 
2
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+

, 

 0r z zr zz    = = = = . (7) 

Substituting Eq.(5) in Eq.(7), the stresses are obtained: 
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 0r z zr zz    = = = = . (8) 

where: c is the compressibility factor of the material in term 

of Lame’s constant given by c = 2 /( + 2). 

Equation of equilibrium: the equations of equilibrium 

are all satisfied except: 

 2 2( ) ( ) 0rr
d

r r r
dr

   − + = , (9) 

where: rr is the radial stress;  is circumferential stress; 

and  (r) is the material density of the rotating disk. 

Asymptotic solution at transition points: by using 

Eq.(8) in Eq.(9), we get a nonlinear differential equation for 

 as: 

1 1(2 ) ( 1)n n dT
c n T T

d




+ −− + =  

 
2 2

1 ( 1) 1 (2 )( 1)
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 (10) 

where: r′ = T; and T is a dependent function of ; and  

is a dependent function of r. The transition points of  are 

T = –1 and T → . 

Boundary conditions: the boundary conditions of the 

rotating disk are 

 00,   ;   0,   rr i rrr r r r = = = = , (11) 

where: rr denotes stress along the radial direction. 

SOLUTION OF THE PROBLEM 

For finding the plastic deformation, the transition function 

is taken through the principal stress (see /3, 4, 11, 13-21/) at 

the transition point T → , we define the transition function 

R as, Eq.(11): 

 (3 2 ) 2 (1 )( 1)
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n nn
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Taking the logarithmic differentiation of Eq.(12) with 

respect to r, we get: 
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By substituting the value of dT/d from Eq.(10) into 

Eq.(13) and by taking asymptotic value T → , we get 

after integration: 

 1
1R K r −= , (14) 

where: K1 is a constant of integration which can be deter-

mined by boundary conditions; and  = (1 – c)/(2 – c) is the 

Poisson ratio. 

From Eqs.(12) and (14), it follows: 
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By substituting Eq.(15) into Eq.(9) and using Eq.(2), 

then integrating, we get: 
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where: K2 is a constant of integration which can be deter-

mined by boundary condition. 

By applying the boundary condition from Eq.(11) in 

Eq.(16), we get: 
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By substituting the values of K1 and K2 into Eqs.(15) and 

(16), we get: 

( )3 3
2 0 3 30 0

0
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m m
m i v v m m

rr i iv v
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r rr
r r r r
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, (17) 
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Equations (17) and (18) are elasto-plastic stresses in an 

isotropic material disk having variable density. 

Initial yielding of rotating disk: it is seen from Eq.(18) 

that   is maximal at the inner surface (r = ri). Therefore, 

yielding will take place at the inner surface and Eq.(18) 

becomes: 
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, 

where: Y is yielding stress for initial yielding. The angular 

speed i necessary for initial yielding is given by: 
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where: i = (1/r0)i(Y/0)1/2. We introduce the following 

non-dimensional components as: R = r/r0, R0 = ri /r0, 2 = 

02r0
2/Y, r = rr/Y,  =  /Y. Equations (17), (18) and 

(19) become: 
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when m = 3, Eq.(20) becomes: 
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Fully plastic state of rotating disk: the angular speed 

f > i for which the rotating disk becomes fully plastic 

(v → 1/2 = 0.5) at the outer surface r = r0, Eq.(18) becomes: 
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where: Y* is yielding stress for fully-plastic state. The angu-

lar speed f, necessary for initial yielding is given by: 
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Stresses and angular speed obtained from Eqs.(20) and 

(22) for fully plastic state (v → 1/2 = 0.5) become: 
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when m = 3, Eq.(23) becomes: 

( )
2 3

3 30 0
0 0 0

0

ln
ln ln

1

m
f m m

r

R R
R R R R R R

R R


−
− −

 
= − − + − 

−  

, 

 

( )

2 3
0 0

0

ln

2 1

m
f R R

R R


−
=

−
, 

 
( )02

3
0 0

2 1

ln
f m

R

R R−

−
 = . (24) 

NUMERICAL RESULTS AND DISCUSSION 

For calculating stress and angular speed based on the 

above analysis, the following values have been taken: ν = 

0.5 (incompressible material, i.e. rubber); ν = 0.42857 

(compressible material, i.e. saturated clay); ν = 0.333 (com-

pressible material, i.e. copper), /1/; m = 0, 1 and 3 in 

respect. Curves are drawn, between angular speed Ωi
2 and 

required initial yielding and radii ratios R0 = ri /r0 (see Fig. 1) 

for a disk of compressible and incompressible material, 

having Poisson’s ratio ν = 0.5, 0.42857, 0.333; density (i.e. 

m = 0, 1, 3). It has been observed that the rotating disk of 

incompressible material (i.e. v = 0.5) requires higher angu-

lar speed to yield at the inner surface as compared to disk of 

compressible material (i.e. ν = 0.42857, ν = 0.333). With 

the introduction of density parameter, the value of angular 

speed decreases at the inner surface of the rotating disk. 

Curves are drawn between the stress and radii ratios R = 

r/r0 (see Figs. 2 and 3) for elasto-plastic transition and fully 

plastic state, respectively. Curves are drawn between the 

stress and radii ratios R = r/r0 (see Figs. 2 and 3) for elasto-

plastic transition and fully plastic state, respectively. It has 

been seen that the values of hoop stress (Fig. 2) are maxi-

mum at the inner surface of the rotating disk made of 

incompressible material (i.e. rubber v = 0.5) as compared to 

compressible materials (i.e. saturated clay v = 0.42857 and 

copper v = 0.333). With the introduction of the density 

parameter in the rotating disk, it quite decreases the value 

of hoop and radial stresses at the inner surface for elasto-

plastic transitional state and the fully-plastic state. 

It has been seen from Fig. 3, that hoop stress is maximal 

at the inner surface for fully-plastic state. With the intro-

duction of the density parameter, the values of radial, as 

well as circumferential stresses, are decreased at the inner 

surface. 
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Figure 1. Angular speed required for initial yielding at inner surface of rotating disk along the radii ratio R0 = ri/r0. 

       
Figure 2. Stress distribution at the elasto-plastic state along radii ratio R = r/r0. 

 

Figure 3. Stress distribution at the fully-plastic state along the radii ratio R = r/r0. 
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Table 1. Angular speed required for initial yielding and fully plastic state. 

 Density 

parameter 

m 

Poisson ratios for 

different materials 

v 

Angular speed required 

for initial yielding 


 

Angular speed required 

for fully-plastic state 



 

Percentage increase 

in angular speed 

((f
2/

) – 1)100 

0.5  R  1.0 

0 

1 

3 

0.5 

1.420160785 

1.1044695 

0.59758 

3.88627 

2.626831 

0.845111 

65.4237% 

54.21947% 

18.92108% 

0 

1 

3 

0.42857 

1.369319618 

1.065026369 

0.57619 

3.88627 

2.626831 

0.845111 

68.4667% 

57.04926% 

21.10833% 

0 

1 

3 

0.33333 

1.335134413 

1.303837877 

0.56181 

3.88627 

2.626831 

0.845111 

70.60981% 

41.93983% 

22.64847% 

 

It can also be seen from Table 1, that for the disk made 

of incompressible material (i.e. v = 0.422857 and 0.333), a 

required higher percentage for values in angular speed to 

become fully plastic in comparison to the disk made of 

compressible material (i.e. v = 0.333). With increased 

values of the density parameter, the ratio of angular veloc-

ity for fully plastic state with respect to the initial plastic is 

increased to large values. 
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